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Developments Reported Prior to 1972.

This paper reviews work related to the theory and
application of higher-radix, non-restoring division
as originally defined by Robertson in 1958 [1]. The
class of division methods proposed by Robertson is
described by the recursive relationship:

pj+l = rpj - qj+ld j=0,1,...,m-1
where
. . th . .
pj is the j partial remainder,
P, is the dividend,
p_ is the remainder,
" th
q, is the j ! digit of the quotient to the right
J of the radix point,
m is the number of digits, radix r, used to

represent the quotient,
d 1is the divisor.

The quotient digit set is {-n, -(n-1),...,0,1,...n}
where 1/2(r-1) < n < r-1. Each Py satisfies {pjl <

p[d] where p, the redundancy ratio, is n/(r-1).

The effect of the redundant representation of
the quotient is the ability at each step of the re-
cursion to select qj+l based upon estimates of the

full precision divisor, d, and shifted partial
remainder rpj.

In reference [1] Robertson shows a division with
r =4, n =2, in which quotient digits are selected
based upon a comparison of 4pj with 0.5d and 1.5d to

a precision of 7 bits. Also included is an example
of the case r = 10, n = 7, requiring 3 digit com-
parisons of lOpj with the quantities 0.5d, 1.5d, 2.5d.

The examples given by Robertson require low-
precision computation of multiples of d preliminary
to the recursive operations.

In 1968, Atkins published [2] which includes a
tutorial review of [1], introduction to the "P-D
plot," and discussion of a method for determining
sufficient precision in d and rxj for correct selec-

tion of quotient digits. The P-D plot, a plot of
partial remainder vs. divisor, is an aid to under-
standing the quotient selection processes and pre-
cision requirements. A point (d,rpj) on the P-D

plot falls within one or more

region in which qj+l =1 is a

variety of quotient selection mechanisms are possible
but they must all meet the following requirement:

Given an estimate, a, gf a full precision
divisor in the range d-g < d < d+8 , and an estimate,
rpj of a full precision shifted remainder in the

"q(i)-regions," i.e., a
correct choice. A

range rpj-A < rﬁj < ij+Y ,» then if the quotient
selection function applied to a, rﬁ, produces
qj+l = 1, it must be case that the rectangle defined

by the points (d-o, rP-v), (d-a, rp-A), (d+B, rp-1),
(d+B8, rP+y) lies entirely within the q(i) region.

158

48104

In [2} Atkins distinguished between an "arithmetic
model" and a "table look-up" model for quotient
selection. Given d and rpj, the arithmetic model

multiplies rﬁj by an approximation of 1/d, rounds to

an integer result and returns this integer to be
used as qj+1'

The arithmetic type model picks qj+l =i, if
i-1/2 < rp ¥ (1/d) < i+1/2 which is consistent with
the fact that for d = 1, qj+1 = 1 is a correct choice

iff i-p fArpj < i+p The minimum value of p is 1/2.

The paper gives the number of bits required in d and
rﬁj for arithmetic models with p = 2/3. Two's comple-

ment representation is assumed. These results are
5till believed to be correct, but are presently being
reviewed and generalized.

The table look-up model consists. of a combina-
torial logic realization of the P-D plot. The "costs
for table look-up models" (precision requirements in
d and rﬁj) as given in [2] are not entirely correct.

A more general, and correct, method of computation
will be cited shortly. 1In [3] the distinction be~
tween arithmetic and table look-up quotient selection
mechanisms is subsumed by a generalized quotient
selection model as shown in Figure 1. Table 1 pro-
duces an estimate of 1/d and the multiplier uses this
value to transform the range of rp and d. Table 2

is a combinational logic, table look-up implementation
of the P-D plot for the transformed divisor and partial
remainders. If Table 1 is sufficiently complex to
insure that D = 1, then the rounded integer part of B
is q and Table 2 degenerates (the arithmetic model in
[2]). If A =1 for all d, then Table 2 must be
sufficiently complex to select correct quotient digits
(the table look-up) model. This model points out

that there are a large number of intermediate struc-
tures between the two extremes of a degenerate Table 1
and a degenerate Table 2.

The major results in [2] relate to the cost and
performance analysis of "Table 2" shown in Figure 1.
Results include:

(1) An upper bound on £ and ¢ , the number of
bits to the right of the radix point re-
quired in rf and d, respectively. The bound
is a function of the maximum quotient digit
n; radix r, the end points of the divisor
domain, and form of representation of d
and rp.

(2) A procedure to synthesize a minimal literal
count, sum-of-products realization of Table
2. The arguments of this procedure include
all of the parameters mentioned in (1)
above.

(3) Expressions to predict the logic complexity
of realizations of Table 2 produced by this
algorithm.

(4) A complexity analysis, including case
studies, that (unfortunately) shows the
hardware complexity of Table 2 proportional




to rzlog r, and the time complexity for
quotient generation improving only at a rate

proportional to log r.
A floating-point division with r = 4, n = 2

based upon the methods described in reference [3]
has been implemented and is described in reference [4].

Developments Since 1972.

Developments since 1972 are described in a con-
ference paper [5} and a Ph.D. thesis [6]. Copies of
this thesis are available to the interested reader
and journal versions of the results are in prepara-
tion. In the remainder of this paper, we will high-
light some of the results reported in the thesis:

(1) The algorithm for construction of the quo-
tient selector table (Table 2) previously
described in the appendix to [3] requires
that the quotient selection regions (q(i)
regions) be defined by way of logical mini-
mization. With modern LSI array memory
technology, direct, ROM implementations of
Table 2 become feasible in lieu of minimized
sum-of-products forms. Kalaycioflu [6]
has devised an algorithm which determines
q(i) regions without the requirement for
minimization. (A '"pre-minimization"
selection algorithm.) Should the q(i)
regilons generated by Kalaycioflu's algorithm
be implemented in minimized form, more
prime implicants might be required than by
Atkins' method. Xalaycioglu's shows, how-
ever, that the additional number would be
less than 12%. For a given P-D plot, the
time complexity of the Atkins ''post-
minimization" quotient selection table
algorithm is n"*. For the algorithm it is
n?.

(2) Kalaycioglu has obtained a lower upper
bound for § and € than described in [3].
The value of Sor € derived is based upon
worst-case assumptions and may be reduced
for a specific set of design parameters.
This possibility is easily tested by exe-
cution of the pre-minimization quotient
selection table generation algorithm.

(3) Reference [5] and a major portion of [6)
concern the definition and analysis of or-
ganizations which permit time concurrency
between quotient digit selection and partial
remainder calculation. One method is based
upon use of a radix r? selection table which
at iteration j produces not qj+1 but rather
qj+2' The other scheme overlaps the for-
with the

—_— i+2
formation of the full precision version of
pj. A combination of the two schemes is

also possible.
Generation of the quotient selection
table for these cases is examined in detail.
In particular, for an r’ table the defi-
nition of the redundancy ratio , P, must be
changed from n/(r-1) to (n+l)/{(r+l).
(4) The thesis also contains a cost-performance
case study comparing a higher-radix, non-
restoring division to the Goldschmidt
algorithm as implemented in the IBM 360/91.
The conclusion is that for a 56-bit
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dividend, a 24-bit divisor and a 24-bit
quotient, a radix-4 structure providing
concurrency between quotient selection
and partial remainder formation is 1.6
times faster and 2.9 times less expensive.

Reference [6] also discusses the possibility
of application of the division-like tech-
niques to other arithmetic functions.

(%)

Work in Progress.

A large collection of theory concerning higher-
radix, non-restoring division has been produced. A
key to industrial acceptance of any of the ideas is
the demonstration of a prototype and dissemination of
information in an applications-oriented form.
Reference [7] which should be available in early 1976
is an examination of the practicality of ideas des-
cribed in {5] and [6] in the context of modern MSI,
and LS[-integrated components. The work includes the
design, construction, and evaluation, of a 24-bit
divider based upon some of the newly-developed con-
currency ideas.

Given the availability of very high-speed multi-
plier arrays, we plan to reconsider quotient selection
schemes using a non-degenerate Table 1 (Figure 1) and
degenerate Table 2., The complexity of Table 1 is
proportional to r rather than r?.

We are also involved in the practical application
of theoretical results in the implementation of a
special purpose processor for classifying remotely
sensed data at the Environmental Research Institute
of Michigan. Two papers describing the structure and
application of this processor have been submitted to
the 1976 Symposium on Computer Architecture.
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Figurel . Generalized Structure of

Model Division (Quotient Selector)
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