DEVELOPING LARGE BINARY TC BCD CONVERSTION STRUCTURES

By M. Benedek

1. INTRODUCTION

Static binary to BCD conversion has been des-
scribed in many papers during the last decade,
but none of the methods presented were prac-
tical for the conversion of large number of
binary bits.

In this paper it is intended to further deve-
lop static conversions by the expansion of the
original BIDEC methoé (Ref. 1). There are
quite a few static conversion schemes pub-
lished which use other methods of conversion.
The static method, developed from the BIDEC,
lends itself best for the expansion to larger
structures as in its original "correct and
shift" form there were no basic limitations on
the size of the binary words to be converted.
With the appearance of large bipolar ROMs

and the even larger but somewhat slower MOS
ROMs there is a renewed interest in large
structures for fast binary tc BCD conversions.

The static method will be extended to well over
30 bits by using large ROMs, and then will show
a hybrid conversion scheme (static/dynamic)
which will use these large conversion blocks

to decode and shift by bytes of up to 13 bits
with tclerable penality in speed. Further,

to save memory space, a "feed-back" correction
method will be shown where one set of con-
verters can be used for both BIN/BCD and BCD/
BIN conversions.

2. STATIC CONVERSIONS

First a brief introduction is given to the al-
gorithm, which is the basis of the method to
be developed. The static binary/BCD conver-
sion technique consists of looking at the three
most significant bits of the binary number.

If the value of the three digits is greater
than/or equal to five, add binary three to

the number and shift the result one bit to

the left. If the three digit value is less
than five, shift to the left without adding
three. Take the next bit from the right and
repeat the operation until reaching the least
significant bit which will be carried over
without decoding. (See Table 1.)

TABLE 1. BASIC STATIC BINARY/BCD CONVERS LON TECHNIQUE
— -
" BINARY NUMBER tP0 113100 = 180 ’
Examine 3 most significant bits
Add binary 3 1
! 1000t |
Shift left, take next bit 1 2001
No add, shife 0 001 o=
No add, shift 100 0ro ot
&dd 3 ro units 11
100 T 0
Shift 100 000 0=——
Add 3 to 10's 11 ‘
0000

Shift

1 BCD 1 E o

As the algorithm isg recursive, it can be syn-
thesized either by gates, as in Reference 2,
or by a look up table, as in Reference 3; and
it can cascade enough elements to form a de-
coder for the required binary number. The
content of the look up table is shown in Table
2,

188

TABLE 2. LOOK-UP TABLE CONTENT

BINARY L INPUT OUTPUT
INPUTS
X.l X2 X3 X4 Y1 YZ Y3 Y4
*1 Xy X3 X 5 o 0 o o o 0 o o
N N
1
‘ = ‘ o o o o o0 o
BASIC DECODING
BLOCK . LSB IS NOT o 0 ! 0 0 0 1 0
KA DECODED o o 1 1 o 0 1 1
L T]
o 1 o o o 1 0 o
BCD OUTPUTS 0] o 1 1 0 0 0
o 1 1 0 1 0 0 1
ol 1 1 1 1 0 1 0
1 Q 0 0 1 o 1 1
1o 0 ot P10 o
Figure 1 shows the interconnection of these

basic (E4) building blocks to form a decoder
tree for 4 to 15 bit binary numbers. The

tree is cut at the appropriate binary number.
As the number of decoder elements increases
rapidly with the bits to be converted, this
arrangement is very inefficient over 15 binary
bits (as shown in Table 4, Column .

2236|5 BINARY
YO101 11010111

it
|

g[ﬂ o}

s s o il
\ oI y'}>
2

-

e S \
78118 :“ioscho\‘ B |
r—\ A Ay _i_l

L K
n [ol o

|
\g}

0BITS,

1BITS

\ B} \ v
2Bk~ XQDII% IO oA \

Gl Ol) Ol Ol

- LT J\
\ \ \[:: \
\Tp (%’ \ T =

1

0 = T =T AT
010\‘ IO VOO']l -6 II[O Yo foli
2 W 3 6 5

B.NARY TO BCD DECODING TREE WITH E4 DECODERS.
THE DOTTED OUTLINES REPRESENT E6 DECODERS.

INTERCONNECTION OF BASIC BUILDING BLOCKS
FIGURE 1

2.1 Developing the E6 Level of Interconnec:

Referring to Figure 1, merge three units into
one (dotted line) and create a new decoding
unit (E6) with six inputs and six outputs. To
generate the truth table for this unit, looxk
back to the basic algorithm. The four least
significant output bits have only 10 out of 16
combinations, as in Table 2; and the total num-
ber of words stored will be 4 x 10 = 40 (Table
3). This decoder is somewhat similar to the
Texas Instruments' 74184, This latter, however,
has reduced efficiency as it uses a 32 x 8 Mem-
ory Structure (with five inputs).

To build a decoder, for any number of bits,
first construct a geometric interconnect map
where each node is an E6 Unit (Figure 2). Bach
arrow represents one or more interconnecting
wires as shown on nodes 4, 6 and 8. The ad-
vantage of this map is that the decoding tree
can be extended to any number of bits by topo-
logical similarity and can determine the num-
ber of decoder units required for a given
number of binary bits (Table 4, Column 6) .

INPUTS
l I 1 l ll BINARY INPUT
C54321 B|7E|va58<4B» E;QB”BWBQBBB@GBSBA 8:8,8, Bo
TABLE 3. LOOK-UP TABLE FOR E6 DECODER E6 (D]]
BRII09 8 e S e e e
LINE NO. INPUT CODE | OUTPUT CODE ER)
oCTAL OCTAL T
-1, 0g~04 I
a 2 2 a4 g
1 g 1 @ 1
2 g 2 g 2
3 g3 g 3 |
4 g 4 [M
5 g s [
6 g6 11 n]}—<
7 a 7 12
8 1B 13 I
9 o (]
19 1 2 2
11 1 2 1
12 [2 2
13 1 s 2 3 T Is Iy I3 I 4y i
14 16 2 4)
15 1 7 3 op _L
E6 DECODER]
16 2 P 1
17 2 1 3 2 k3
18 2 2 303 0, 0, 0, 0, 0, O
19 2 3 3 2 6 %5 %4 %3 P2 0 I
29 2 4 “ g
2 2 s ¢ IBEITS ;
o f > /
23 2 7 43 ’/ =\ Y 9_,;3\\; \
21 3 p 4 4) <
25 3o 5 g locooo] [ioo0od [1000% [0] 10's UNITS
26 32 s 1
27 303 5 2 .
28 3 5 3 LEGEND BCD OUTPUT
29 3 s 5 4 EACH NODE REPRESENTS
38 306 6 # —— — — 2 LINES AN E6 DECODER
31 37 6§ 1 e 3 LINES
32 R | 6 2
23 a1 6 3 - | LauE
34 4 2 6 4 Typical interconnections are
35 4 3 79 ghown on uanits b, 6, and 8.
Nutbers on connecting lines
36 4 4 7 1 resresent pin numbers.
37 PR 7 2
38 4 6 703 INTERCONNECTION FOE E6 STATIC DECODERS (BINARY/BCD)
39 4 7 7 4 FIGURE Z
TABLE 4. TABLE OF COMPARISON STATIC BIN/CD DECODING
COLUMN 1 2 3 4 5 6 ? 8 9 10 11 12 13 1 15 16 17 18 19 20
E4 E6 E9 E13
BITS CONV. BITS t NO. OF CONV. BITS t, NO. OF COoNv, BITS t NO. OF CONV. BITS t NO. OF
UNITS UNITS w2 PINS UNITS UNITS B PINS onrrs | uwrrs | A€ | erws ontrs | units | 89 | p1ns
4 1 4 0.05
6 Kl 2 0.18 33 1 13 0.05 15 1 6 0.05 21
9 9 1 0.30 99 3 3 0.15 a5 2 4.5 0.10 42
12 18 0.867 0.45 198 6 2 0,130 80 4 3 0.20 84 3 4 0.15 87
15 30 0.5 .60 130 10 1.5 0.35 150 6 2.5 0.30 126
18 45 0.4 0.75 495 15 1.2 0.45 225 9 2) 0.40 189 6 3 0.25 114
21 63 0.33 0.90¢ 693 21 1 0.55 315 12 1.75 0.50 252
24 94 0.28 1.05 924 28 0.36 0.65 420 16 1.5 0.60 336 10 2.4 0.35 290
27 108 0.25 1.2 1188 36 0.75 0.79 540 20 1.35 0.70 420
30 135 0.22 1.35 1485 45 0,67 0.85 675 25 1.2 0.80 525 15 2 0.45 439
33 —— 55 0.6 0.95 825 30 1.1 0.9¢ 630
3% - 36 1 1.00 156 21 1.7 0,55 609
42 - 42 0.9 190 882
49 0.85 1.20 1029 27 1.5 0.65 783
MEMORY REQUIRED 10 x 4 40 % & 320 x 9 3200 x 12
L L L 1 L 1 t " 1 1 1

CONVERSION TIME IS CALCULATEL BY
ASSUMING A 50 ns DELAY PER UKIT.

189

From this map, construct the actual wiring 2.2 Developing the E9 Level of Interconnect
diagram (Figure 3) by following the inter-

connect lattices on Figure 2. The inter- With the higher density of the presently avail-
connection of E6 units will decode efficiently able reac-only-memories, the complexity of the
up to about 24 bits (Table 4, Column 6 and 7). decoder can be increased. Again use the geo-

metric map of Figure 2 and merge two E6 Units
into one, thereby reducing the number of units
wsn ven required for decoding large binary numbers.
" R T I The new units will have nine inputs and nine
outputs (E9).

What is the criteria to merge these decoding
blocks? First, the newly merged units should
be compatible with available ROMs; and second,
the signal should flow without feed-back path.
(For example: If units 1-3 and units 2-5, are
merged there would be two forward signal paths,
7 1-2 and 3-5 and a feed-back path 2-3. 1In-
evitably a race condition will occur.)

A better choice is the merging of 1-2, 3-5,
etc. as shown on Figure 4 or as an alternate,
o J 1, 2-4, 3-5, etc. as shown on Figure 5. By
constructing the geometric map and the
1 wiring diagram for both combinations, note
that the complexity of both are identical
(Figures 5 and 7).

The 1-2, 4-7 approach has a slight advantage
since it can be expanded by three binary bits
whereas the 1, 2/4 combination can be expanded

24
by six bit:s only. On the other hand, as will
20 25 be seen later, the 1, 2/4 etc. is the better
and has higher decoding speed in the static mode.
o

combination to be used for the hybrid decoding
The look up table for both schemes is identical
with nine inputs and nine outputs. Some inef-
ficiencies are being introduced because some of
the decoders are not fully used. This can be

seen on tle interconnect pattern (Unit 1, 6, 15,
and 28 on Figure 7). The unused inputs of the

27

28

| S—) LB__J ITTJ o \TUJ e d Y
o T f50R ow R oo ” truncated units should be grounded or, as an
" 3 24 BIT BIN .
SECODLR. USIAG £6 UNets. DEVELOPED alternate, E6 Units should be used.

FROM THE GEOMETRIC INTERCONNECT MAP
FIGURE 3

BINARY INPUT

B{B|B ABNREBEE B[B[B
codie S
L]

P i

S]

\ e
N\

Ay |
[] [I R

N BIN/BCD CONVERSION WITH MERGED DECODERS (E9) (GROUPS 1/2, 3/5, 4/7, ETC)
— =% LInes DECODER NUMBE}R‘I%EII;EREHCED TO FIGURE 2

24 BIT

BCD QuTPUT

190

BINARY INPUT

B[B[B| B[B| BB B} B| B|B| B! B B| BB B| B
v 27f2e] 28]24| 20§22 Im"ﬂulllazn‘nlollll 2o
DN —

o

R

!
|
|
I
]

!

BCD OUTPUT
BIN/BCD CONVERSION MAP WITH MERGED (E9) DECODING BL(CKS

FIGURE S
DECODER NUMBZRS REFEFENCED TO FIGURE 2

247322 712019181716151412321110 98 18 8 43 2 o

e e— Fr ijT oot
[I

ol s

Foe | T |

Tl lﬁ JIUJ |

f[m I ez |

iy il L

T |

T i

gttt |

b b L e
T0M 1M 100K 10K 1K 100 "0 1

24 BIT I., 3 DECADES OQUT

EXPANSIOW OF FIGURE 4 HMAF 24 BITS IN; 8 DECADES OUT
GROUPING: 1,2/4, 7/11 etc.

*“OWLY 6 LEB, 3 MSB HOT USED EXPANSION OF FIGURE 5 MAP.

*OPTION:
LARGE SCALE BINARY/BCD UNIT # 1,5,1?,28 C[\b? BE
CONVERSION USING 16 E9 REPLACED BY E6 UNITS.
UNITS.C;;}{JéiN?3<7’ 7 N.U, = NOT USED
FIGURE 6

LARGE SCALE BINARY TO

BCD CONVERSION, USING
E9 UNITS
FIGURE 7

191

To develop the program for the E9 Units, obsarve
again the basic algorithm or refer to the map.
Unit No. 2 (E6) contains 40 words, by merging it
with Unit No. 4, three extra lines are added
which can have all possible combinations (eight).
Therefore, E9 will store & x 40 320 words. A
simple program will generate the look up table
for E9. By decoding with E9 blocks, the con-
version efficiency has been improved to over

30 bits.

2.3 Developing the E13 Level of Interconnect

Well, why not go further. An attempt to merge
three E6 Units will fail because of feed-back
paths. It is possible to merge four E6 units;
such as (1, 0, 0, 0), (2, 3, 4, 5), etc. and
come up with a 13 in,-13 out composite decoder
(E13) (Figures 8, 9 and 10). The problem, how-
ever, with this kind of arrangement is that

as of today, there are no commercially available
3.2K x 13 ROMs but PLAs (Programmable Logic
Array) can be built into this complexity. The
E13, can be used very efficiently in the hybrid
decoding scheme.

The most important factor of the static BIN/BCD
decoding is the conversion delay or the maximum
propagation delay through all the decoders. This
can be readily calculated from the interconnec-
tion diagram by simply counting the number of
decoding levels. Notice that the E9 conversion
for 24 bits with 1/2, 4/7 grouping (Figure 6)
has 12xtacc propagation delay where tace 1is

the access time of one unit. The same E9 cor-
version with 1, 2-4 efc. grouping (Figure 7! has
only 1OxtaCC delay.

Table 4 gives a composite picture of the perfor-
mance and cost effectiveness of the different
structures for up to 42 binary bits.

Columns 1, 6, 11, and 16 give the number of
building blocks required for a given number of
binary bits using the four configurations dis-
cussed. The next column gives a relative
efficiency figure or the number of bits con-
verted per building blocks. The ratio of onie,
considered arbitrarily as the limit of effi=
ciency, is reached at a higher number of bits for
large building blocks, so the design efficiency
is definitely increased. To establish an
approximate measure of the cost effectiveness,
all the pins which are connected will be

added up regardless of the package or configura-
tion used. Therefore, each E4 block

nas eight active pins; two pins for the power
and one for chip enable making a total of 11
pins connected.

For the EG6:
chip enable

12 active pins + 2 power pins + 1
total 15 pins connected

For the E9: Total 21 pins ccnnected

E13:

For the Total 29 pins connected.

192

The total number of interconnected pins in
Columns 4, 9, 14 and 19 have been shown. The
pin count gives an approximation of the overall
cost of the system (including the cost of hard-
ware and assembly), and the cost effective-
ness can be determined by comparing the "#

of Pin" columns. It emerges that the most
effective way of. decoding up to 24 bits is

by cascading E9's. Above 24 bits, the
effectiveness of the E9's are falling

behind the E13's, however, not to sharply.

Another conclusion is that the E13 becomes
cost effective over 36 bits.

Columns 3, 8, 13, and 18 give the worst case
conversion time for a unit delay of 50 ns.

For easy conversion to MOS devices, the figure
shown should be multiplied by 10.

3. PROGRAMMING THE BUILDING BLOCKS
To derive an algorithm for the programming of
the building blocks, again, make use of the

convers:ion maps.

3.1 Algorithm for the E6

To determine the input/output requirements of
the E6 building block, choose a random element
(#4) of the E6 map (Figure 2). Unit No. 4 has
three inputs from B-, Bg, and Bg. These inputs
can be n any one of eight combinations. The
most significant three inputs, however, are
already decoded and can assume only one out of
five combinations. As for the output lines, the 4
three least significant bits are decoded and .
will have five combinations, whereas the most
significant three have no restrictions.
Summarized below:

Input Code Output Code
MSH MSB
XX XXX XXX XXX
Mocd Mod Mod Mod

5 8 8 5

The totel number of memory locations required
will be: 5 x 8 40, and the input/output
codes can be calculated as follows:

Line Numbers: 0 to 39
Input Ccde: Convert the line number into a two o
digit number: modulo 5 for the higher and -
modulo & for the lower digit bv dividing
successively by 8 and 5. Then convert

the remainder into binary.

BINARY INPUT

8] Bl B|ep [e 8|} g8 [B 8] B] 3 FEAE) BRE
ol aalad ol s o

— -

2

18 BIT

. -
K §| \3\ y 3
s T s T
20/26 1925 { 18/24 F:uv/z; i 16722
1 ' !
H I

24 BIT |
: 4 [pa—
p \ i \3‘3 3
- h '
B 30/38 | 29/37
- 1 ! T
1T \ N \ NG
cone { [N
—— A oy
——— = 1 LINE
100 10 1
——— 3 LINES BCD OUTRUT

=====> 5 LIKES

MERGING TWO E$'S INTG ONE E13
— == 4 LINES FIGURE 8

BINARY INPUT

R P T
s
ko 1
L
12 miTs
8BTS
24 BITS
Y8, 100M oM, M 00K, 10K ' .
CcoDE Ko 1o 0.0 30 B17S
~m— = 1 LINE BED OUTPUT
25T) Cimes
——= 5 LINES MERGED E13 Map

B 4 LINBS FIGURE 9

BINARY INPUT

8 8 B
29 20 10 0
T |
— |
i
i |
2-3-4-5
!
il
6% [EEEIRE
9-10- 13-14 ||[16-17-22-23
5%]mfmfu-zs 29-30-37-38
! 20-21-26-27 |[{31-32-2-40
| 23-34-41-42
I
35-36-43-14 ‘ [
! 00k
[
T o vox
AT
T4

BCD OUTPUT

E6 UNITS.

WIRING DIAGRAM JEVELOPED FROM MAP OF FTGURE §
TIGURE

193

Output Code: Same, but the lower digit is

modulo and the higher, modulo 8.
Example:
Line: 19
Input Code:
19 + 8 = 2, remainder 3 -- . . -
235 =0, remainder 2 -- ‘DPuUt code: 25 34
010 011
Output Code:
19 -+ 5 = 3, remainder 4 -- .
3+ 8 = 04 remainder 3 - output code: 38 45
011 100

3.2 Algorithm for the E9

With similar reasoning, establish the following
input/output code relationships (Figure 5):

Input Code Output Code

MSB M5B

XXX XXX XXX XXX XXX XXX

Mod Mod Mod Mod Mod Mod
5 8 8 3 8 5

Total memory requirements: 8 x 8 x 5 320
(number of lines).

Convert line number into a three
digit number:
MOD 5, MOD 8,

Input Code:

MOD 8 (LSB).
Copggftfline number into a three
digit number:

Output Code:

MOD 8, MCD 8, MOD 5 (LSB).
Line: 177 !
Input Code: 25 68 18 = 010 110 001
Output Code: 48 38 25 = 100 011 010
3.3 Algorithm for the E13

The programming requirement for the E13 can be
established by the E13 conversion map (Figure 9)
and shown as follows:

Input Code Cutput Code

MSB

XXXX XXX XXX XXX MSB XXX XXXX XXX
Mod Mod Mod Mod Mod Mod Mod Mod
10 5 8 8 8 8 10 5

Total memory requirements: 10 x 5 x 8 x 8 - 3200

Input Code: Convert line number to four digit
composite modulo number: MOD 10,
MOD 5, MOD 8, MOD 3.

Output Code: Convert line number to four digit

composite modulo number: MOD 8§,
MOD 8, MOD 10, MOD 5.

194

Example:

Line: 3150

Input Code: 910 45 18 68 = (1001 100 001 110),
Qutput Ccde: 78 78 010 5

Using these algorithms, a simple computer pro-
gram can be generated to print out the complete
look-up table.

0, = (111 111 0000 000),

4. HYBRID CONVERSION

As it was stated before, the main advantage of
the static decoding is the speed of conversion,
which has been achieved with a high degree of
hardware complexity.

However, by compromising somewhat on speed, the
large decoder blocks can be put to another use.
If one remembers that the interconnection

scheme is a static implementation of the original
"decode and shift" method, then a relatively fast
converting scheme can be devised by using one

of the large blocks as a single decoder and gen-
eratinag shift signals by a small program or sub-
routine. Figure 11 shows an example. First go
back to the wiring diagram for E6 and establish
the shifting requirements by pointing an arrow
from the most significant bit of a decoder to

the most significant bit of the next higher level.
The number of interconnecting lines crossed by

an arrow is the number of shifts required for

the register (in the direction pointing by

the arrows). Note that the total number of left
shifts has to be equal to the total number of
right shifts, so a correction may be necessary

at the end of the conversion. From the shifting
schedule, a program can be generated either

by discre:e logic or as a subroutine to a higher
level program (Figure 12). This particular
example requires 24 clock pulses. Operating

at 10 MHz, the conversion would require 3us

as compared to 0.5us with the total static
approach. The conversion can be performed on

an accumu.ator without additional registers

DR R LI RURTRM

1 DECZODE

SHIFT LEFT 3

DECODE

~

SHIFT RIGHT 4

DECODE

SHIFT LEFT 7

DECODE

SHIFT RIGHT 4

DECODE

SHIFT RIGHT 4

DECODE

M
o
o)
i
b

SHIFT LEFT 2
10

TOTAL SHIFT LEFT :

I+ T7 42 12
TOTAL SHIFT RIGHT: 4 + 4 + 4 12

DEVELCPMENT OF THE HYBRID DECODING

METHOL FROM THE WIRING DIAGRAM

OF THE STATIC 12 BIT (E6) DECODING
FIGURE 11

therefore, this configuration requires minimum
hardware. The system is optimal where the ut-
most in speed 1is not required. Further re-
finement can be made by using a double (or
triple) decoder instead of the single one shown
in Figure 12. This would reduce the timing re-
quirements to 16 clock pulses or to 1.6us (at

10 MHz) but would require two decoders. The de-
coder which is not in use during a particular
program step would not be loaded into the regis-
ter. More improvement could be made by using
static shift registers such as AM2510 or by
cascading 54153's for single or multiple
shifting in one or both directions and from

then on the possible variations are limitless de-
pending on the ever conflicting requirements

for high speed and minimum hardware.

Table 5 gives the conversion times for hybrid
decoding using E6, &9, or E13 decoders in
single, double, and for the E9 in triple config-
uration. In mini-or micro-computer applications
the conversion can be made part of the main
program by storing the truth table in the main
memory and using part of the binary number as
the memory address. Note, that speed would not
be greatly affected even with machines with slow
instruction cycles, because the memory fetch
(decode and load) instruction is infrequent
compared to the shift sequence; and many comput-
ers can perform multiple shifting during one
instruction cycle.

Because of the extent of the
cussion is restricted to the Binary to BCD con-
version. Structures for the BCD/BIN conver-
sions have been developed simultaneously. The
E6 modules have a companion decoder, the E7 {7
BCD in; 7 BIN out) and E9 has an opposite, the
E11.

subject, the dis-

TABLE 5. CONVERSION TIME FOR EYBRID DECODING (iS$) {50 ns UNIT DELAY, 10 MHz SHIFT CLACK)

[BE] Ts]]g

DECODER £4 26 E9
DOUBLE| TRIPLE| SINGLE

COLUMN 3 2 I3 4 5) [

E13

METHOD SINGLE DOUBLE}TRIPLE £ INGLE{ DOUBLE(SINGLE POUBLE

NO OF PINS 11 22]33 15 30 2" 42 63] 29 58

12 7.2 2.4 1.6 F) 1.6 16 1 16

15 £.6 6.0 3.9 0.1 2.4 |

6.4 i 4.5 7.6

11 25+

u;As‘s 42+
K

*BY EXTRAPOLATION

5. BCD/BINARY DECODING USING BINARY/BCD DECOIER
IN THE "FEED-BACK" MODE

BCD/Binary decoding can be accomplished by

significant bit of R1 is set to zero. Decode

and compare again. If R1 is still high, set the
next most signficiant bit to zero and set the
previous bit to one and continue until the last
bit, or until R1 = Ro. Figure 12 gives the
schematic and the algorithm of this approximation
method. The setting and resetting of the
successive bits are accomplished either by a

ring counter or a shift register with a one
rippling through, as shown in Figure 13.

6. CONCLUSION

A BIN/BCD conversion methcd has been developed
which lands itself to unlimited expansion by
using the geometrical similarity of inter-
connecting maps. Properly designed, the maps
then contain all the necessary information to
determine the size, the content, and the ac-
tual wiring of the decoding ROMs. Wiring
diagrams were used to develop the hybrid con-
version scheme. Conversion systems for prac-
tically any speed or size can be designed by
using either the static or the hybrid method.
This scheme 1is not limited to binary/BCD con-
version, but can be extended to other types
of convarsion as well, such as, synchro/BCD,
etc.

7. REFERENCES

1)

Couleur, J.F., A Binary to Decimal or Decimal
to Binary Converter, IRE Transaction on

Electronic Computers, EC-7, No. 4, 1958,
p. 373.
2) Benecek, Z.M. and Moskowitz, B., Convert

Binary to BCD Withcout Flip-Flops, Electronic
Design, October 10, 7968, p. 58.

3) Linford, John, Code Conversion with Semi-
conductor Read Only Memories, Motorcla

Application Note, No. 506.

assigning an arbitrary value to a binary register,

converting the content of this register to BCD,
comparing it to the original BCD number, and
correcting the binary register until the two BCD
numbers are equal. This method is essentially

a successive approximation scheme, and works

as follows (Figure 13).

R1 register holds the binary number. Rx is &

static binary to BCD decoder and Ro register holds

the BCD number to be converted to binary. Start
by setting R1 to all ones. After decoding the
content of R1, compare it to Ro. If R1> Ro,

the most
195

EX.

INPUT: 2967

000701110616111
]

START

PEOGRAN STEPS

START
JECODE

LOA

SHIFT LEFT 3
DBECIDE

LOAD

SHI T RIGHT d
DECHDE

LOAL

SFIFT LEPT 7

HYBRID (STATIC/DYNAMIC)

DECODE

LCAD

SHIIT RIGHT 4

CECCOE

LOAL

SHIFT RISHT 4
DECDE

Lo

SHIFT LEFT 2, END

—-E' RIGHT/LEFT SHIFT/
PARALLEL LU CIR-
CULATING REGISTER
& LEF
0 fajo [Brg|ByByglBg|Bg By BglBs By |By|B,in, HIFT LEFT
SHIFT RIGHT
LOAD SIX BITS
E6

IN TIAL CONDITION: REGISTER
COHTAINS 72 BINARY ‘BITS WITH
3 LEADING 2EROS

PROGRAM FOR DECODING 12 BITS
CLK PULSES

1) DECODE: LOAD

2) SHIFT LEFT 3 3

3} DECODE: LOAD

4) SHIFT RIGHT 4 4

S} DECODE: LOAD

6} SHIPT LEFT 7 7

7] DECODE: LOAD

Bl SHIFT RIGHT 4 4

9) DECODE: LOAD

10) SHIFT RIGHT 4 4

11) DECODE: LOAN

12) SHIFT LEFT 2 2
TOTALS 24

DACODING FOR
TVIMUM HARDWARE WITH E6
FIGURE

K K+1 STAGE
SHIFT REGISTER
TO GENERATE
SAMPLING PULSES
FOR SUCCESSIVE
APPROX IMATION
HIGH ENABLE R/S REG. K DINARY BITS
DECODED
By o= +E. el BTN 7BCD
N N+l DECODER R,
ISTATIC)
.._I BIN < BCD (LOW)
Eomammn VEN -
— IN >BCD (HIGH)
BC-D——'IQ BE CL‘VN—
VERTED TO
BINARY
CONVIRSTON ALGORITHM s REG.
SET Ry TO ALL ONE 6001770701
COSVERT TO BCD: COMPARE:
Ry = HI 3 milh 5 10
SI\XFT RIGHT R,
COWVERT; COMPRRE; R, = WIGH; Bye— s Rt
SHIFT RIGHT Rg o
REPEAT 2 R; = LOW; B, = 1; Bya~0 oy
REPEAT 3
REPEAT 2 Ry = HIGH: B 0 Py
REPEAT 3
REPEAT 2 B_w- 0 Ak i
REPEAT 3
REPEAT 2 R, = LOW: B, = 1 By 0 F Pr!
REPEAT 2 iR,
BCD/BIN CONVERSION BY SUCCESSIVEH APPROXIMATION USiNG BIN/BC) CONVERTERS

FIGURE 13

196

