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SUMMARY

This paper is concerned with the algebraic sign
detection of a number in a residue number system. The
broposed solution is applicable only to nonredundant
systems. The method utilizes a systematic decomposit-
ion of the sign function S that is based on some speci-
al properties of S. Starting with the canonical sum-of-
products expression for S, we transform the expression
to a form whose realization is simpler than the canoni-
cal form realization and, if possible, also simpler
than the minimal sum-of-products realization. In some
cases, the proposed method yields savings as high as
85% compared to the minimal sum- of-products realization
for s.

INTRODUCTION

Residue number systems have been of interest to
mathematicians for a very long time. However, the use
of the system to carry out machine computation has
attracted attention only within the last two decades.
The most notable feature of the residue number system
is that in the operations of addition, subtraction, and
multiplication, any digit of the result is determined
solely by the corresponding digits of the operands.
This results in the elimination of carries from one
residue position to arother. However, one of the draw-
backs of the system is the fact that the algebraic sign
of any number in an arbitrary residue code is a
function of all the residue digits. This makes the
sign detection process quite cumbersome and slow.

It is the purpose of this paper to investigate the
sign detection problem, which deserves special attent-~
ion because it is alsc closely related to the problems
of relative magnitude comparison and overflow detection.

EESIDUE CCDES

Residue codes and their properties have been widely

R ) ; 1,4-
discussed in literature 4 10, and for this reason they

will not be dealt with in detail here. Only the essent-
ials will be briefly reviewed.

Definition 1: Let M ={ml,m .,mn} be an ordered

oo

set of positive integers, where mi22 for i=1,2 .,n.

e

The mi are called "moduli" or "radices," and the cor-

responding ordered set (xl,x m,xn) of least positive

2 r
residues of a natural number X, with respect to the
moduli, forms the residue representation or code for
that number, where the least positive residue of X with
respect to m, is denotad by [Xﬁmj:xi. For example, if

Mz{2,3,5} and x=14, then 114[2= ]14[3:2, and |14{5=4

Thus 14 is represented by (0,2,4) in this system.

In order to avoid redundancy (unless redundancy is
desirable), the moduli of a residue number system must
be pair-wise relatively prime i.e., the greatest common
divisor of each pair of moduli must be unity. If this
is so, the number of integers that can be coded unique-
ly in a system with mocduli {ml,mz,...,mn} equals the

product mim,...m This is a direct consequence of the

he
Chinese Remainder Theorem6. In the case M={2,3,5},
therefore, a total of 30 integers can be coded uniquely.
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These can correspond to the natural numbers 0O through
29.

A convenient way of representing negative integers
is as follows. The residue number range is divided into
two parus. One part is assigned to positive integers,
and the other to negative integers. The negative integ-
ers are then represented in radix complement form, de-
fined in terms of additive inverse. Thus =X is repre-
sented by X', where X' is the additive inverse of X,

and is defined as follows. If X-(xl,xz,...,xn), then
X'=(xl x2',...,on where x.':m.»x. for i=1,2,...,n.
Thus for M={2,3,5}, -14 is represented by (0,1,1).

SIGN DETERMINATION

The problem of sign determination is a major problem
encountered in using residue arithmetic for computation.
Attachirg a sign bit to a residue number is of little
help because the magnitude of a residue number is not
readily available, and therefore, after adding a posi-
tive and a negative number, for instance, the sign of
the result is not immediately known. We have seen
earlier how the whole range of representation in a re-
sidue system can be divided into two parts to represent
positive and negative integers. Cne obvious way, there-
foresis to convert a given residue number to its natur-
al number form which will fall either in the positive
or the rnegative region of the representation. However,
this is not an attractive solution for the problem be-
cause it is slow, and therefore would tend to offset
the adventage of speed in a residue arithmetic unit.

We ccnsider a sign function S which has a value 0
for positive integers and 1 for negative integers, i.e,

$=0 for OSXS[%] -1,
n

M= 7
i=1
In considering the sign detection problem, it could

be expected that to get one bit of information (sign)

and S=z1 for [%]SXSM—l, where

my.

all the residue information is not required. Szabo8 has
proved that such a scheme is impossible and in the ge-
neral case no reduction of information from any residue
digit is possible without loss of sign information. A
method for sign detection, which falls within the limi-
tations .imposed by Szabo's coding theorem, has been

proposed by Banerji & Brzozowskill; however, this me-
thod is still too slow compared to the speed of the
three arithmetic operations mentioned earlier. The
quantital:ive effect of the frecuency of sign detection
on the owverall arithmetic speed in a residue machine

has been discussed by Banerjilz'lj. The need exists to

investigate methods to speed up the process of sign
detection if residue arithmetic is to offer a viable
alternat.ve to fixed-base arithmetic. Towards this end,
we develop in this paper a systematic approach to the
design of combinational logic for sign detection. A few
years ago such an approach would have appeared impract-
ical because of the amount of logic required. (Recall
that the sign function S is a function of all the re-
sidue digits of a number). However, in an era when
entire processors are available on a single LSI chip,
the cembinational logic approach for sign detection is
certainly worthy of serious attention.




Our method is based on a systematic decomposition of
the sign function S that takes into account the cyclic
structure of S. To the best cf the author's knowledge,
this is the first such approach to the sign detection
problem. For a given switching function there exist
many possible decompositions. However, for a function
with a large number of variables (like 8) it is im-
practical, if not impossible, to try all possible de-
compositions in order to find out which one is best.
The decomposition that we have derived is by no means
unique. But, as stated earlier, it does take advantage
of the cyclic structure of s.

Informally, the starting point of our method is the
canonical sum-of-products expression for S. We then re-
arrange the expression to arrive at a realization for
S which is simpler than the caronical form realization
and, if possible, also simpler than the minimal sum-of-
products realization. We now describe the method in
more details.

Formal Description of the Method

Consider a residue system M:{ml,mz,...mn} and a
number X with residue code (xJ,xz,...xn) i.e.,
> = ; - 1 =

<X M= (xl,xz,...,xn) where hi = 'le-’ i= 1,2,...n.
Consider a typical modulus oy .
§ .-

( i’pi_l,
in a Yegister of pi kits. In our approach we first

8, 0,8, ) of x. is assumed to be stored
i,1" 1,0 1

completely decode Xy by producing binary signals wi .
rJi
fqr each ]i,OSJismi—l, such that wi,j.:l iff ®=3, .

i
Clearly, the sign function can be expressed as a sum of
products of the form

8 = . e .
l‘)].,311})2:]2 wnr]n
where (jl,jz,...,jn).represents a positive number. Thus

- . My *
S consists of [EJ sach products 6.

The canonical form of § requires a large amount of
logic; our approach is to factar the expression for §
S0 as to reduce this logic.

Let (Ml'M2) be any partition on M such that Ml

Let M_=

1 and

. Kk
{ml,mz,...,mk}, M2 = m ilrlmi

k+l,....,mn}.

’

n
M = L.
2 ml

™
izk+l

Lemma 1: For the set of all positive numbers X,X+Ml,

...,X+tMl, where osxsul—l, the corresponding products

60,61,...,8t, respectively agree in k positions. The

converse is also true.

Proof: The verification of this is routine. a
If 60,61,...,8t have a common factor, then we can
i =06 +9 +...+9 = 5. +.. .+
write T = ot0 et a(By 5 Bt) (1)
We shall call T an elementary term, o its head and
+8. +.. .+ i il.
(BO Bl Bt) its tail.
The number of such elementary terms in S is a funct-
ion of the partition on M. The effect of this partit-
ion on the complexity of realization of S will be

discussed later.
Some Useful Results
In this section we give some results which will prove
to be useful in later analysis.,
lemma 2: For all integers I,J,K such that J,Kz1,
I

J I~

[ = 2]

* "[]" denotes the ceiling operator i.e.,
least integer »2I

[1] is the

i
The binary representation
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Y] -1, and if L is some

Proof: For any real Y, [Y]2Y>
Y]. Hence we get

integer such that L2Y, then L2

i

Iy, I, I
K [E]z T K([J_K 1)

I

I I
(5 2 5> [5d

ol

R IiorLs I

o K [JK]z[J ; K([JK] 1)
[I_

. Iy, 297 or 17 .

o [I?Ek K >[JK] L.

From this it is clear that [3§J denotes the least inte-

B L
J : I J
2 T <. 1 zl—— .
ger 2 il.e., [JK] =[ K ] -
Lemma I: In an elementary term the number n, of terms

in the tail (called the gize of the tail) satisfies:
M
ns [ 2.
t” 2
Proof: The number of terms in the tail is t+1, where

= XteM, <
Xtt 1

€ s3] -0 s B0k, since xo.
1 X

X

+ [%] ~1 (by assumption). Thus

so, . LMy 1
s Ml[2] M

=

s:—l[%n -

must be an integer,

M 1 i
- D___ - = by Lemma 2. Since t
2M M’
My 1 1

the highest value that t can have
M .

M M
is [5-] -1 = [-2] 1. Thus n_ = t+1s [—2], which
JMl 2 t 2
proves the result. [
This hound can be met as the next result shows. Un-
less otherwise specified, we assume that S consists of

Ml elementary terms formed by considering all

M
= X+tM., t20, 0sX<M_ ~1 sl=] -1.
X = XHM), t30, 0sXs< 171 and x [2] 1

Lemma 4: M2
i) 1f M2 is even, then each tail is of size —=.

1i) If M2 is odd, thethhere exist [—%ﬂ tﬁils of
size [—%J and Ml—[—%ﬂ tails of size [—%J -1.
Proof: For a given X such that the corresponding
elementary term T has a tail of maximum size
[—%J, we musﬁ have X+tMlS[—%J ~1, where nt:t+l= [E§J.
Hence, t = [—%]-l and

M
M 2
<l - - [

xs[51 -1 - ([ 51 -Lim, (2)
i)y 1f M2 is even, then from (2) we get Xng—l.

Tharefore, all the M1 elementary terms have tails
M
_2

2
If M2 is odd, the right hand side of (2) equals

M2
of size [_E] = .
ii)
M. M
1. ) 1
[—;J—l. Hence, for all X such that OSXE[—EJ_l'
. , . . Moq .
the corresponding IX has a tail of size [—EJ i.e.,

there exist [—%J such tails. Now, consider X=M, -1.
M

2
Then J = ><+([-2]—2)M1
M
= Ml—l+([—2]-2)Ml
M, N
- ([7]—1)Ml—.1<—— - M-l
M1M2 MIM’
So J < —*5~ -1< E—;—: -1




Hence J SE%J -1,

M M2 M
E——] x+([51-1m =[Z].

i 2]<x_<M -1,
[——J -1 i.e., there exist M

It is easily shown that for X

Therefore, for all X,

Ly, X

LT |~—J such tails. "
We now want to establish the maximum number of dis-

tinct tails of size nt in S.

lemma 5: The maximum number of

distinct tails of a
given size ny is M2.

Proof: Let FX be the elementary term formed by consi-

, XttM Then n

dering the positive numbers X,X+Ml,... N

Ik

= ttl. Let the residue code for X be (]l,] ), where

_IX‘M and 32_IX[M Then for all the numbers, the

corresponding residues with respect to M_ are:

2
.,}jn+tM i.e., the residues are
&

3 ;] +
PUE Mlle"‘ i
uniquely determined by j2. ﬁence

also uniquely determined by j2.

the tail of FX is
Since Osjstz-l, there
can be at most M2 distinct tails of size n . This
proves the lemma. L
This bound can be met. For example, if Ml:5, M2:4,
the number of distinct tails of size 2 is 4 =M2.
Let TX and TY denote the tails of elementary terms

I', and FY

X
X #y,

respectively. Then we show the following for

0<Xx, YSMl—l.

Theorem 1:

i) If T =T  then |XJM2 = ]YlM?w
ii) 1f |X|M2 |Y[M , then TX and TY differ in at
most one element.
Proof;

i)The proof is by contradiction. Let the elements

of T, and T, be x|, ., [x* Ml[M2,." ,|x+KMl]M2 and
fY[M2,]Y+MlJM , ,]Y+KM1]M respectively, where
2 M2
either K =[—§]—l or K =[_5J—2' Suppose le #lxl .
Since Tx=Ty’ there must exist some t>0, sucﬁ that
[Y[M lX+tMl|M Therefore, [v+(k-t)M |, :]x+KM11M2
and |Y+(K—t+l)Ml|M2 = !X+(K+1)M1’M2. But we must have
+(K-t+ = ig i
[ Y+ (x-t l)Ml|M2 = [x]Mz, otherwise ]x[MZ will not
appear in TY Therefore,
Ix| | %+ (k+1)M_ |
M2 1 M2
! -
or (K+1)Ml!M2 =0
or (K+1)Ml = LM2 for some L>0.

Since M. and M2 are relatively prime, it is clear that

1
(kt1l) must be a multiple of M2. This is impossible

since K+1<M2. Therefore IY|M |X[M .
- _ + =
ii) 1f IXIM = [Y|M2, then |[x tMl|M2 _[fle tMl|M2
+ + i i
|IYI 2 tMllM IY tMl‘h . Since, in general
the size of a tail is either [ qJ or [—~J -1, it is
clear that TX and TY differ in at most one element. B
: = =3, = + =
Example 1: ‘Let M. =10 and M2 3. Then T1 wz,l w2,2 T4
and ]l[3=‘4,3:l. Also ‘7’3:1 and T7=w2 1 Tl and T7

T, has a tail of size

differ by one element.
Corollary 1: If M1<M
o <M

F'or Ml ru

ot then all tails are distinct.
Proof: there exist no X and Y, 0sX, Yleml,

such that. |XIM ‘Y[M . Hence, from Theorem 1, TxiTyl
2

For example, if Ml:2, M2:3, both the tails are dis-

tinct.

Corollary 2: If M >M then each tail

Mll 2 1 _
appears either [M—J times or [M~J-l times in S.

and M2 is even,

2

Proof: (onsider some X, Osstl-l, with residue code
) | Y = j_+ - >0. . =13
(31,32). Choose Y = 32 thle 1, £>0. Then IY'M 32
=]XIM . Since all tails have the same size (M2 is
2
even), by Theorem 1 we get TX = Ty. We have
Y<M_ -
1 1
j M _SM_ -
or 32 t 25 1 1
Ml-l-j Ml-l
or t g ——2 < since j_20.
M M 2
2 2
M 1
So tSM*l—M—-
M2 2
1 1
sl=]e ——=
or t [M2] M

Since t szt be an integer, the highest value t can

have 1is f——] -1l. Therefore, TX appears at most [E_J
2
times.

M
To show that Tx appears at least [ﬁl]-l times, con=-

sider j2=M2—l (highest value of j2). Then

J=M2

.M_-1 (since

M
19
1+<[M2] 2)m, )

M
1 1
([E;J-l)M2—1< R

.

[Y]—1<Y). Hence J<Ml—l and TX appears at least [ﬁl]—l
times. ]
Example 2: Let Ml 9, M2_4 The tail (w .0 w2,l) .
appears 3 = [—J times and all others appear 2 = [Z]—l
times.

We now summarize the previous results and then use

them for estimating the combinational logic required in
a given residue system. For moduli M. and M_, we get

X 1 2
the following: *

1. There are Ml elementary terms.
2. There are at most M distinct tails of a given
size.
3. Each tail contains either [——J or [——] -1
‘elenents,
4. For Ml<M2 all tails are distinct.
5.

For M1>M2, M? even, each tail appears at least
i M
[ﬁlﬂ-l times. In this case at least [gl]—l

elementary terms can be combined to form a "head

M
sun" of [Eiﬂ—l elements.
2

There can be at most M2

In the following example, the previous results are used
to estimate the complexity of combinational logic for
sign detection in a given residue system.

Example 3: Let m =19, m2=2O and mq:Zl. Let M,=19 and

1 1
M2=20X2l=420.

such head sums.

We assume a maximum fan-in of 5. Aan

* M.
Ml and

te moduli (i.e., products of other moduli).

5 can be either individual moduli or composi-
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analysis shows that the logic required in this case is [12] b.x. Banerji, "Residue Arithmetic in Computer

* 1530 AND/OR gates, and the time required for sign Design," Ph.D. thesis, Dept. of Applied Analysis
detection, T_=9A, where A denotes single gate delay. and Computer Science, University of Waterloo,
: s . Waterloo, Ontario, Canada, March 1971.
The logic rodulrenent can be reduced by more than 0 {13] D.x. Banerji, " On the Use of Residue Arithmetic
pex cent by choosing Ml and M2 properly. Let Ml=19x21 for Computation," IEEE Transactions on Computers,
and M,=20. In this case, the total requirement = 645 Vol. C-23, No. 12, December 1974, p.p. 1315-1317.
. AND/OR gates and T =7A.
| 3 In Table I, we list the logic complexity of sign de-

tection for several residue systems. The figures repres-
{‘ ent orders of magnitude. From the Table we note that
3 except for very small values of M, our method provides

tremendous savings as compared to minimal cover realiz-
E ation for s.

CONCLUSION

¥ We have developed a systematic approach to the combin-
ational logic realization for S. This appears to be the
first such approach to the sign detection problem. The
properties of the sign function have been studied and
used in estimating the combinational logic requirements.
The method is shown to provide great savings in compari-
son to the minimal cover realization for §.

Table I. Combinational Logic Complexity
for Sign Detection

Range Number of Gates
MODULI Mg Using Minimal Using our
Cover Method

2,3,5 30 13 30
2,3,5,7 210 74 78
8,9,11 792 300 170
19,20,21 7980 2750 645

2,3,5,7,11,13 30,030 10,000 1500
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