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Abstract—When compared to traditional floating point (FP) number
representation, logarithmic number systems (LNS) have superior
performance when evaluating complex functions, since multiplications
and divisions can be calculated with ease in the logarithmic domain.
However, additions and subtractions become costly nonlinear opera-
tions. Efficient LNS units (LNUs) implementing ADD/SUB operations
in hardware rely on interpolation techniques to save area. Even the
most advanced LNUs are still larger than standard single-precision
FPUs – which renders them impractical for most general purpose
processors. In this paper, we show that in a multi-core setting, when
shared among several processor cores, LNUs become a very attractive
solution. We present a methodology to generate LNUs with various
error bounds and perform a design space exploration with different
parameterizations. We show that already small precision relaxations
in the order of a few units in the last place (ulp) reduce the LNU area
significantly. Using examples from several signal processing domains,
we demonstrate that shared approximate LNUs can outperform their
standard FP counterpart on average by 2.14x in speed and 1.92x in
energy-efficiency, with insignificant degradation of the output quality.

Keywords-Logarithmic Number System (LNS), Shared Floating Point
Unit (FPU), Approximation, Multi-core, RISC, ASIC, VLSI

I. INTRODUCTION

The Logarithmic Number System (LNS) allows low-latency eval-

uation of computationally intensive non-linear functions kernels

and has over the years attracted significant attention as a possible

replacement of the conventional single-precision floating point

number representation [1–9]. This is not only relevant for high-

performance computing, but also increasingly needed for low-

power, low-cost embedded applications where the demand on

intensive signal-processing capabilities continues to grow on a

regular basis. However, the drawback of LNS is that additions and

subtractions become nonlinear operations and when implemented

in hardware have to be approximated accordingly with a dedicated

LNS unit (LNU).

Recent developments [9–11] have shown that these functions can

be efficiently approximated using piecewise polynomial interpola-

tion, combined with suitable function decompositions (also called

cotransformations) in order to handle the singularity region present

in LNS subtractions. LNS units that reach the numerical accuracy

equivalent to single precision FP [9], [11] and double precision

FP [10] have been demonstrated. But despite these developments,

LNS ADD/SUB operators are still much larger than their standard

FP counterparts, which makes it difficult to motivate their use as

FPU replacement in general purpose processors.

When viewed in a multi-core setting, the area overhead of the

LNS units change. In such a setting, one LNS can be effectively

shared between several cores, as the percentage of ADD/SUB

instructions in even the most intensive computations usually remain

below 30%. This arrangement is more efficient than sharing stan-

dard FP units, as the MUL and DIV instructions in the logarithmic

domain can be performed within the integer cores, allowing M
DIV and MUL operations to be performed in parallel when only

one LNU is shared among M cores.

Another remedy is to relax precision requirements since certain

applications, such as image or audio processing, are error tolerant

to some degree and usually do not require the equivalent accuracy

of single precision FP. Using approximate computing techniques

on the architecture and circuit levels [12–14], significant area and

energy savings have been reported with only modest quality impact.

In this paper, we combine these ideas of LNU sharing and

approximate computing in order to reduce the LNU area, latency

and improve its utilization and overall energy-efficiency. Using

application kernels from several signal processing domains we

show that shared approximate LNUs can outperform standard

single precision FPUs in several applications by an average factor

of 2.14× in terms of speed and 1.92× in terms of energy-efficiency.

Also, a precision relaxation of just a few units in the last place

(ulp) already leads to significant reductions of the LNU area –

with insignificant degradation of the output quality when applied

to several image and audio processing kernels. In particular, this

paper makes the following contributions:

• We develop a methodology to generate accurate and approx-

imate LNUs capable of natively evaluating LNS ADD/SUB,

typecasts (Integer to float – I2F, Float to Integer – F2I), and

logarithms and exponentials with base 2 (LOG2, EXP2),

• We provide a design space exploration of LNUs in the

accuracy range between half- and single precision FP,

• We integrate shared LNUs with different parameters into

a multi-core RISC cluster and show comprehensive results

of benchmark applications from different signal processing

domains.

Sections II and III give a short introduction into LNS and related

work. The architecture and generator framework is described in

Section V. Core integration aspects are covered in Section VI, and

the results are finally presented in Section VII.

II. RELATED WORK

LNS has been proposed as a replacement for standard fixed-point

and floating-point arithmetic [1], [2] dating back to the 1970’s. As

will be described in section III, the main challenge in implementing

a hardware unit to perform operations in the logarithmic domain

is realization of additions and subtractions which turn into non-

linear operations that need to be approximated. Finding efficient

methods to approximate ADD/SUB functions has driven research

in the LNS domain. In early papers, implementation of LNUs with

accuracy higher than 12 bits in hardware was considered infeasible

due to exponentially increasing lookup-table (LUT) sizes needed

for approximations. Since then, several improved implementations

have been proposed. In the low-precision floating point calcula-

tion domain, with bit-widths lower than 16 bits, so-called multi-

partite table [15] and high-order table based methods (HOTBM)

[16] have been shown to be effective approximation methods for

LNS operations [17]. LNS based operations have been used to
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replace fixed-point operations in several applications such as QR

decomposition [18], embedded model predictive control processors

[19] and low power digital filtering with LNS [20]. LNS numbers

have also been extended to be used for complex numbers [21] and

quaternions [22].

Coleman, et al. [5] introduced the concept of a cotransformation
to alleviate approximation difficulties related to the subtraction

operation where the difference between the two operands is very

small. As explained later in subsection III-D, such cotransforma-

tions are basically analytical decompositions of the problematic

function to be approximated, and allow to implement the same

functionality with significantly smaller coefficient table sizes. Fol-

lowing the example of Coleman, et al., several different cotrans-

formation variations have been presented in [3], [4], [6–9], [11]. In

a paper by [23], a solution is presented that tries to combine the

advantages of both standard FP and LNS representations. The main

drawback in this hybrid approach is the cost of typecasts, which are

also non-linear operations, between the representations. Generators

for LNS operators on FPGAs have been proposed in [10], [17],

[24], [25]. Very competitive operators can be generated with the

framework presented by Fu, et. al [10] which is based on the

cotransformation developed by [3] and minimax polynomials [26].

Complete LNUs for ASIC processors with accuracy equivalent

to IEEE single-precision FP have been presented in [8], [9],

[11], [27]. Coleman, et al. [8] describe the European Logarithmic
Microprocessor (ELM), the first microprocessor featuring an LNU.

Their design combines a custom interpolation scheme with the

cotransformation developed by [5], and amounts to an area of

0.906 mm2 using a 180 nm technology with an equivalent complex-

ity of ~97 kGE. Ismail, et al. [9] improve the ELM design and pro-

pose an LNU with lookup tables small enough to be implemented

without ROMs which amounts to 0.589 mm2 in 180 nm technology

(~63 kGE). Both LNU designs are able to execute only basic LNS

ADD/SUB instructions and do not have additional functionality

for casts. A compact ASIC design with accuracy equivalent to

single precision FP was reported by [11], [27] and has an area of

0.058 mm2 (40 kGE) in 65 nm while at the same time supporting

more operations (ADD/SUB, I2F, F2I, LOG2 and EXP2).

In this paper, we improve on above listed work on LNUs for

ASIC processors by designing a compact LNU based on the

cotransformation by [3] which is able to execute LNS ADD/SUB,

as well as I2F, F2I, LOG2 and EXP2 instructions. A similar

framework as described by Fu, et. al [10], [24] is established in

order to generate exact (≤ 1ulp accuracy) and approximate (≥1 ulp

accuracy) LNUs for different bit-widths ranging from half to single

precision FP. For an accuracy equivalent to FP single precision, this

design only amounts to 0.039 mm2 (26.8 kGE) in 65 nm – which

is smaller than all other state-of-the-art ASIC designs. Further,

we analyze these LNUs in a shared multi-core setting and using

application kernels from different signal processing domains we

show significant improvements in speedup and energy-efficiency

for exact and approximate designs.

III. PRELIMINARIES

A. LNS Number Representation and Format

Standard FP number systems represent a real number a as

a = (−1)s ·mfrac · 2lexp (1)

where s is the sign, mfrac the mantissa and lexp the exponent. In

LNS, real numbers are represented similarly, but without using a

mantissa. I.e., the number is only represented by an exponent lexp

which now has a fractional part:

a = (−1)s · 2lexp . (2)

The encoding used in this work is parametrized with the number of

integer wint and fraction wfrac bits in the exponent. In this case, the

fractional bits1 integer bits wfracwint

w lns

w exp

10000000 000000000000000000000000

0
1 01111111 000000000000000000000000

01111111 100000000000000000000000

LNS ZERO

LNS INF

X

0
1

LNS NAN

Figure 1. Encoding of the LNS numbers used in this work.

exponent is an unbiased two’s complement number and its width

is denoted as wexp = wint + wfrac. The bit-width of the complete

number including the sign bit is denoted as wlns = wexp + 1.

For wint = 8 and wfrac = 23, the encoding is aligned with the

IEEE 754 32-bit single-precision format. Similar to the IEEE 754

standard, special values such as zeros (ZERO), infinities (INF)

and not a number (NAN) are encoded using special bit patterns.

ZEROs are represented by setting the exponent to the smallest 2’s

complement value. INFs are represented by setting the integer part

of the exponent to the maximum value and the rest of the mantissa

to 0. NANs are encoded similarly, but with the highest fraction bit

in the exponent set to 1 as illustrated in Figure 1 for wint = 8 and

wfrac = 23.

B. Arithmetic Operations in LNS

Certain operations can be implemented very efficiently when

working with LNS. For example, multiplications, divisions, and

square-roots can be calculated using a single addition, subtraction

or bitshift, respectively.

a · b = (−1)sa+sb · 2la+lb (3)

a/b = (−1)sa+sb · 2la−lb (4)√
|a| =

(
2la

)0.5

= 20.5·la (5)

This is an important advantage because numbers represented in this

format can be efficiently calculated by slightly modified integer

ALUs and result in much shorter latencies than the equivalent FP

implementations. However, these simplifications come at the cost of

more complex additions and subtractions which become nonlinear

operations in LNS and have to be calculated accordingly:

a± b = c, (6)

lc = max(la, lb) + log2(1± 2−|la−lb|). (7)

Using the absolute difference r = |la − lb|, the two nonlinear

functions for addition and subtraction can be defined as F+(r) =
log2(1+2−r) and F−(r) = − log2(1−2−r). These functions are

shown in Fig. 2.

C. Rounding Modes and Precision

The IEEE 754 standard defines several rounding modes that can

be applied after basic arithmetic operations like multiplications
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and additions. The default rounding mode is round to nearest,
and provides average and maximum relative errors of 0.1733 and

0.5 ulp, respectively. However, due to the different spacing of the

machine numbers in LNS, an ulp in FP is not equivalent to an ulp

in LNS. Therefore in [6], Coleman introduced the relations

|ε|avg rel arith

2wfrac
=

(
2|ε|avg log − 1

)
=

(
2

|ε|avg rel log

2wfrac − 1

)
(8)

|ε|max rel arith

2wfrac
=

(
2|ε|max log − 1

)
=

(
2

|ε|max rel log

2wfrac − 1

)
(9)

where |ε|avg log and |ε|max log are the average and maximum absolute

errors in the LNS domain, |ε|avg rel log and |ε|max rel log are the average

and maximum relative errors w.r.t. to one ulp in the LNS domain,

and |ε|avg rel arith and |ε|max rel arith are the corresponding relative errors

in the FP domain. Using these relations, we can calculate that,

e.g. an LNS design with wint = 8 and wfrac = 23 should

have |ε|max rel log < 0.7213 in the LNS domain in order to have

equivalent precision as FP with round to nearest rounding mode

(|ε|max rel arith < 0.5).
However, FP equivalent accuracy of 0.5 ulp for a certain bit-

width usually comes at a high cost and is not always required.

Hence, it is common to use so called faithful designs [10],

[17] which deliver a maximum error ≤1 ulp. Depending on the

definition, an operator is either faithful in the FP or LNS domain

(we use the latter in this work). For the distinction between exact

and approximate designs, we will use the following definitions. A

design for a certain bit-width configuration wint.wfrac is said to be

exact if its maximum relative error |ε|max rel arith ≤ 0.5. A design is

considered to be faithful if |ε|max rel log ≤ 1 in the LNS domain, and

approximate otherwise.

D. Cotransformation

While for low precision implementations with up to around 12

fractional bits F±(r) can be stored in LUTs, this approach is

not practical for designs requiring higher precision since the LUT

storage requirements increase exponentially as the bit-width grows.

To achieve higher precision, piecewise polynomial approximations

have been found to work well [10], [24] – except for operations

where r is small since F−(r) has a singularity at zero. This

region is termed the critical region (CR) and typically ranges

from r ∈ [0, 0.25) to r ∈ [0, 4), depending on the employed

interpolation scheme. In this CR, so called cotransformations [3–

5], [7–9] are usually applied in order to decompose F−(r) into

sub-functions which can be approximated more efficiently.The

cotransformation employed in this work was originally proposed

by [3] and decomposes F−(r) into

F−(r) = − log2(1− 2−r) =− log2

(
1− 2−r

r

)
+ log2(r)

(10)

= cotrans(r) + log2(r). (11)

It has been selected since it has been successfully used to create

compact LNS operators for FPGAs [10], [24]. The first term

cotrans(r) behaves much better around 0 as shown in Figure 2, and

can be readily approximated using standard minimax polynomials.

The log2(r) function still has a singularity at 0, but for finite

precision arithmetic this function can be efficiently implemented

with range reduction techniques of the argument [28]. I.e., the

argument range can be reduced to [1, 2) by employing a leading
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Figure 2. Plot of the F+(r), F−(r) and the cotrans(r) functions - note
the singularity for r → 0.

zero counter and a barrel shifter. The log2 function itself can be

efficiently implemented on this reduced range using a minimax

polynomial. The size of the CR is often set to [0, 4) when using

this decompostion as this provides the best tradeoff in terms of the

overall number of polynomial segments [10], [24].

IV. LNU ARCHITECTURE

In this section, we will present the general architecture template of

our LNU. Details on how specific parameters and LUT coefficients

are obtained will be given in the next Section V. The main

design goal of the LNU architecture shown in Fig. 3 is to reduce

the hardware overhead and latency. For the targeted accuracy

range between half precision (16 bit) and single precision (32 bit),

first and second order minimax polynomial approximations of the

functions F+(r), F−(r), cotrans(r), and log2(r) have been found

to be very efficient and were used throughout this evaluation. The

architecture shown in Fig. 3 consists of 4 main blocks: the Pre-
and Postprocessing Blocks, the Main Interpolator Block and the

Log/Exp Interpolator Block. These blocks are explained in more

detail below.

A. Preprocessing Block

The proposed LNU architecture uses different datapath units

depending on the operation and whether or not the operation

falls in the CR. The Preprocessing Block decodes the command,

calculates the absolute operator difference r = |la − lb| and the

operator maximum for binary operations such as ADD/SUB. At

this point the block is able to determine which datapath units

will be activated and generates all control signals for the LNU

and performs operation dependent preparation steps on the two

operators A = [sa, la] and B = [sb, lb]. For unary operations such

as EXP/LOG and typecasts, operator B is gated to zero and A is

passed through.

B. Main Interpolator Block

The Main Interpolator Block implements F+(r) on the complete

range [0, tclip) and F−(r) outside the CR [4, tclip) using 1st

or 2nd order piecewise polynomial approximations which have

been found to provide the best latency vs. LUT area trade-off

for the precision range between half and single precision. This

block is also used for SUB operations in the CR [0, 4) to evaluate

cotrans(r), the result of which is later added to the log2(r) value

in the Postprocessing Block. For a given input r, the coefficients

pr
i = pi(r) for i = {0, ..., N} (where N is the polynomial order)

are selected from a set of LUTs, and the polynomial is evaluated

using the Horner scheme as

p(r) = pr
0 + δrp ·

(
. . .

(
pr
(N−1) + δrp · (pr

N )
))

(12)
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Figure 3. LNU Architecture template used in our generator (shown for
N = 2).

where δrp are the LSBs of r. Since the LNU processes only one

instruction at a time, the main interpolator datapath can be shared

among F+(r), F−(r) and cotrans(r). As will be explained in

more detail in Section V, each LUT is subdivided into different

segments, each of which contains a set of equidistantly spaced

coefficient samples. The segment boundaries have been aligned

to powers of two, such that the segment index can be easily

determined by looking at the MSBs of the argument r. For large r,

the functions values of F+(r) and F−(r) fall below the required

precision due to their asymptotic behaviour and can be clipped

to 0. This clipping threshold is denoted as tclip, and amounts

to tclip ≈ 24.588 for an exact single-precision design. Further,

F+(r) and F−(r) become increasingly similar with increasing r
such that one function can be replaced by the other without impact

on precision. Therefore, we define a second threshold trepl and

reuse the F+(r) tables for F−(r) when r > trepl. For an exact

single-precision design, this value is trepl ≈ 14.

C. Log/Exp Block

The main objective of the Log/Exp Interpolator Block is to

implement the log2(r) function on the critical range [0, 4) for

cotransformed SUB operations. The function is implemented using

a barrel shifter and leading zero counter to reduce the range of

the input, and a N -th order interpolator with LUTs covering the

argument range [1, 2). Note that it is possible to reuse this function

to also implement native typecasts from integer to LNS (I2F), and

LOG2 operations in the LNS domain. For a given input r, the

polynomial coefficients qri = qi(r) for i = {0, ..., N} are selected

from a set of LUTs, and the approximation result q(r) is again

calculated using the Horner scheme as in Equation (12). In order

to natively support inverse typecasts (F2I) and EXP2 operations in

LNS, we add a table for the exp2(r) function. Since this function

can also be efficiently implemented using range reduction and

polynomial interpolation, we can reuse the existing interpolator to

calculate the function value on the range [0, 1), and only have to

include an additional shifter at the output. This shifter has been

moved to the Postprocessing Block and operates in parallel to

the final adder of the ADD/SUB operations such that the main

ADD/SUB path suffers from no additional delay.

D. Postprocessing Block

The Postprocessing Block combines and/or selects the results of

the two interpolation blocks. For example, SUB operations in the

CR require the output p(r) of the Main Interpolation Block and the

output q(r) of the Log/Exp Interpolation Block to be combined. A

final rounding step to the output precision and special case handling

such as NAN, over- and underflow detection are also performed.

V. LNU GENERATOR

The architecture presented in the previous section serves as a

parameterizable template for our LNU generator. The flow of our

LNU generator is illustrated in Figure 4 and consists of three

steps. In the first step (A), the generator calculates the quantized

polynomial coefficients for all required functions according to

the LNU specification which consists of the LNS format wint,

wfrac, polynomial order N , and error bounds |ε|max, |ε|avg for

the relative errors in the LNS domain. In the second step (B),

all coefficients are scanned and the bit-width parameters for the

shared datapaths are calculated. The parameters and coefficients

are then printed into the architecture template in order to form a

specific LNU instance. In the third and last step (C), this instance

is then exhaustively verified using RTL simulations in Mentor

QuestaSim. The core generator functionality in steps A and B have

been implemented in MATLAB.

  LNU Specs

Poly Coefficients

Iterative
Fitting

Procedure

Area, Power

Precision

A)

wf

wiεmax rel log
εavg rel log

 
 

Sollya Math 
Library

Table 
Generation

B)

LNU Templates
(SystemVerilog)

Power & Area 
Estimation

(Synopsys DC)

C)

Verification
(QuestaSim)N

LNU Instance

C)

Figure 4. Overview of the LNU generation flow.

A. Polynomial Fitting

For all function approximations, we use N th order piecewise

minimax polynomials. The coefficients are obtained using an ef-

ficient, quantization aware implementation of Remez’s algorithm

[26] available in the Sollya math library [29]. Since the functions

used here are increasingly difficult to approximate as r → 0, we

subdivide their domains into logarithmically spaced segments, and

within each segment a different number of piecewise polynomials

is used. These segment boundaries are always aligned to multiples

of powers of two, and the spacing between piecewise polynomials

Δr
p is always a power of two. A table lookup can then conveniently

be carried out by looking at the amount of leading zeros of r in

order to activate a specific segment. Depending on the spacing

Δr
p of the piecewise polynomials within that segment, the bits

[wexp : wfrac + log2(Δ
r
p)] of r are used to determine which set of

polynomial coefficients to use, and the remaining LSBs are used as

input into the Horner interpolator δrp = r[wfrac +log2(Δ
r
p)−1 : 0].
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The fitting procedure subdivides the function to be fitted into

logarithmically spaced segment (e.g. [0, 32) is split into [16, 32),

[8, 16), [4, 8), etc.), and on each segment it fits a set of piecewise

polynomials with an initial spacing Δr
p = 0.25. This choice has

been made to implicitly limit the integer bit-widths in the shared

interpolators. If the error of this piecewise polynomial is too large,

the spacing is iteratively divided by 2 until the error requirements

can be fulfilled. Once all segments have been processed, adjacent

segments with equal spacing are grouped together in order to

facilitate table lookup, and the coefficients are handed over to the

table generation.

B. Error Calculation and Bitwidth Selection

To asses the overall error of a given piecewise polynomial, we

exhaustively assess it at all bit combinations of r within its domain

and compare the result to a double precision reference. The so cal-

culated errors contain both the approximation error stemming from

the polynomial approximation, and the quantization errors from the

coefficient quantization and intermediate truncation/rounding steps.

The impact of coefficient quantization is minimized by using a

quantization aware minimax fitting method. Since a rounding step

always incurs a carry propagation in hardware, we only perform

one rounding step to the output precision wfrac at the end of a

polynomial evaluation. Intermediate results after multiplications

are always truncated to the fraction of the next coefficient it is

being added to, as illustrated in Figure 3. The bit-widths of the

polynomial coefficients are determined using a similar heuristic

as described in [30]. I.e., since typically δrp < Δr
p < 1, the

weight of LSBs of a polynomial coefficient pr
i are decreased by at

least a factor of Δr
p in each multiplication with δrp. Therefore, we

heuristically determine the fraction width wr
fracpi

of higher order

coefficients as

wr
frac pi = max

(
0, wr

frac p0 + i · log2

(
Δr

p

))
(13)

and the fraction of the 0th order coefficient is set to

wr
frac p0 = wfrac + max (0, nguard − �log2 (εmax rel log − εrnd)�) (14)

where εmax rel log is the maximum error requirement, and the term

εrnd = 0.5 amounts for the maximum error due to the final rounding

step. The amount of additional guard bits has been set to nguard = 3,

since fewer than 3 bits lead to a significant increase in table size.

Within the CR, where two polynomial results p(r) and q(r) are

added together before the final rounding step, the error requirement

for both polynomials is adjusted to ε̃max rel log = (εmax rel log− εrnd)/2
in order to account for the fact that we have twice as many

error sources now. Error checking of the individual polynomials

is performed without final rounding in this case to make sure that

the polynomials are precise enough before being added. Also, εrnd

is set to 0 in Equation (14), as it has already been accounted for

in ε̃max rel log.

VI. PROCESSOR INTEGRATION

To evaluate the performance of the presented LNUs in a shared

setting, we have designed a multi-core processor system based

on a 32 bit OpenRISC core [31] using the UMC 65 nm LL

technology. As shown in Figure 5, the system consists of four

cores which share a single LNU and contains 32 kBytes of memory,

distributed equally between an eight-bank tightly-coupled data-

memory (L1), and a dense L2 memory. The four to one sharing
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Figure 5. Integration of the shared LNU into an OpenRISC cluster.

ratio is motivated by the fact that in most FP programs, the fraction

of ADD/SUB instructions rarely exceeds 0.25 (see Figure 8b for

some examples). For comparison purposes, an identical system

has been designed featuring 4 cores with a private IEEE 754

single precision compliant FPU that includes hardware support for

additions, subtractions, multiplications and typecasts. For divisions

we use software emulations as described in Section VII-B, since

divisions are expensive in hardware1 Note that this is a common

approach of adding FP support to small embedded processors [33].

The implemented FPU is a shared normalizer design similar to [32]

(but without divider), and when synthesized with 2 pipeline stages

it has a complexity of 11 kGE – which is competitive with state-

of-the-art implementations [33], [34].

All clusters have been designed to run at 500 MHz at 1.2V under

typical case conditions. In order to meet the timing constraints for

both architectures, the FPU has been pipelined once, and the LNU

one, two or three times – depending on the area and latency of the

specific LNU instance.

A. Modifications to the Processor Core

The LNU is shared in a completely transparent way, the program-

mer sees a system with as many LNUs as there are cores. A

dispatcher that is tightly integrated into the datapath of each core

is responsible to offload the LNU instructions, stall the cores if

necessary, and silence the operator ports in case no instruction has

to be offloaded such that unwanted switching activity across the

interconnect is minimized. The integer ALUs of the cores have

been slightly modified to be able to support the LNS sign bit

and the special cases such as INF, ZERO and NAN during LNS

MULT/DIV and comparison instructions. Besides the standard FP

instructions defined in the OpenRISC ISA which have been mapped

to the corresponding LNS instructions, we have added three special

instructions allowing the cores to natively execute SQRT, EXP2

and LOG2 operations. While EXP2 and LOG2 are offloaded to

the LNU, the SQRT instruction has been implemented using the

shifter in the core and can be executed in 1 cycle.

B. Sharing Interconnect

The LNU interconnect contains a fair round-robin arbiter which

handles requests from the processor cores. Whenever more than

one core wants to access the LNU, all cores but one have to stall

their pipeline and wait for an idle cycle of the LNU. Our OpenRISC

architecture contains two write back port to the register file since

several instructions update multiple registers concurrently. While
1As shown in [32], an FPU design with 12 cycle iterative division

consumes ~26 kGE (transistor count divided by four).
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Figure 6. a) Area vs. average error for LNUs synthesized with 4.5 ns timing constraint. b) AT-plots, including 0.8 ns I/O delay for the sharing infrastructure.

the first write port is used by the ALU, the results of which are

ready at the end of the execution-stage, the second write port is used

to write back the values loaded from memory. Instead of adding

a third write port for the LNU, this second write port has been

multiplexed with the LNU interconnect. In a single issue in-order

pipeline, it is mutually impossible that LNU and load operations

are executed at the same time. Hence, this second write port can

be shared without any contention.

During the exploration we have considered LNUs with different

pipeline depths. An implementation with only 2 cycles latency can

directly write back to the register file without causing the pipeline

to stall. For implementations with longer pipeline depths, the core

has to be stalled unless the LNU instruction is followed by another

LNU instruction with same latency. LNU operations with 3 and 4

cycle latency generally result in 1 and 2 stall cycles, respectively.

Hence, it is crucial to minimize the latency of the LNU in order

to obtain good application level performance. In case of a 2 cycle

latency LNU, stalls only occur when multiple cores try to access it

in the same cycle, or when the result of the LNU is needed in the

subsequent cycle which can typically be avoided by the compiler

with instruction reordering.

VII. RESULTS

In this section we first present a design space exploration of a

family of exact, faithful and approximate LNUs generated with

our framework and compare against related work. The resulting

instances have been synthesized using the 8-metal UMC 65 nm

LL CMOS technology with Synopsys Design Compiler version

2015.6 in order to get gate-level area and timing estimates at

typical conditions, 25 °C and 1.2 V supply voltage. For cluster

level evaluations, we have selected a set of representative LNU

versions, pipelined them using the automatic retiming feature of

Synopsys Design compiler, and for each cluster version we have

performed a complete back-end design flow using Cadence EDI

14.24 in the same 8-metal UMC 65 nm LL CMOS technology. We

have modified the back-end of the OpenRISC LLVM compiler to

support the LNS format, and added new instructions to support the

additional functionality provided by our LNU. A set of benchmarks

written in C was compiled and executed on the FP and LNU cluster

architectures, which have been simulated in Mentor QuestaSim

10.3a using back-annotated post-layout gate-level netlists. Finally,

the obtained VCD files were used to analyze the power dissipation

in Cadence EDI 14.24.

A. LNU Design Space Exploration

First we present a comparison of the fully exact 32 bit LNU

generated with our framework to similar published works [8],

[9], [11]. In Table I technology independent gate equivalent (GE)

numbers show that our 2nd order LNU implementation is the

smallest implementation reported in literature (by 33%), while

delivering the lowest maximum error over the relevant range

[0, 24.588). More importantly, at 26.8 kGE complexity we show

that exact LNUs can be designed with similar area overhead than

single precision FPUs that include division support (≥26 kGE with

12 cycle iterative division [32]).

Next we investigate the impact of approximation on the circuit

area. There are three approaches to trade-off circuit area, delay

and precision: changing the bit-width of the design, changing the

interpolation order, or relaxing the precision requirements. In order

to achieve smaller and faster designs, usually the bit-width and

interpolation order are reduced and tables are calculated for exact or

faithful representations. In this paper, for a given bit-width we also

relax the precision requirements up to 16 ulp which allows simpler

tables that reduce the overall circuit size. In Table II we show

the normalized area of 1st and 2nd order LNUs under different

bit-widths and approximation goals. As we can see, relaxing the

Table I
COMPARISON OF EXACT 32 BIT LNU WITH RELATED WORK.

[8] [9] [11], [27] This Work

Functionality ADD, SUB ADD, SUB
ADD, SUB, I2F, F2I,

LOG2, EXP2

ADD Precision
|ε|max rel arith 0.4544 0.4623 0.4618 0.3920

|ε|avg rel arith 0.1777 0.1745 0.1748 0.1744

SUB Precision
|ε|max rel arith 0.4952 0.4987 0.4786 0.4504

|ε|avg rel arith 0.1776 0.1738 0.1748 0.1746

Implementation
Technology 180 nm 180 nm 65 nm 65 nm

1 GE [μm2] 9.374† 9.374† 1.44 1.44

Delay (min) [ns] 11.74 7.10
6.00 4.50

Delay (max) [ns] 13.50 14.79

LUT size [kBit] 356.4 183.3 113.1 64.2

Area [mm2] 0.906 0.589 0.057 0.039

Area [kGE] 96.6 62.9 40.0 26.8

† assumed NAND2 area for calculating gate equivalents (GE) for [8], [9].
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precision of an exact 2nd order LNU from 0.72 ulp to 8 ulp leads

to an area reduction of 40 %. The interesting result from Table II

is that area-wise, similar results can be obtained by either reducing

the bit-width or the precision. However, when considering the

average error, the situation changes. In Figure 6 the average error

for LNU designs are plotted against the circuit area. In this plot

we can see that approximate configurations with larger bit-width

are consistently more accurate (on average) than lower bit-width

configurations. For example, a 2nd order 8.20 with 8 ulp precision

LNU configuration is not only slightly smaller than a 2nd order

8.17 with 0.72 ulp precision, but the average error is lower by

a factor of × 2.74. Another observation that can be made from

Table II is the that for higher precision ranges (17-23 fractional

bits), 2nd order LNUs are much more area efficient since fewer

LUT entries are required. For designs with a wfrac ≤ 14, 1st order

interpolation is preferable.

Reducing the circuit complexity has an additional benefit as it

also reduces the critical path through the LNU. Depending on the

clock frequency of the system where the LNU will be integrated,

this could change the number of required pipeline stages which in

turn can have important consequences on the overall performance

of the system. Figure 6 shows a design space exploration for 50

LNU configurations, mapped to hardware with different timing

constraints. The target clock period (in our case 2 ns for 500 MHz

operation) is overlayed in this graph, and it can be seen that LNUs

with different area/precision trade-offs can be obtained with 2 to 4

pipeline stages. We have selected a representative set of three LNU

variants Approx2 (8.17 bit, 16 ulp, 1st order), Approx1 (8.20 bit,

4 ulp, 2nd order), and Exact (8.23 bit, 0.72 ulp, 2nd order) that

were implemented with different numbers of pipeline stages to be

evaluated in the following section that compares overall system

performance.

B. Performance of LNU in multi-core clusters

After evaluating the performance of a single LNU, we now present

a more detailed performance analysis of a shared LNU in a real

multi-core system running actual computation kernels. For this

comparison we use a system comprised of four 32-bit OpenRISC

processor cores running at 500 MHz in the UMC 65LL technology

used throughout this work. Our reference (FPU) is a system that

includes four IEEE-754 single precision compliant FPU units with

support for ADD/SUB/MULT and casts. This is compared against

three different LNU configurations (Exact, Approx1, and Approx2)

selected from the design space exploration described previously.

Table II
RELATIVE AREA COMPARISON (IN PERCENT) OF EXACT AND

APPROXIMATE LNUS SYNTHESIZED WITH 4.5NS TIMING CONSTRAINT.

Precision Constraint in the LNS Domain (ulp)
Order wint.wfrac 0.72 1 2 4 8 16

1

8.23 618.6 232.7 153.6 116.0 86.6 73.0
8.20 218.6 106.5 72.4 53.8 46.7 39.6
8.17 89.8 48.2 38.0 31.0 26.9 25.4
8.14 36.3 26.8 22.3 19.8 18.3 17.2
5.10 15.5 12.2 11.8 11.0 10.3 9.4

2

8.23 100.0 76.5 68.4 62.9 59.9 57.8
8.20 69.5 56.5 51.2 48.2 46.1 44.4
8.17 49.0 41.3 38.5 37.0 36.4 34.9
8.14 34.9 31.1 29.4 28.3 27.0 24.9
5.10 21.4 18.2 16.9 15.9 14.6 13.3

Table III
COMPARISON OF INSTRUCTION LATENCY AND ENERGY EFFICIENCY IN

THE FPU AND LNU CLUSTER VARIANTS AT 1.2 V.

Format IEEE754 LNS

Name FPU Exact Approx1 Approx2

Bitwidth 8.23 8.23 8.20 8.17

Precision 0.5 ulp 0.72 ulp† 4 ulp† 16 ulp†
Order N - 2 2 1

FPU/LNU [kGE] 4×11 36 27 23

Total Area [kGE] 720 718 708 704

Operations Latency [cycles] / Energy [pJ/Op]
I2F/F2I 2 / n.a. 4 / n.a. 3 / n.a. 2 / n.a.

ADD 2 / 40.7 4 / 106.2 3 / 88.8 2 / 85.3

SUB 2 / 39.7 4 / 109.9 3 / 92.1 2 / 90.4

MUL 2 / 47.6 1 / 30.7 1 / 27.7 1 / 30.6

DIV 62 / 525.0∗ 1 / 31.5 1 / 28.7 1 / 31.6

SQRT 56 / 609.3∗ 1 / 16.0 1 / 14.5 1 / 15.2

EXP 51 / 566.6∗ 4 / 114.9 3 / 56.8 2 / 86.9

LOG 85 / 695.7∗ 4 / 104.9 3 / 54.5 2 / 73.7

∗ software emulation. † in the LNS domain.

Table III lists all four variants and their complexities. As can

be seen, all LNU variants are smaller than the reference FPU

implementation. The larger size of the LNUs is compensated by

sharing them among the processor cores. Note that, even though

these systems only have a single LNU, they can perform up to four

MUL/DIV/SQRT single cycle LNS operations within the integer

ALU of the cores that include the modifications described in VI-A.

The reference FPU at 11 kGE is very compact but does not

include support for more complex operations which have to be

emulated in software. For DIV operations, we perform a range

reduction to [1,2) and generate a linear estimate for the inverse

that is refined using three Newton-Raphson iterations. A similar

technique is used for the SQRT, where the initial estimate is

generated using the fast-inverse square-root approach. EXP/LOG

operations combine range-reduction with a standard high-order

interpolation techniques as described in [28]. Note that this is a

common way to add FP support to small embedded processors

[33]. Table III lists the number of cycles per instruction and the

corresponding energy consumption in pJ/Op. While ADD/SUB

operations (as expected) are costlier in the LNUs than FPU, all

other operations can be performed more efficiently.

We have compiled a set of benchmarks written in C to reflect a

variety of different signal processing applications. The benchmark

set consists of linear algebra operations (AXPY, GEMM, GEMV),

geometry calculations (2D homographies, reprojection error [35],

3D distances), matrix decompositions (QR, CHOL), regression

(radial basis functions), and image (bilateral filter and FIR filters,

gradient magnitude, DCT-II) and audio processing kernels (sine

generation, Butterworth IIR lowpass). The floating point instruction

ratio and the instruction mix of the benchmark applications is

shown in Figure 8b. As can be seen, the ratio of ADD/SUB

operations for most benchmarks is below 25% further reinforcing

our sharing concept.

All performance evaluations were made with four configurations

of the cluster, including 2 configurations (Approx1 and Approx2)

that have small precision relaxations. We have determined the im-

pact of this range of approximations on image and audio processing

kernels using PSNR and THD+N metrics which are shown in

Figure 7. The FPU and Exact LNU configurations deliver identical
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Figure 7. Images and audio streams processed with the cluster variants
Exact, Approx1 and Approx2. Image © copyright 2008, Blender Foundation.

results. We can observe that for all image processing kernels the

PSNR values stay way above the 30 dB, below which artifacts start

to be visible. Also for the audio processing kernels we see that

THD+N values are below -59 dB for all LNUs. For all practical

purposes, both approximate versions show no perceptible quality

degradations. Normalized execution time and energy-efficiency

improvements with respect to the reference FPU implementation

mirror each other and are shown in Figure 8c and d. As can be

seen for most tests at least one LNU configuration outperforms the

reference. In the best case, a speedup of 5.54× can be achieved

for the DIST3D case using Approx2 configuration. Even when the

Exact LNU configuration is used, on average the kernels can be

calculated 1.71× faster and 1.65× more efficiently in terms of

energy. As expected the shared LNU has the most difficulty with

kernels containing many ADD/SUB operations (such as the linear

algebra or FIR/IIR filters). Even so, it can be seen in Figure 8c

and d that the Approx2 LNU configuration can perform at least as

well as the FPU design on all kernels except the Butterworth filter.

We also observe that the pipeline depth of the LNU implemen-

tation has significant impact on the overall system performance.

In our example, the 4-stage in-order OpenRISC cores can be

operated without stalling for LNUs with 2 stages. LNUs with more

stages incur additional stalls, reducing the overall IPC as seen in

Figure 8a.
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Figure 8. Application level performance for the four cluster variants.

VIII. CONCLUSIONS

We presented a framework to generate a family of accurate and

approximate 1st and 2nd order LNUs capable of executing ADD,

SUB, I2F, F2I, EXP2, and LOG2 instructions. The area overhead of

an accurate LNU with equivalent accuracy offered by the IEEE 754

single precision format is reduced by 33% when compared to

previous state-of-the-art implementations. Also, we show that by

relaxing the precision requirements from exact to 16 ulp, significant

area savings of 40 % can be achieved, bringing the complexity

closer to standard FPU implementations. The area overhead of the

LNU can further be reduced in a multi-core setting where one

LNU is shared by multiple processor cores. Unlike standard FPUs,

LNUs are much more amenable to a shared setting, as several LNS

operations such as MUL/DIV/SQRT can be performed within the

integer ALU of the cores. We have extracted real-life performance

values of three different shared LNU versions in a four-core cluster,

and compared it with a standard FPU implementation consisting

of four FPUs and four cores. We show that in a shared setting,

the shared LNU solutions are not only smaller but outperform the

standard FP solution on average by a factor of 1.71× in execution

time. We further show that by using approximate computing

techniques these gains can be further increased, by up to 5.54× in

the best case. Using examples from the image and audio processing

domains, we analyze the incurred quality losses of the approximate

designs in terms of PSNR and THD+N and demonstrate that the

102



errors are imperceptible in the evaluated precision range. We show

that using LNUs in a shared setting is a very promising approach

for multi-core processors especially in applications where energy-

efficiency is paramount. For these applications we also show that

relaxed-precision approximations can be more efficient than simple

bit-width reductions.
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