OPTIMUM ARRAY-LIKE STRUCTURES FOR HIGH-SPEED

ARITHYETIC

by

Dharma P. AGRAWAL, Member IEEE

Mini and Microcomputer Laboratory
Swiss Federal Institute of Technology
Ch. de Bellerive 16, CH-1007 Lausanne

Switzerland

SUMMARY

Array-like structures for high-speed multiplication,
division, square and square-root operations have been
described in this paper. In these designs the division
and square-rooting time have been made to approach to
that of multiplication operation. These structures are
optimum from speed and versatility point of view. Most
of the cellular arrays described in the literature are
adequately slow. The time delay is particularly
significant in the division and square-rooting opera-
tions due to the ripple effect of the carries. Though
the carry-save technique has been widely utilized for
multiplication operation, it has been only recently
employed by Cappa et.al. in the design of a non-
restoring divider array. This requires sign-bit detec-
tion that makes the array non-uniform. Such an array
has been named as an array-like structure. The carry-
save method has been extended here for restoring
division operation. Due to sign-detection and over-
flow correction requirements, the restoring method

is slightly complex. But the main advantage of such
restoring array is in its simple extension for multi-
plication operation. The array for the two operations,
when pipelined, will have more computing power than
all other multiplier-divider arrays. Suggestions have
also been included for further speed improvement.

The technique applied for division operation is as
well ‘applicable for the square-rooting and an array-
like structure for square-square-rooting operations
has also been given. For performing any one of the
four operations, the only manipulation to be done is
to combine the two arrays; one for multiplication-
division and another for square-square-rooting. Possi-
ble methods of combining the two arrays have been
indicated and their relative advantages and disadvan-
tages have been menticnec. Finally, a generalized
pipeline array-like structure with complete internal
details and for 4-bit operation, has been shown. Due
consideration has also been given to the possibility
of large-scale-integration of different arrays pres-
ented in this paper.

*This work is a part of D.Sc.Tecn. thesis and was
supported by the Fond National Suisse and the
Federal Institute of Tecanology, Lausanne,

208

INTRODUCTION

Since the inception of computers, much effort has been
made in sea~ch of fast arithmetic techniques. The rip-
ple carry adder, which uses minimum number of gates,
forces a long delay in producing the sum as the carry
must be propagated through the entire number. The break
through came with the introduction of carry-look-ahead
adders! and the conditional-sum adders?. These are the
two most economical and yet universally adopted fast
adders. White the first one has the problem of fan-in
with larger word-Tength, the second type is asynchro-
nous. The c'rcuits design for most arithmetic opera-
tions utilize these adders in one stage or the other,

The design techniques for binary functions have almost
approached to the ultimate and much attention has

been paid to circuit design of hardware in the form of
a regular pattern of special circuits. This idea has
become particularly attractive at the present time
since this type of design is most suitable for its
large-scale-integration. In this respect, Hennie3 was
the first to point out that, with the advancement of
microelectronics, it would be worthwhile to consider
togical systems composed of a number of identical
subnetworks or cells connected in a regular array and
defined these as "iterative arrays". Since then, a
large amount. of papers have appeared dealing with the
design of cellular arrays for various arithmetic opera-
tions Tike multiplication, division, square and square-
root. These arrays have been designed from regular or
semi-regular structure point of view and they utilize
arithmetic cells performing two or more functions
amongst addition, subtraction and transfer (no
arithmetic). Several modifications and improvements
have also been suggested. The complexity of these
arithmetic cells and their corresponding arrays vary
greatly. Due to their iterative or near-iterative
nature, these arrays are suitable for the large-scale-
integration. But, as fast adders!>2 have not been
included, their operating speed is relatively siow
(particularly division and square-rooting). To speed
up the muttiplication operation, the carry-saved addi-
tion has_been utilized in the design of high speed
arrays5-7. Very recently, this technique has been
employed in an adequately fast divider array8. Such a
divider array is non-uniform since, in each row of the
array, a carry-look-ahead circuit has to be added for
computing the sign bit. However, this seems to be the
best possible solution from the speed point of view.
In this paper, the carry-save technique, the carry-
Tock-ahead circuit for sign-bit computation in each

yow and the carry-look-ahead adders for the addition
of final two summends have been employed. The speed
up techniques utilized here reduces the division and
square-root time to approximately equal to that of
multiplication operation. But they make the array
depart from strict uniformity. That is why, these
arrays are hereafter called as array-like structures.
Also, to increase the effective efficiency by conti-
nous utilization of the digjtal hardware, application
of pipelining technique 9,710 has been examined in
detail.

11 MULTIPLIER ARRAY-LIKE STRUCTURES

Based on different algorithms, many cellular arrays
have been described in the literature. The applica-
tion of Booth'? a]gorithm1] for multiplication leads
to an array12' 3 for this function. But this array is
unsuitable for its extension as a multipurpose array
(see section IV). The usual method of multiplication
utilizes "shift" and "add" process. In this method,
the muitiplication can be started either from the
least-significant-bit or from the most-significant-
bit. Numerical examples for the two methods are shown
in Table I and 1I and the corresponding arrays are
given in Fig. 2 and 3 respectively. These arrays uti-
lize the cell of Fig. 1. The internal structure of the
cells shown in Fig. la and 1b are the same and only
their way of representation is different. Their
boolean expressions can be given as :

s= aboc 8 (bp) D)

and o= acy

where & represents the Exclusive-OR or modulo 2
operation.

+ (a+c1) bp (2)

TABLE 1 :Left-shift method of multiplication

multiplicand multiplier
1011 X 1101
1011 |-
0000
1011
101 1 +——

TABLE II :Right-shift method of multiplication

multiplicand multiplier
1011 X 1101
101 71— I
101 1*———J
0000«
1011
a b b a Cy
c \
| c
p — P p— —P
bc//l o b
2 S ‘2 S

Fig. 1b Arithmetic

Fig. 1a Arithmetic
cell for Fig. 3

cell for Fig. 2

Hence, "b" s added only when "p" bit is "1", other-
wise enly the partial sums and carries are added.

This "add" or "transfer" function can be realized with
an AND gate and a full-adder. In Fig. 2 and 3, the
cells are connected in a carry-save mode and the final
two paYtial-sums are added by fast carry-look-ahead
adders!4. The redundant cells are not included in

Fig. 3 and instead, another row of cells are utilized
as carry-save adders. This technique reduces the number
of cells in the arra% The array of Fig. 2 has already
been descrived 5°7s 0. It is included here for the
completeness of the paper.

In multiplying two "n" bit numbers, Tet the time-delay
for the multipliers of Fig. 2 and 3 be denoted by T
and TR respectively, then they can be given by
expressions :

TL = nT + TCLA (3)

(n+1)T + TCLA (4)

[~
=3
(o9
—i
i

where T is the delay in each arithmetic cell and T
is the delay in the last stage of carry-look-ahead
adders.

v
cla adders |
T

S8 7 3 S5 % 3 5

S

1 1]

Fig. 2 Left-shift multiplier array-like structure
s=a+bp+d

we

»O

-0

ov

///o
c. | a. adders
T | T 1

s.’ s& S‘ S, 5y 5. 8y

Fig. 3 Right-shift multiplier array-like structure
s=a+bp+d

Now, it can be easily said that the array of Fig. 2

is better, as it is slightly faster and requires les-
ser number of cells and carry-look-ahead adders for
lesser number of bits. But the division operation
requires arithmetic to be started from the most-
‘51'gn1'1“1'cant—b1‘t]5 (also see section IV), and if it is
to be performed by the same array, the configuration
of Fig. 3 (with modified cells) is the only choice.
Habibi et. al.’ hav? shown that the schemes of
Wallace!® and Dadda'/ are nearly 30% faster than the
carry-save scheme and suitable integrated circuits

are now commercially available. Very recently, Meo

has described the analysis and synthesis tools for the
design of more complex elementary units of multipliers,
each unit of which can process input signals of diffe-
rent weights. But these schemes cannot be extended for
other arithmetic operations. Another reason to
substantiate the choice of carry-save iterative array
is that, when pipelined, this is more efficient10 than
the Wallace multiplier.

111 DIVIDER ARRAY-LIKE STRUCTURE

Many arrays for division operation have been proposed
and they can be classified in two categories : (i)
restoring and (ii) non-restoring. In restoring division,
the divisor is subtracted from the dividend (or from
the previous remainder); if the remainder is negative,
the previous dividend is restored and the quotient bit
is taken as zero. Otherwise the quotient bit is one and
the process in continued without any change. In non-
restoring method, the division process is carried out
without restoring the previous divident irrespective of
the sign of the result. The organization of two types
of dividers are quite similar and only the design of
basic cells are slightly different. It was thought by
Majithia20 that the non-restoring dividing arrays are
faster than the restoring dividing arrays. But later

on Gardiner et.al.2! showed that the speed of the two
types of arrays are almost equal and the restoring
technique gives a true remainder. But when the cells
are connected in a carry-save mcde, the delay in obtai-
ning the sum-bit of each cell is more in the restoring
array. The comparison of the restoring array proposed
here and the existing non-restoring divider array8 is
given later on.

In a divider array the subtraction can be achieved
either directly or by adding 2's complement of the
divisor. The functional requirements of different
division techniques (partly given in Deegan 2) are
shown in Table III. When an array is to be designed
explicitely for division operation, any one of these
four possibilities can be considered for its basic
cell design. But, when the same array is to be used
for multiplication, the restoring and 2's complement
addition technique must be preferred. This type of
cell requires only two functions of "add"-"transfer",
while other combinations require three functions (as

TABLE III :Functional requirements of different
division techniques

Technique Direct subtract| 2's complement
addition
7 Restoring | Subtract-transfer | Add-transfer
2 Non-resto-| Add-subtract Add-add(without
ring 2's complement)

multiplication needs "add" - “transfer” functions).

An additional advantage of this selection is that the
sign-bit detection logic is needed only for 2's comple-
ment addition. For all other combinations, either much
more complex or two different sign-bit detection logic
circuits are needed.

One such array-like structure is shown in Fig. 5. This
array utilizes the basic cell of Fig. 4. In this cell,
the signal "b;" is added to the summation of "a;" and
“cqy" only when the signal “qj“ is "1". But "a;", "by"
and "cy" are added to compute the expected carry-out
“ej41" and the two carry-look-ahead terms "Gj,q" and
"Pi41". The boolean expression for the cell can be
given as :

s, = (a8c;) @ (a5) (5)
Ciyp= 3404+ (347eq) a3b; (6)
ep1= 3504+ (3yeq) By {7)
Gy, = (a;8b;8c,) e (8)
and P, = a;8b.@c, +e, (9)

In Fig. 5, the carry-look-ahead circuits are shown as a
block marked with c.1.a. and can be implemented with two

a
b i c

—
%= &_j\ J-{switc#l qa,

b
Cia Gia Pa S -

Fig. 4 Divider cell

Fig, 5 Divider array-like structure

210

lTevel NAND gates. Bu: for larger word-length, multilevel
carry-look-ahead circuits!'® have to be utilized due to
the fan-in limitation.The array of Fig. 5 can divide

"a" (having 7 bits word-Tength) by "b" (4 bits) and the
quotient bits are obtained at “q" terminals. The inclu-
sion of 4-bits carry-look-ahead adders after the last
step gives the remainder. The quotient bit is taken as
“1" when the remainder, after 2's complement addition
of the divisor "b", remains positive. Otherwise, the
bit-value is taken as "0" and the original value of

the remainder is to te restored. In the array of Fig.

5, the restoring operation is slightly different than
the usual array?3. The carry-save technique employed
here gives two partial sums in each row of the array
and if restoring or "no-arithmetic" is desired, only
sums and carries of previous partial remainders
(without adding 2's complement of the divisor) are
allowed to appear as inputs to the next row. This
serves the same purpose. The 2's complement addition is
achieved by adding the complement of all individual
divisor bits and taking the expected carry-in input
"ei" of the right-most cell as "71" and if the quotient
bit is obtained as one, this carry-in "1" is added in
the next row. Thus, this "1" has also been taken in to
account in the carry-save mode.

Another significant difference in this array %? 526
Togic for sign-detection. In the usual arrays<'~
positive sign is indicated by the presence of the carry-
out from the cell of most-significant-bit position.
Here, as carry-save gives two remainders, the test for
such "carry-overflow" is not sufficient. Also, in the
previous row, if the quotient digit is "1
overflow has not taker place (rather still present in
the previous remainder available in the form of two
partial sums), a correction factor has to be ‘considered
while evaluating the sign of the remainders under con-
sideration. The truth table for this is given in Table
IV. If the correction is required, it is denoted by "“1".
Similarily "1" indicates the presence of positive
remainder. The signals "“s”, ey e, and "cgp," are
the inputs to the 4-input Exclusive-DR gate (also refer
to the second row of Fig. 5). The following points are
considered while preparing this table :

(a) When no correction is required, more than one varia-
bles amongst s, c7, Co, and ¢ can not be "1" and

the presence of any one of them indicates the remain-

ders with positive sign.

(b) When overflow correction is required, at least two
signals and at the most three signals amongst s, Cy»
¢, and C%]a are in "1" state and when three of them

he

are "1", remainders are positive.
(c) When Ccla 1s present, the correction will be requi-
red in the next step.
A1T “¢" indicates don't cares and minimization gives
the Togic for positive sign (and the quotient bit q) as:

Positive sign, q =] c] 8 c2 @ c

cla (12)

and next step correction requirementE CR' = ¢ (11

cla
It may be noted that the expression (10) is the most
compact form and is independent of overflow correction
But this correction is equal to the value of Ccla in
the previous row and the implementation of moduio 2
operation requires more number of gates and a tonger
delay is introduced due to this. Hence, another apprc-
priate simplification of the Table IV gives

211

and the carry~-

TABLE 1V :Sign detection logic for partial remainders
CR,corr- positive CR',next step
ection S G < la sign correction
required requirement

o 0 0 0 0 0 0

0 0 0 0 1 1 1

0 0 0 1 0 1 o}

0 o 0 1 1 [} ¢

0 0 1 0 0 1 0

0 0 1 0 1 ¢

0 0 1 1 0 §

0 0 1 1 1 $

0 1 0 0 o] 1 0

0 1 0 0 1 é ¢

0] 1 a 1 0

0 1 0 1 1 i $

0 1 1 0 0

0 1 1 0 1 : !

0 1 1 1 0 $ $

0 1 1 1 1 ¢ ¢

1 0 0 0 0 s ®

1 0 0 0 1 ¢ ¢

1 0 0 1 0 ¢ ¢

1 0 0 1 1 0 1

1 0 1 0 2

1 0 1 0 1 % ?

1 0 1 1 0 0 0

1 0 1 1 1 1 1

1 1 0 0 0 ¢ ®

1 1 0 9] 1 0 1

1 1 0 1 0 0 0

1 1 0 1 1 1 1

q 1 1 0 0 0 0

A] 6

1 1 1 1 [$
¢ indicates don't care

Pusitive sign = CR[} CiCytscyc

1 “cla

PS5 G Ca t o S,]

c]a]

and this can be implemented by three-level NAND gates.
In fact ~=his delay can be reduced to two levels, if
bi-polar circuits are used. For the first row, a fur-
ther simplification is possible and putting s, ¢y and
CR as zero makes the expression (12) as :

+ﬁ[:S+C +c, +¢

] 5 (12)

Sign bit for the first row = ¢t (13)

cla

It may be noted that it is difficult to show the
circuit-implementation of relation (12) in each row of
Fig. 5. Hence, for the convenience of drawing (though
it is also valid), 4-input Exclusive-OR gates are shown
in all diagrams of the following sections.

The array of Fig. 5 can be easily extended for larger
word-Tength. The time delay for such an array will be
proportional to the number of quotient bits to be
evaluated and for "n" bits, the expression can be
given as :

TD =n (Tc + Tex + rc]a)
where T. is the delay in each cell, To, is thg delay in
each Exclusive-OR gate and T 1a 1s the“delay in carry-
look-ahead circuits. This va%ue of Tp is comparable
with the delay in the multiplier array (see expressions
3 and 4) &nd Bhié array is much faster than other divi-
der schemes 20 - 6. Thus, the extra cost of carry-look-
ahead circuits for the sign-bit is justified. Now the-8
comparisor of the non-restoring array of Cappa et
and the restoring array of Fig. 5 can be‘taken_np

(14)

TABLE V :Comparison of component requirements for "n"
bits of the quotient and the divisor

Non-restoring | Restoring
Item array of array propo-
Cappa et. al. | sed in Fig b
1. No of aritmmetic cells n 2
2. No of sign-bit cells n -
3. Sign-bit carry-look-
ahead circuits for no n-1 n
of bits
4. Gates needed for quoti-
ent bits computation
i. No of Exclusive-OR gates n -
i1 No of HAID gates ~ 9n

TABLE VI :NAND/NOR impleinentation of different
arithmetic calls

Cell of
Cappa et.al.

1

Modified cel”
of Fig. 6

Cell of
Fig. 4

Type of gate

NAND
NAND
NAND
NAND
NAND
NAND
NOR

8-input
6-input
5-input
4-input
3-input
2-input
2-input
Inverter
TOTAL

—
WO OO 1 ——

[O5]

~No
N O — N o — |

TABLE VII :Comparison of delays in obtaining different
signals in each row of the array

Array of Arrgy.using
Jelay in terms of Cappa Array of {modified
number of gates et. al. [Fig. 5 |cell of
Fig. 6
1. For G and P terms 4 4 4
2. For sign-bit carry-
look-ahead circuits 2 2 2
3. For sign-bit detection 3 2 2
4. For quotient-bit 9 3 8
5. For carry term/terums 3 10 4
6. For sum term/terms 4 11 4
7. TOTAL delay in each row| 9 11 8
b 5, 5\; El
| c’
i & 3
*L
q r;;ﬂtch q.
J»1 —_ I8
——E .a.
:<::§:—4 h.:a?]
e e
G+ ‘ I i
J {
P

bl-1

Y-

ol o<}

i*1 i i

Fig. 6 Modified divider cell

212

The array proposed here does not require the cell for
the sign~-nit, but the sign-bit carry-look-ahead cir-
cuit is required for one larger number of bit. Table V
and Table VI shows the no. of NAND/NOR gates needed
for the a~ithmetic cell of Cappa et. al.% and that of
Fig. 4. When these two cells are implemented with
M.0.S5. Technology, the cell of Cappa et. al. requires
22 resistcrs and 68 transistors, while 24 resistors
and 55 M.C.S. transistors are needed for the cell of
Fig. 4. Thus, the cell of Fig. 4 needs about 10%
Tesser than the non-restoring cell of Cappa et. al..

The time delay in obtaining different signals in each
row of the two arrays, are given in Table VII. These
values are based on the implementation of the two cells
with NAND/NOR gates. The array of Fig. 5 is slightly
stower as the restoration process has to be kept post-
poned till the corresponding quotient bit is available.
This time delay can be reduced if the restoration
function is included in the cell of next row. This
necessitates certain alterations and the modified
arithmetic cell is shown in Fig. 6. The boolean rela-
tions for this cell, in a simplified form, can be

given as :

Si%95(3;00)4 4, (alec)) (15)
S 2[950(3;0)+ T (a0t]E, +
(9510238 c5)* a5, (aje c]b, (16)
CiapT (@ecy)ay,, + (ajci)ay,, (7
Cia1® 9541 (3;P;#bye 43, C) +
EJ.H(E;,B].+E1.E1!+E']!E;.) (18)
and Em- EM (19)
where @ represents the complement of the Exclusive-

OR operation (¢ 1is also sometimes called as the
coincidencs operation).

As clear from relations (15)-(19), these expressions
are more complex than those given by (5)-(9) and hence
the modified cell of Fig. 6 requires more components
{nearly 65% more) than the cell of Fig. 4. The details
are included in Table VI. Also, when implemented with
M.0.S. Technology, 33 resistors and 101 transistors are
needed for the modified cell. The operating speed of
the modified divider cell is shown in Table VII. Thus,
at the cost of hardware and increased cellular inter-
connections, the array becomes marginally faster than
non-restoring array of Cappa et. al.®. The main advan-
tage of the restoring array is in its simple extension
for multiplication operation and is discussed in the
next secticn. It is also worth mentioning that the
array of Fig. 5 (and that of Cappa et. al.) can be used
to obtain the division of sum of two 6-bit numbers, i.e.
q = (a + c)/b can be performed by applying proper
values of “c" inputs along with "a" input bits.

IV MULTIPLIER-DIVIDER ARRAY-LIKE STRUCTURE

Most mu]t}gligr—d%¥ider arrays described in the litera-
ture 19 > ¢4, are designed from fully iterative
point of view. Division speed-up technique of Cappa et.
al. have been discussed in section III and if we try

to include multiplication operatton in their array, cne
additional control line has to be included in each
arithmetic cell. The restoring-array described in sec-
tion III, can be easily extended for multiplication
operation. This modified form is shown in Fig. 7. The

external control Tine "x" allows the selection of

V ARRAY-LIKE STRUCTURE FOR SQUARE-ROOTING AND SQUARING

The process of square-rooting is similar to that of
division, except that in division operation, the sub-
trahend remains the same while in square-rooting, the
successive subtrahend changes. This change in restoring
method occurs in a particular fashiond and can be
easily derived. Let the square-root of a "2n" bit
number "a' be "r" and given as :

Ya = r r R PR (21)
is "1", "a" must be at least equal to

. 00), i.e. greater
.00).

Hence, if rpy-3
square of "n" bit number (1 0 0 .
than "2n" bit number given by (0100 . .

Fig. 7

1
!

Multiplier-divider array-like structure

x = 0 for multiplication (s=bp)

x = 1 for division (g=a/b)

multiplication or division (x = 0 for multiplication
and x = 1 for division). Proper modifications are done
to add 2's complement in division operation. "x" line
also controls the multiplexer switches to pass on
either “p" inputs or "q" signals. The product "bp" is
obtained at "s" terminals and after fourth row of the
array, three more cells are needed as carry-save full-
adders. It is worth mentioning that the sign-bit carry-
look-ahead circuits are not needed for multiplication
and actually speaking, the array of Fig. 7 is a combi-
nation of Fig. 3 and 5. But due to additional delays in
switches and input Exclusive-OR gates, the time delay
for division operation will be more than that of the

array shown in Fig. 5. The time required for "n" bit oy
“n" bit multiplication can be given as
Tm = (n+1)TC + Tex + Tsw (23)

where T¢, is the delay in each multiplexer switch.

Considering the hardware requirement, speed of opera-
tion and suitability to large-scale-integration, this
multiplier-divider array seems to be optimal design.

To include square and square-root functions, this

array is further modified and is discussed in section V.

213

Hence, the very first subtrahend is "O1" and this is

to be subtracted from two most significant bits of "a".
If the remainder is positive, then rp.7 is “1". Simila-
rily, if rp-p is "1", "a" must be greater than or equal
to the square of "n"” bit number (r,_9 100 . . 00).
The square of "n" bit number (r__, 0 0 . . 0) has
already been subtracted. Hence an additional quantity
to be subtracted, can be easily calculated and this
comes out to be "2n" bit number (O rp 1 0100 .

0 0). In & similar way, the successive subtrahends

for lower significant bits can be obtained and these
are shown in Table VIII.

Both restoring 28, 23 and non-restoring 30, 31 arrays
have been described in the litorature. The intercon-
nection pattern of these array; are not regular
because of the changes in successibe subtrahends.
Devries et. al.32 used an additional signal to control
the changes in subtrahend Qits and designed a fully-
iterative array. Majithia®' proposed an array for
square and square-root and obtained the square by
adding the subtrahends of Table VIII. Here an array-
like structure for square and square-root will be
designed, This array differs from the design of
Majithia3 1in two respects. First, to speed up square-
rooting, this array utilizes the technique of carry-

TABLE VIII :Subtrahends at different levels in the
process of square-rooting
bit to be Subtrahend
evaluated
r 0 1
n-1 \\\\
ro-2 0\\\\”n—1 N 1\\\\
L 0::::0\:::rn_;\rn_2 0, 1\\\\
N AN
ANV NN
"n-4 0 0 0 "n-1 "n-2 "n-3 0 !
b, d; a; <

h'fi;l

| D
sl
" 6 switcl'fr}—[[

-t

D

11
Gy Py 8 94

Fig. 8 Cell for square-root and square
x = 0 for square
x = 1 for square-root

save and sign-bit carry-Took-ahead circuits described
in sections I1I1. The second difference is that cell to
cell interconnections are fully iterative 9 and this
leads to its possible extension for multiplication and
division operations (see section VI).

The basic cell used in the proposed array is shown in
Fig. 8. This cell is almost similar to the divider cell
of Fig. 4 and two more lines "d" and "“h" are added.
Also, to achieve 2's complement addition, the Exclusive-
OR gate is brought into the cell at its "b" input
(rather than putting at the top of the array, as done in
multiplier-divider array of Fig. 5). This is done
because of the changes in successive subtrahend. The
output-input logic equations for the cell of Fig. 8 can
be given as :

214

TABLE IX :Truth table for equations 27 and 28

by dp | % Mk

0 0 0 0

0 1 " "

1 0 0 1

1 1 1 1
S_i = aiw Ci@ [rj(bi@ X)J (22)
R O CR N ACIRY (23)
" a].«:1.+(a1.+c].)(bi@ x) (24)
Gy, p= (28 ;0 ;8 x)e, (25)
Pi+1= a1® biQ cie x + e, (26)
95 9= bydy+ dirjE di(b1+rj) (27)
hj_y= byrdiry= (by#d;)(byry) (28)

Here, "b" is the subtrahend and the next level subtra-
hend is denoted by "g". The variables "d" and "h" are
used to change the subtrahend in the desired manner32,
For ease in understanding, the truth table for these
variables is given in Table IX.

A careful study of Table VIII reveals that all the
bits below the leading diagonal are zero, while
among others, an initial "0" changes to "rk"; A
changes to "0" and "r}" remains unaltered. The
maximum successive change is "1" to "0" and "0" to
"r" and this can be achieved by selecting the value
of "b" and "d" bits as "1" and "0" respectively (see
Table IX). [f no change is needed, then "b" and "d"
inputs are made the same. Thus, the changes in
successive subtrahends can be achieved by selecting
proper valuss of the variables "b" and "d", The cell
of Fig. 8 parforms three functions : addition, com-
plement addition and transfer (or restore).

In square operation, the subtrahends of Table VIII

are generated and only those subtrahends are added
whose corresponding bits are "1". The array for
obtaining the square-root of 8-bits or square of
4-bits, is shown in Fig. 9. The basic structure of this
array is similar to that of multiplier-divider array

of Fig. 7 and hence much explanation is not given here.
The number of cells in each row of Fig. 9 increases as
the word-length of successive subtrahend in this
process changes. The control line "x" is made "1" for
square-rooting and "0" for square. Proper values of "b"
and "d" inputs are also shown in the figure.

From the hardware requirement point of view, the
arithmetic cell of Fig. 8 needs more number of gates
than that ¢f Fig. 4. But the array of Fig. 9 is
equally fast and the time delay for square and square-
rooting operations can be seen equal to the delay in
the array of Fig. 5 in performing multiplication and
division respectively.

[switch]
f1 51
1.0
(! o
fo o
[switch]
s J
$4 So
Fig. 9 Array-like structure for square-root and square
x = 0 for square (S=
¥ = 1 for square-root (r=va)
be increased. As the efficiency also depends on the
rate of occurarce of the operands, a system which can
VI GENERALIZED ARRAY-LIKE STRUCTURE, perform a number of operations will be, in general,

PIPELINING AND EFFICIENCY

The computing power of a system depends on many factor
To determine this power, two terms are frequently used
and they are : bandwidth and 1atency33. Bandwidth is
the number of tasks that can be performed in a unit
time interval and latency is the Jength of time requi-
red to perform a single task. For a system that
operates on only one task at a time, latency is the
inverse of bandwidth. Most increase in the bandwidth
of arithmetic units has been achieved by reducing the
Jatency. Pipelining is a technique to provide further
increase in bandwidth b% allowing simultaneous execu-
tion of many tasks3%s 35, In a pipelined unit, a new
task is started before the previous task is complete.
The key to pipelining a system is the use of temporary
storage or latch circuits between two stages of the
system. As soon as the output of a stage is set, it
can be latched and a new task can be started at the
inputs to the stage. The letches keep the value of the
old task which is the input to
bandwidth of a pipelined unit is the inverse of the
latency per stage and not ~he latency of the entire
unit. But this is true on the troughput basis, i.e.
with every clock-pulse, the operands are available and
fed to the system.

farle36 designed the carry-save adders with latch %ir-
cuits. In the field of arithmetic arrays, Deverell /
and Dean et. al.°® proposed the inclusion of D-type
flip-flops in each arithmetic cell. Their design con-
cept is exactly similar to a pipeline system. Majithia
proposed a pipeline ar;gy for square-root extraction.
Very recently Deverell'™ has given a detailed conside-
ration of the effect of pipelining various mult] ‘
arrays and a combined multiplier-divide
fact, most of the arrays described in ib
can be pipelined and their effective ef

the next row. Hence the

S.

29

more efficient. Hence, to obtain an increase in the
versatility of the srray, a significant step was taken
by Agrawal et. a1.39. Their iterative array for multi-
plication, division and square-rooting can not perform
direct square operation (without using multiplication)
+s in their ar-ay, they have generated 2's complement
of the subtrahands shown in Table VI1I. Further impro-
vement in their array was suggested by Kamal et. al.9

by generating the subtrahends of Table VIII and utili- I
zing the concept of pipelining. This array can as well

perform square operation (using the subtrahends genera-

ted in the process of square-rooting). It may be noted

that the direct square operation does not add anything

to the complexity of the cell and the array. All these

arrays are designed from iterative structure point of

yiew. Here, as carry-save and carry-look-ahead techni-

ques have been utilized, only array-Tlike structure is

possible.

A pipelined array for four operations of multiplication,
division, square and square-rooting can accept two
operands for any one of these functions at every clock-
pulse. In ordar to design such an array, the only pro-
blem left is to combine the two arrays shown in Fig. 7
and 9. The square-root - square cell shown in Fig. 8 is
more general than the divider cell of Fig. 4 and this
has to be utilized in the combined array. The process of
square-rooting requires that the subtrahends change in

a particular fashion (as given in Table VII1). Hence a
direct combiration of the two arrays shown in Fig. 7

and 9 is not possible. One solution is to use the
square-root - square array”’ 39 and let the start of
multiplication-division operation be postponed till the
number of ce 1s in a row at least equals word-length

of the operands r ‘ultiplication-division opera-
i Jution is chosen, the array of
s by 3 bits; or can divide

by 3 bits of quotient. In general, the array for
obtaining "n' bits of square-root (or for obtaining
square of a "n" bit number) can multiply two (n+2)/2

bit numbers[(n+])/2 by (n+3)/2 bit numbers, if n is oddl

But if, the word-length is to be kept the same for all
the four operations (i.e. multiplication of n X n bits
or division by "n" bits with guotient length of "n"
bits), additional cells have to be added. These cells
have to be placed at the end of the square-root - sguare
array and for n=4, the cell pattern is shown in Fig. 10.
The additional cells are shown with back-slash. Another
alternative is to add the cells on the left-side of the
square-root - sguare array, so that multiplication and
division can be started from the very first row. This
design cell pattern is shown in Fig. 11. In these two
designs, few cells are redundant for each arithmetic
operation. Table X gives the comparison of the two
design techniques.

It is clear from Table X that the two solutions require
equal number of arithmetic cells and the second design
contains lesser number of row with much larger word-
length. Hence, its carry-lock-ahead circuit will be
more complex. Both these designs when pipelined, will
have the same latency. The bandwidth of the first will
be larger than the second, as the first has more numter
of steps. But the actual time required to obtain the
result is larger in the first solution than in the
second. So, whenever there is a recursive relation tc
be computed by the array, the second design must be
preferred. An alternative which combines the two
designs, is to shift the multiplier-divider array
partly towards left and partly towards downward. The
cell pattern for such a design is given in Fig. 12

(for n = 8). The cells with back-slash are needed for
multiplication-division and the cells with slash are
needed for square-root - square operation. It may be
noted that the number of cells required remains unal-
tered.

The complete design for such an array for the word-
length of 4 is shown in Fig. 13. An additional contrcl
line "y" is included to decide, whether multiplication-
division is required (y = 0); or square-square-rooting
is to be performed (y = 1). Values of "b" and "d" inputs
are shown at the top of the array and to select them,
"y" signal can be again used. Other functions of thic
array is similar to those described in the previous
sections. One important point worth mentioning is that
while performing division, the right-most cell is not
the cell for the least-significant-bit and normally "1"
is forced as a carry-in to 1.s.b. position while per-
forming 2's complement addition. It can be easily seen
that this addition is automatically achievedd. Also,
after the irregularity has occured in the structure of
the array (such as the 5th row of Fig. 13 and 9th row
of the Fig. 12), the look-ahead terms for the missing
cells have to be considered for division operation. The
value of these terms depends on the quotient bit just
before the occurance of the irregularity. If this is
zero, all the terms are zero. But when this quotient
bit is "1", all look-ahead terms for the missing cel’s
have to be taken as the same as in the row just before

the irregularity.

It is also worth mentioning that, for larger word-
length, carry-look-ahead circuits become much more com-
plex and due to fan-in consideration, a multi-level
carry—]ook-ahead]4 has to be utilized. This problem can
be partly overcome (up to waord-length of 16 for a fan-in
of 8) by dividing the carry-loock-ahead adders in two
parts and moving up the right-half portion by one row.
This can also be done in the various arrays shown in
Fig. 3, 5, 7 and 9. In Fig. 13, the number of latch

216

Fig. 10 Arithmetic cell pattern for
4-bit generalized array

N N OO

NNODOO
NN OOOO
NNOOIOOOO

Another solution for 4-bit
generalized array

Fig. 11

TABLE X :Comparison of the two designs shown in

Figs. 10 and 11 for even values of "n

Item First design |Second design
illustrated |illustrated
in Fig. 12 in Fig. 13
1. No of arithmetic cells| n(3n-1)/2 n(3n-1)/2
2. No of rows (2n-2) n
3. No of cells in the
first row 2 n
4. No of cells in the
last row n (2n-1)
5. Maximum no of cells
in a row (n+1) (2n-1)
6. No of columns made by
arithmetic cells (3n-3) (3n-2)
7. -Start of square and
square-root 1st row Ist row
8. End of square and
square-root nth row nth row
9. Start of multiplicat-
ign and division (n=1)th row 1st row
10. End of multiplicat-
ign and division (2n-2)th row nth row
vagono
nkak0oO00n
pprOoooog
NNNOO0O000O0
NNRDODOOO0O0O
NNNOOO0O000
NSNOOOOOOOoOd
NNNOOODOOOCOoOOogano
NENNEENANO
N NENINNNI
SNNNNMEN

its generalized array

o

Fig. 12 Midway solution for 8-

For y=1=, 81 00 0 ot a, 10 a; EN 10 g a, 10 a, a, 10 3,
For V=0~Ij,gﬂ’% xy bb o by a bb a2 3 Bba a, co a EN 00 0 clock
1 N 1N L] |1

[LATCHES
o 0
v EvioH = N
o | LATCHES —1
& 0)
e _ e —_——
£ ! - LATCHES . . —
¢ "1qu~ Ve W
o @:}.‘ JCIW. j
..5_ [g LATCHES —t
¢ s 1 7SN N ST YR
£ { : LATCHES
L /]
£ 9% l“\ | Ec %%%L!/:ﬁ_é{}
2 -] t Cola
2 e 8 lﬂ7/ LT AT a
e L]
LH 1 I A 7 — I 1 T
v [c. . a. a d d e r s]
l l | l l l l
For ¥=1 == I S7 ‘cl’s %5 % S S 5 So
For y=0 — S, Sg S5 s sy s, s, S

Fig. 13 Generalized pipeline-array-like structure for 4-bit word-length

Operation Yy x result
multiplication 0 0O s=bp
division 0 1 qg=a/b
square 1 0 s=(f)?
square-rgot 1 1 r=/a

circuits are different in different rows. At the output .

. - hon s ; TABLE XI
terminals, "y" line can be again used for a proper
adjustement of the output. An extension for fractional

:Transistor requirements of the multiplier-
divider structure for different word-length

numbers is easily possibie. This generalized array is No. of bits |No. of transistors | No. of transistors
more versatile and efficient than all those arrays needed needed when pipelined
presently available in the literature. 2 400 600
3 700 1150
4 1350 2200
on- 5 1850 3175
3
V1T L.S.I. CONSIDERATION 6 2550 4400
7 3375 5825
The design of array-like structure for all the four 8 4025 7175
binary operations (i.e. multiplication, division,
square-rooting and square) have been considered in sec- TABLE XII :Transistor requirement of various array-1like
tions II to VI of this paper. A1l these arrays utilize structures for the word-length of 4 bits

arithmetic cells in a carry-save mode. The carry-look-
ahead circuits for sign-bit and/or carry-look-ahead
adders for final addition of two addends, make these
arrays non-uniform but these arrays are faster than all

No. of trans-{Multiplier|Square-root|Multiplier-divider
istors needed|-divider |-square -square-roor-
structure f[structure |[square structure

existing fully-iterative and near-iterative arrays. The Without

pipelining technique further increases their efficien- pipelining 1325 1375 2000
cies. Approximate number of transistors needed by these With

arrays with and without pipelining, have been shown in pipelining 2200 2200 3800

Table XI and XII and with the present trends in inte-
grated circuit technology, their hardware implementation
seems to be feasible. The transistor count is based on
the application of n-channel M.0.S. gates with a maximum From Table XIT it is evident that a pipeline multiplier-

of 9 M.0.S. transistors for 8-input NAND gate. The divider-square-root-square array requires slightly
arithmetic cells are alsc been considered to have utili~ lesser hardware than the use of two separate arrays
zed minimum number of transistors (41 for the cell of {one multip’ier-divider and another square-root -
Fig. 4 and 50 for the cell of Fig. 8). square). Th s is due to the fact that only "2n" cells

217

are effectively utilized for all the four operations
while additional latch circuits are required and the
complexity of sign-bit carry-look-ahead circuits in-
creases. Hence, for the computers having distributed
arithmetic units or having multi-arithmetic units, the
combined array-like structure for all the four opera-
tions will not be much advantageous. For such applica-
tions it is better to have two separate units.
Howsoever, for applications like desk-calculators, a
combined unit (without pipeline) will be useful.

VIII CONCLUSION

In this paper, the present state of arithmetic arrays,
has been briefly investigated and the best solutions in
the form of array-like structures have been given.
These structures utilize the techniques of carry-save
and sign-bit carry-look-ahead (valid only for division
and square-rooting) and carry-look-ahead adders for
final addition of two partial sums or remainders. The
advantages and disadvantages of restoring and non-
restoring techniques of binary division and square-root
have been described and the ultimate selection of
subtrahend-controlled "add - 2's complement add -
transfer" type of cell is justified by its suitability
to a generalized pipeline array design. This general:-
zed array can perform any of the four arithmetics
amongst mjltiplication, division, square and square-
rooting. Further, the array is pipelined with the help
of latch circuits. This technigue helps in getting the
overlapping philosophy implemented and allows more than
one operation to occur in the array during the same
time-interval. Thus the operands for any of the four
arithmetic operations can be fed in to the array at
every clock-pulse. On the throughput basis, the effec-
tive time delay has been thus reduced to the summaticn
of delays in only one arithmetic cell, one latch
circuit and sign-bit carry-look-ahead circuit, Thus,

a significant improvement has been achevied with the
help of continous utilization and more general design
of digital hardware and the application of carry-

save and carry-look-ahead techniques. Due to speed-up
technique utilized here, the arrays are not fully-
iterative, But their structures are array-like and
there is every possibility of large-scale-integration
of the arrays presented in this paper,

218

10.

REFERENCES

0.L. MacSorTey, "High speed arithmetic in
binary computers," Proceedings of the [.R.E.,
voi. 49, pp. 67-91, January 1961.

J. Skilansky, "Conditional-sum addition logic,"
I.F.E. Transactions on Electronic Computers,
vol. EC-9, pp. 226-231, June 1960.

F.C. Hennie III, "Iterative arrays of logical
circuits," The M.1.T. Press and John Wiley
Sons Inc, 1961.

E.L. Braun, "Digital computer design," New
York : Academic Press, 1963,

D.P. Burton and D.R. Noaks, "High speed
iterative multiplier," Electronics Letters,
vol. 4, p. 262, 28th June 1968,

K.J. Dean, "Versatile multiplier arrays,"
Electronics Letters, vol. 4, pp. 333-334,
9th August 1968.

A. Habibi and P.A. Wintz, "Fast multipliers,"
I.E.E.E. Transactions on Computers, vol. C-19,
pp. 153-157, February 1970.

M. Cappa and V.C. Hamacher, "An augmented
iterative array for high-speed binary division,"
[.E.E.E. Transactions on Computers, vol. c-22,
pp. 172-175, February 1973,

A.K. Kamal, H. Singh and D.P. Agrawal, "A
generalized pipeline array," I.E.E.E.
Trarsactions on Computers, vol. C-23, pp.
533-536, May 1974.

J. Leverell, "Pipeline iterative arithmetic
arrays," I1.E.E.E. Transactions on Computers,
vol. C-24, pp. 317-322, March 1975.

A.D. Booth, "A signed binary multiplication
technique," Quart. J. Mech. Appl. Mathl, vol. 4,
pp. 236-240, 1951,

J.C. Majithia and R. Kitai, "An iterative array
for nultiplication of signed binary numbers,"
I,E.E.E. Transactions on Computers, vol. C-20,
pp. 214-216, February 19771,

S. Bandyopadhyay, S. Basu and A.K. Choudhary,
“An iterative array for multiplication of signed
binacy numbers," I.E.E.E. Transactions on
Computers, vol. C-21, pp. 921-922, August 1972.

I. Flores, "The logic of computer arithmetic,”
New Jersey : Prentice Hall, 1963.

A. Gex, "Multiplier-divider cellular array,"
Electronics Letters, vol. 7, pp. 442-444, 29th
July 1971,

C.5. Wallace, "A suggestion for a fast multiplier,"

I.E.E.E. Transactions on Electronic Computers,
vol. EC-13, pp. 14-17, February 1964,

19.

20.

21.

23.

24,

25.

26.

27.

L. Dadda, "Some schemes for parallel multipliers,"
Alta Frequenza, vol. 34, pp. 349-356, May 1965.

Texas instruments incorporated, "Supplement to the
TTL data book for design engineers," 1974.

A.R. Meo, "Arithmetic networks and their minimi-
zation using a new line of elementary units,"
I.E.E.E. Transactions on Computers, vol. C-24,
pp. 258-280, March 1975.

J.C. Majithia, "Nonrestoring binary division
using a cellular array," Electronics Letters,
vol. 6, pp. 303-304, 14th May 1970.

A.B. Gardiner and J. Hont, "Comparison of resto-
ring and non-restoring cellular array dividers,"
Electronics Letters, vol. 7, pp. 172-173, 22nd
April 1971.

K.J. Dean, "Binary division using a data dependent
iterative arrays," Electronics Letters, vol. 4,
pp. 283-284, 12th July 1968.

D.P. Agrawal and H. Singh, "An iterative array for
multiplication and division," Journal of Institu-
tion of Electronics and Telecommunication
Engineers, vol. 21, op. 207-209, February 1975.

H.H. Guild, "Some cellular logic arrays for non-
restoring binary division," The Radio and
Electronic Engineer, vol. 39, pp. 345-348,

June 1970.

R. Stefanelli, "A suggestion for a high-speed
parallel binary divider," I.E.E.E. Transactions
on Computers, vol. C-21, pp. 42-55, January 1972.

G. White, "A versatile cellular array for binary
arithmetic," The Radio and Electronic Engineers,
vol. 41, pp. 463-464, October 1971.

K.J. Dean, "Cellular logical array for extracting
square-root,"” Electronics Letters, vol. 4, pp.
314-315, 26th July 1968.

219

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

d.C. Mgjithia, "Pipeline array for square-root
extraction,"” Electronics Letters, vol. 9, pp.
4-5, January 1973.

H.H. Guild, "Cellular logical array for non-
restor-ng square-root extraction," Electronics
Letters, vol. 6, pp. 66-67, 5th February 1970.

J.C. Majithia, "Cellular array for extraction of
squares and square-roots of binary numbers,"”
I.E.E.II. Transactions on Computers, vol. C-21,
pp. 1023-1024, September 1972.

R.C. Devries and M.H. Chao, "Fully iterative
array “or extracting square-roots," Electronics
Letters, vol. 6, pp. 255-256, 16th April 1970.

T.G. Hallin and M.J. Flynn, "Pipelining of
arithmetic functions," I.E.E.E. Transactions on
Computers, vol., C-21, pp. 880-886, August 1972.

L.W. Cotten, "Circuit implementation of high-speed
pipeline systems," AFIPS Conference Proceedings,
vol. 27, pp. 489-504, 1965.

L.W. Cotten, "Maximum-rate pipeline systems,"
Spring Joint Computer conference, AFIPS Conference
Proceedings, vol. 34, pp. 581-586, 1969.

J.G. Earle, "Latched carry-save adder," IBM
Technical disclosure bulletine, vol. 7, pp. 909-
910, March 1965.

J. Deverell, "Sequential generalized array,"
Electronics Letters, vol. 8, pp. 9-10, 13th
January 1972.

K.J. Dean and J, Deverell, "General iterative
array,' Electronics Letters, vol. 8, pp. 100-102,
24th February 1972.

D.P. Agrawal and H. Singh, "An iterative array for
square-root multiplication and division," presented
in 8th annual convention of Computer Society of
India, New Delhi, 26th February-1st March 1973.

