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Abstract-The methods of significance arithmetic are
applied to the numerical solution of a nonlinear par-
tial differential equation. Our approach permits the
use of initial values having imprecision considerably
greater than that of rounding error; moreover, the
intermediate and final quantities are monitored so
that at any stage the precision of such quantities is
available. An algorithm is found that represents
faithfully the solution to a difference equation ap-
proximation to Burgers' equation.

Introduction

Computational problems in the natural sciences
have relatively low precision input data compared to
that implied by the standard word length of a large
(binary) computer. Moreover, numerical quantities are
represented in the so-called normalized format with
the leading digit on the extreme left of the represen-
tation of the fractional part along with correspond-
ing associated (integer) exponent. The fractional
part of a quantity may be shifted one or more places
to the right with a corresponding increase in the
exponent; this operation, called adjustment, leads to
an equivalent, unnormalized, representation provided
no meaningful bits of the fractional part are truncat-
ed on the right. This simple observation provides a
degree of freedom in the representation that may be
utilized to display the number of significant digits
in a quantity.

Obviously the associated arithmetic processor of
unnormalized quantities is not of conventional de-
sign wherein the result of the fundamental operations
of addition (sub*raction), multiplication or division
is in normalized form. Rather, the processor must
recognize the number of significant digits in each of
the two input operands and produce a result with the
appropriate significance. This approach is described
as significance arithmetic (SA). The assumpticn is
made that the inputs have statistically independent
errors. In the course of a computation, correlations
of errors can occur; such correlations must be taken
into account, otherwise the actual number of signifi-
cant digits in the final result may differ from the
apparent number based on the unnormalized representa-
tion.
matically equivalent may not be computationally equi-
valent if one algorithm properly adjusts for error

“correlation and the other does not.

The analysis of error propagation is a central
issue in achieving a reliable algorithm. Fortunately,
a technique is available that is able to localize
correlations if they occur. This is the method of
reduced precision [1] and is described in the sequel.

A reliable algorithm must not depend on the mag-
nitude or precision of the input quantities that occur
in problems of the natural sciences. Moreover, the
interpretation of the results must be consistent with
that derived from the following statistical considera-
tions. (i) For each imprecise input, select a precise
sample from an appropriate distribution, say, uniform
over some appropriate interval. (ii) Execute a mathe-
matically equivalent algorithm using normalized arith-
metic; select another set of inputs from the same dis-
tributions and repeat the calculation. (iii) These
repetitions lead to a distribution in each of the out-
put quantities, whose expected value and standard
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That is to say, two algorithms that are mathe-

deviation should agree with the approach above.

Algorithms based on significance arithmetic have
been developed for linear recurrence relations, matrix
inversion, least squares approximations and other
problems [2], [3], [6].

In the present work we describe an algorithm for
the numerical integration of a relatively simple, non-
linear partial differential equation in time and in
one space variable, namely, Burgers' equation. We be-
lieve that the techniques developed are new and of
general applicability. To provide the reader with some
measure of the complexity involved, we also describe a
much more simple sub-algorithm used in the integration
scheme, specifically, the summation of a set of numeri-
cal quantities of disparate magnitudes and precisions.
MANIAC II has been used; the arithmetic, as well as
convenient input-output operations, are available as
part of the high-level programming language, MADCAP [7].

Notation and Arithmetic Rules
1. Some notation and adjustment rules are briefly re-
called {4]}. Let an imprecise quantity be represented
as x = 2°.f where the fractional part f satisfies
-1 < £ < 1 and exponent e is an integer. It is con-
venient to write x = (e,f,s) where s is the number of
significant digits of x defined by s =

[IOgZ(R/éx)]Tound; x is the expected value of x and
8x the probable error.

Rounding is to the nearest in-

teger. (Exact quantities that can be precisely repre-
sented are treated in a distinguished manner [5].)
Given two input vperands x, = (e,,f ,s;) and
X, = (e,,f,,5,) the result of addition (subtraction) is
X, = (ea,fa,sa) where the adjustment rule is determined
by
e, = max(e,,e,).

For multiplication and division, the adjustment rule
is specified by
s, = mln(sl,sz).

In practice the numerical quantity x = (e,f,s) is
represented in a computer by the following convention:
The fractional part is adjusted so that its least sig-
nificant digit resides in some bit position, say k,
(counting from the left) near the right hand side of
the format. The choice of k is at the option of the
programmer and is consistent with the most significant
quantity (apart from exact quantities) occurring in the
input. Thus all fractional parts of the input are
lined up on the right, rather than on the left as in
normalized arithmetic. By convention, the number of
significant digits in a quantity is that implied by its
representation of the fractional part and consists of
the digits from the k-th stage and to the left inclu-
sively. In the sequel, it is assumed that all quanti-
ties are represented in this format.

As we shall see presently, this number of signifi-
cant digits may differ from the true significance
owing to the effects of correlated error. Deviations
can be either positive or negative.

2. Consider a simple example of two mathematically
equivalent sequences that can be computationally dif-
ferent. Let x; = a(b - ¢) and x, = ab - ac, where
a,b,c are imprecise quantities and s, < sy = sc and fy,
is very nearly equal to f.. It is easy to see that
Sx, < Sx, owing to the correlation of errors in ab and
ac, It turns out that the number of significant dig-
its in x, is actually greater than that implied by the




representation and that x;, is an accurate representa-
tion of the significance.

3. The problem of summing a set of imprecise numbers
requires attention to several details if a reliable
estimate of the error is to be given. Let the members
of the set have arbitrary magnitudes and precisions,
The proper algorithm is

(1) arrange the set in a monotone non-decreasing se-
quence according to exponents;
(ii) add all the terms using significance arithmetic;
(iii) let n; be the number of terms having exponent
7, jmin <j < jmax’ where Jmin>Jimax are the
smallest and largest values respectively, and let
05 = Jmax = 13
Imax -20
(iv) form T = . n;2 J. Finally T = [% log,T]
=) i

in
is the number of shifts to the right imposed on
the sum formed above.

The Method of Reduced Precision

If all intermediate quantities in an algorithm
were free of the propagative effects of the inherent
errors in the input quantities, the adjustment rules
for significance arithmetic would often provide re-
liable estimates of the errors in the output quanti-
ties. In all but the simplest algorithms, errors are
correlated in a complicated manner and one must make a
series of numerical experiments to localize the point
in the sequence of arithmetical instructions where
correlations arise and then attempt appropriate
adjustments.

The method of reduced precision (MRP) consists of

(1) make a first run with the proposed algorithm
using the given (imprecise) data;

(1i) select a stage several places to the left of the
k-th stage, call it k';

(iii) perturb the digits to the right of k' by means
of random digits, uniformly distributed;

(iv) repeat the complete calculation with these per-
turbed inputs;

(v) for each output quantity, Yis form the absolute
magnitude |yj(k') - ~(k)] defined as ij and
note the position of %he leading digit in the
fractional part of Ay;;

(vi) repeat steps (iii)--(V) to obtain a distribution

of leading digits of the ij for each output
quantity,

If these distributions are clustered about the
position immediately to the right of k', then the
original run provides a reliable estimate of the
errors in the output and the algorithm and the repre-
sentation is said to be faithful. On the other hand,
the maximum of the distribution may be to the right,
in which case more digits are meaningful than is im-
plied by the representation of the original output;
such an algorithm is conservative. Finally, the peak
of the distribution may reside to the left in which
case the representation of an output quantity over-
estimates the number of significant digits and the
algorithm is liberal with respect to that output. The
misrepresented digits shall be called conservative and
liberal digits in the two cases.

In a complicated algorithm the results of (MRP)
may not provide sufficient clues to pinpoint the
sources leading to liberal or conservative algorithms.
The technique is then applied in an obvious manner to
intermediate quantities at various levels of bisection.

Burgers' Equation
1. We consider a difference equation that approximates
the solution to Burgers' equation
u, +uu - € = 1
t X Y 0 (1)
where u is the velocity, the usual notation for partial
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derivatives is adopted, and € is the diffusivity of
sound. Eq. (1) is the simplest equation combining both
nonlinear propagation and diffusive effects and is

often used as a model for one-dimensional time-dependent
Navier-Stokes equations. To first order, it approxi-
mates the motion of a plane wave of small but finite
amplitude.

Our aim is to discretize Eq. (1), to numerically
integrate the difference equation with initial and
boundary conditions using rather imprecise data, and to
specify the corresponding errors in the solution. (The
procedure is sometimes called sensitivity analysis.)
Because of their simpler structure, we limit the dis-
cussion to explicit difference schemes.

Several different forms were investigated; all
were discarded except for the simplest, specifically,

n+l n At€ n n._n At - . n n

; = uj+Z;7(uj+l—2uj+uj_l)- §Z§'utuj+l_uj—l) (2)
where u = (u?+1+un+u?_1)/3 and At, Ax are time and
space intervals r%spectively. These intervals are deter-
mined from a classical stability analysis due to von
Neumann. A variety of initial and boundary conditions
have been used, the most prominent being a smooth shock
wave with fixed boundary values. The number of spatial
mesh points was 60. A typical set of initial values
are shown in Table 1. As is well known, the solution
to Burgers' equation is approximately a wave traveling
to the right with velocity .

ug,ud,...ud = 1,000, u = .9500, u? = .5000

ug = 05000, ug,ul,,...ud, = 1.0000 x 107%

and u} = 1.0000, ul = 1.0000 x 107!! for all n,

€ .010000

Table 1. Initial values base 10 where all digits shown
are treated as significant. Several sets correspond-
ing to varying precisions were used.

The method of reduced precision (MRP) was applied
to an integration over 25 cycles using 16 random sam-
ples of perturbations. MANIAC IT has 44 bits in the
fractional part; typically k=35 and k'=29. Using
straightforward coding implied by Eq. (2) and (SA), one
found the values of u in the shock region were all
liberal in the sense described above, with the number
of liberal digits varying from 1 to 5 and back to 1 in
a bell-shaped contour across the shock. The region
behind as well as considerably in front of the shock
gave faithful results.

2. A useful interpretation of unnormalized representa-
tion. It is instructive to view the fractional part
and the associated exponent of a numerical quantity x
in (SA) in terms of information-theoretical concepts.
The fractional part which carries a specification of
the significant digits provides a measure of the in-
formation content. On the other hand the exponent,
which has been adjusted so that the least significant
digit of fx resides in a fixed position k, gives a
direct measure of the error in x. If the value u; at
some mesh point j suffers a relatively large change in
one cycle, the effect appears either as a substantial
change in  the fractional part f or as an increase in
the exponent e or both. From an information-theoretic
point of view, an increase in £ should not be permitted
generally.

Guided by these considerations, we examined
whether an increase in the number of significant digits
s at any point j occurred after each cycle. If an in-
crease did occur, the exponent was examined for any
change; if not, uj was adjusted As places to the right,
where As > 0 is tﬂe observed change in one cycle. This
shift is in the direction to reduce the observed
liberal representation in the shock region. More spe-
cifically, if Ae; > 0 is the change in exponent of u;
at a given point”in one cycle, then we require that




Aej - Asj =1 (3)

for each j. If this is violated, step-by-step adjust-
ment to the right is made until it is eventually satis-
fied. The criterion specified by (3) gave faithful
representations in the region of the shock. Usually
Ae = 0,1 with larger values less frequently; a similar
behavior was found for As.

3. Shock precursor. Initially, mesh points from 9 to
60 (cf. Table 1) have u-values essentially at zero.
These quiescent points are excited in turn, one at
each cycle beginning with point 9. Although the first
non-trivial change at such mesh points is small in mag-
nitude, about .02, the relative change is large. As a
consequence of the large assumed precision initially
present in the quiescent region, a certain amount of
liberality gradually develops there. However by the
time the shock reaches these points, the transient
effect disappears. It was predicted that this initial
rise in liberality would not occur if the assumed pre-
cision of the quiescent points was decreased; this be-
havior was verified.

4. Near equilibrium. After a shock passes through a
region, the corresponding mesh points are essentially
in equilibrium with each other. As they continue to
be processed, their values approach each other to the
extent that conservative digits appear. This effect
arises because of the fact that the insignificant (and
initially random) digits beyond the kth stage are
handled by the computer as though they were meaning-
ful; hence a certain convergence occurs, as might be
expected under these circumstances. One easily avoids
this convergence by precluding any memory of the random
digits to persist.

Concluding Remarks
The present study is the first application of sig-
nificance arithmetic to any differential equation.
Much more remains to be done in this study of Burgers'
equation. One is also encouraged that the present
techniques and experience can be extended to other dif-
ferential equations.
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