REDUNDANCY IN NUMBER REPRESENTATIONS AS AN ASPECT

OF COMPUTATIONAL COMPLEXITY OF ARITHMETIC FUNCTIONS

Algirdas Avi¥ienis
Computer Science Department
University of California, Los Angeles
Los Angeles, California 90024

Introduction

Recent research has led to the derivation of
bounds for the time required to perform arithmetic
operations by means of logical elements with a 1imited
number of inputs [1]-[4]. The model of a (d, r)
Togical circuit C employed in these studies consists
of a set of (d,r) logical elements and a rule of inter-
connection with designated sets of irput and output
Tines. The (d,r) logical element has r input lines
and one output line; these lines can assume one of d
distinct states. The (d,r) logical element has a unit
time delay; that is, the state of the output line at
the time t+1 is a function of the states of the input
lines at time t.

The circuit C is said to be capable of computing
the function f in time T if the specified result in
coded representation is observed on its output lines T
time units after the arguments were applied {in coded
representation) to the input lines. At the time of
application of the inputs the circuit C is set to a
standard internal state, and the inputs are held fixed
until the time T. The method of encoding the operands
is constrained by the requirement that the output
encoding should be one-one; that is, redundancy of

representation is excluded in the notion of computation.

Lower bounds for the time required have been derived
as functions of d, r, and of the ranga N of the input
arguments. To obtain upper bounds, (d,r) circuits for
a given operation are devised. The studies have con-
sidered radix-d positional encodings of the operands
as well as the more general cases of arbitrary (but
nen-redundant) encodings.

An earlier study of digital arithmetic [5] Ted to
the development of an addition algorithm which requires
the constant time T = 2 to compute the sum of two oper-
ands regardless of their range. The coding of the
operands and of the results employs a positional, radix
b > 2 "signed digit" redundant form in which the
allowed digit values are {-a, ey =1, 0,1, ..., a}
with b-1 2 a = M(b+1)/27. (Here lx1 designates the
smallest integer not smaller than X.) Further studies
Ted to constant time T = 1 addition circuits as well
as signed digit algorithms for multi-operand addition,
multiplication, and division [6], [7].

The purpose of this paper is to consider the
differences encountered in computing arthmetic func-
tions with redundant and non-redundant encodings of the
results and to establish the quantity of redundancy
which represents the cost of holding the two-operand
addition time to constant values T = 3, 2, and 1. The
summation of several operands. and the multiplication
of two operands are considered subsequently. The
results are based on the signed-digit algorithms pre-
sented in [7].

Two-Operand Constant-Time Addition

The principal observation here is that the intro-
- duction of a limited amount of redundancy into the
. representation of the operands makes the time of two-

87

operand addition independent of their range. The re-
maining constraint is that certain minimum values of d
and r are required for the (d,r) element.

The least redundancy which satisfies the "T = 2"
addition algorithm [5] consists of two additional values
in each radix b (with b > 3) digital position, giving a
redundancy ratio of (b+2)/b per digit. Considering a
complete radix b positional encoding of n digits length,
we observe that the conventional (non-redundant) repre-
sentation has b distinct forms while the (minimally)
redundant representation has a total of (b+2)N forms
representing b" + 2(b™-1)/(b-1) distinct integers.
introduction of redundancy adds (b+2)n - pn =
bN((1+2/b)"-1) new forms, of which 2(b"-1)/(b-1) repre-
sent additional values above the original range, while
the remaining forms provide alternate (redundant) repre- -
sentations for the results of additions in which the
non-redundant representation would require carry propa-
gation across one or more digits. The "T = 2" addition
algorithm for the radix b = d-2 requires the cascading
of two (d,r) logical elements. Constant addition time
T = 2 (independent of the range of the operands) is
attained with (d,r) elements having r = 2 and d = 5.

The

The constant addition time T = 2 is not attained
with d < 5; however, it has been shown [5] that a

"T = 3" addition algorithm exists for any radix b 2 2
and b+1 digit values. Constant addition time T = 3 is
attained with (d,r) elements having r = 2 and d 2 3

when the radix b = d-1 is used to encode the operands.
In this "constant time T = 3" addition algorithm a cas-
cade of three logic elements forms the addition circuit.
This algorithm requires only b+1 values in each position
of the radix b > 2 positional encoding; three values of
the transfer digit are again required. The "T = 3"
addition algorithm has the redundancy of (b+1)/b per
digit. The total redundancy count shows (b+1)Nn forms
representing b + (bN-1)/(b-1) distinct integers. The
redundancy adds

(b+1)™ - b = B (141 /6)"1)

new forms, of which (bn—1)/(b—1) represent additional
values, and the remaining are redundant.

Constant time T = 1 addition algorithms can be
derived from the previous T =2 and T = 3 algorithms by
increasing the number ¥ of input lines to the (d,r)
element [7]. The minimal complexity of the (d,r) ele-
ments is as follows:

(a) The "T = 2" algorithm yields the "T = 1"
algorithm with the minimal input complexity
r =4 and d = 5 given the radix b = d-2.

The “T = 3" algorithm yields the "T = 1"
algorithm with the minimal input complexity
r=6and d 2 3, given the radix b = d-2.

(b)

Another measure of complexity is the number of
(d,r) elements required to perform the addition. The
total count of the (d,r) logical elements used in the
addition circuit of 2 n-digit radix b operands is
readily determined because of the simple structure of
the circuit:

(a) The "T =1" algorithms require nt1 (d,r) ele-
ments.

(b) The "T =2" algorithm requires 3n-1 {d,r)
elements.

(c) The T =3" algorithm requires 5n-& (d,r)
elements.

Other Algorithms

This section considers some other algorithms that
were developed for redundant number representations [s]

-[7].

Additive Inverse. The additive inverse of a
signed-digit cperand is generated by changing the signs
of nonzero digit values. One additional digit value
at the inputs of the addition circuit is required in
the cases in which the digit set is not symmetrical
around zero:

(a) A total of b+3 digit values (i.e., d = b+3)
is required in the "T = 2" algorithm and the
related "T = 1" algorithm, when the radix b
(= 3) is ever;

A total of b+2 digit values (i.e.. d = b+2)
is required in the "T = 3" algorithm when the
radix b (= 2) is odd.

The one-unit increase ‘n the value of d causes corres-
ponding changes in redundancy and logical element com-
plexity. The other parameters (time and total complex-
ity) remain unchanged.

(b)

Multi-Operand Addition. The multi-operand algo-
rithm developed for the signed-digit number system con-
sists of two parts:

(a) The original k operands are summed to repre-
sent the sum as two numbers in the same
representation;

The two-operand addition algorithm is applied
to get the final result.

(b)

The radix b algorithm for the summation of r

digits [7] from the pesition 1 of r operands (x", ...,
x1% has the form:
r .
1 A
for r < btl; j§1 Xj bui+1 + vy

The 1imit r < b+l is imposed to guarantee that the
result digits ujs7 and v; have the same (redundant)
set of values as lhe input digits xF, .. x}. In
terms of {d,r) logical elements, two (d,r) Slements
with d = b+z (or d = p+1) and r < b¥l for every posi-
tion 1 will reduce r encoded operands to a sum repre-
sented by two similarly encoded results in one time
unit (Tp = 1)

For a total of k operands, when k > r, time T > 1
is required. Time T = 2 is required when k is in the
range:

rLr/2] + (r-2ur/2l) z k>
Generally, time T = [units is required when:
Ki3) = k > K(3-1)
where: K(1)
K(2)
K(J)

T
rir/2) + (r-2pr/24)
rLK(3-1)/25 + (K(3-1) - 2LK(3-1)/24)

For the case
sion reduces

of an even value of r, the above expres-
to

k(3) = 2(r/2)3

The time required for a complete addition with any
value of k and an even r 2z 4 then is given by the

88

expression {with r s b+1):
T(k) = i1 = Hogr/2 Tk/211 + 1
where the first term j gives the time for the circuit

which computes two results and the constant 1 accounts
for the last 2-operand addition.

Multiplication. A two-digit product algorithm
has been developed previously 16]. This algorithm uses
(d,r) logic elements with r = 2 and computes the pro-
duct of two n-digit numbers in the form of 2n2 digits
which then are summed in a multi-operand summation cir-
cuit with a provision to accept 2n-1 inputs in the
positions n and n-1 of the 2n digits long product.
time of multiplication is then T {add 2n-1 operands)
+ 1. Other algorithms for digit multiplication have
been devised which reduce the number of summands (and
the time) for the multi-operand addition circuit by
taking advantage of more inputs. The number of sum-
mands is reduced from 2n-1 to n when four inputs (r =
4) are allowed [7]. A further reduction of the number
of summands to [(2n-1)/37 can be achieved by an exten-
sion of the above developed algorithm when r = 6 inputs
are provided.

The

Conclusions

The main result is the identification of the addi-
tional complexity, expressed in terms of redundancy
and of the minimal complexity required for (d,r} logic
elements, which must be accepted in order to attain
two-operand addition in constant time of 3, 2, and 1
units respectively. The price for circumventing
Winograd's lower bound [1] for non-redundant encodings
has been established for all three cases. We have also
considered the time required for K operand addition anc
two-operand multiplication using redundant encodings
for the operands and results. In (k > 2)-operand
addition the time is shown to be a function of k, r,
and d, and independent of the range of the operands.
The algorithm is a generalization of the “carry-save"
principle of binary addition. The multiplication time
for two n-digit operands is a function of the range of
the operands, since it is carried out using k-operand
summation, with k = 2n-1, n, and f(2n-1)/31 for in-
creasing complexity of the {d,r) element which carries
out the digit multiplication preceding the summation.
The known bound [2] has not been reached; however, it
is interesting to note that the algorithms use the
came encoding, and that the full product, its most
significant haif, and its least significant half are
obtained simultaneously.

Multiplication time may be reduced to the consta
times 3, 2, or 1 when the operands are represented by
the values of exponents in their prime power represen
tation as discussed in [4]. The exponents are repre-
sented by radix b redundant encodings and multiplica-
tion is performed by adding the corresponding exponen
using the constant-time algorithms discussed previous
ly.

The results of this study suggest that redundanc
in encoding of numbers is also an aspect of computa-
tional complexity, and that the general notion of cor
puting an arithmetic function should encompass redun-
dant encodings as well as the special case of non-
redundant encoding of the results.

References
[1] Winograd, S., "On the Time Required to Perform

Addition," Journal of the ACM, Vol. 12, No. 2,
(1965), pp. 277-285. :

[2] Winograd, S., "On the Time Required to Perform
Multiplication," Journal of the ACM, Vol. 14, No.
4, (1967), pp. 793-802.

[31 Brent, R., "On the Addition of Binary Numbers,"
IEEE Transactions on Computers, Vol. C-19, No. &,
(1970, pp. 758-759.

[4] Spira, P. M., “Computation Times of Arithmetic and
Boolean Functions in {d,r) Circuits," IEEE
Transactions on Computers, Vol. C-22, No. 6,
(1973), pp. 552-555.

[5] AviZienis, A., "Signed-Digit Number Representa-
tions for Fast Parallel Arithmetic," IRE

Transactions, Vol. £C-10, No. 3, (1967), pp. 389-
400.

[6] AviZienis, A., “Arithmetic Microsystems for the

Synthesis of Function Generators," Proceedings
of the IEEE, Vol. 54, No. 12, (19667, pp. 1910-
1919,

[7] Avitienis, A. and C. Tung, "A Universal Arithmetic
Building Element (ABE) and Design Methods for
Arithmetic Processors," IEEE Transactions on
Computers, Vol. C-19, No. 8, (1970), pp. 733-745.

Ackrowledgment

This research was supported by the National Science
« Foundation, Grant No. DCR72-03633 A03.

