FLOATING-POINT COMPUTATION OF FUNCTIONS WITH
MAXIMUM ACCURACY

Gerd Bohlender
Institut flir Angewandte Mathematik der Universitit

D-75 Karlsruhe
12

West Germany

Kaiserstr.

Summary: Algorithms are given which compute multiple
sums and products and arbitray roots of floating-
point numbers with maximum accuracy. The summation
algorithm can be applied to compute scalar products,
matrix products, etc. For all these functions, simole
error formulas and the smallest floating-point inter-

vals containing the exact result can be obtained.

0. _Introductigl

Our aim is to approximate functions f: R" — RP on

a floating point system T. For b,]EIN, b2, > 1,

the floating-point system Tb 1 with base b and 1-d°-
git mantissa is defined by

T, yi={ohu {x= smb®;

b, *E

yohy m=o.m[1]...m[1],

miil={o,1,...,b-1},ml1l%0, e= 7).

x is then called a floating-point number with sign % =
sgn(x), mantissa m=mant(x) and exponent e=exp(x). As
the base b will be kept fixed throughout the paper,

we will suppress the index b and write shortly T1 or
T. For the present, we do not consider the finite
exponent range whick is available in practice, as
this would necessitate complicated exponent-overflow
and -underflow discussions. Instead, we give remarks
on the influence of limiting the exponent range on
our algorithms.

The best possible approximation for f(x) is Of(x),
wherein O IR,P - 1 denotes a rounding®). We will
restrict ourselves here to the roundings ¥V, & and
Du (k=0(1)b). For p=1 these roundings are defined as
follows:

,/\Vx :

=max{y eT;y < x}, (2)
XER -
/\Ax:=m1’n{yeT;x <y} = -V (-x), (3)
x &R
//\Dbx = Uxn /\ O, xi= &x, (4)
X20 X <0

*) As regargs general definitions, we refer to
Kulisch

14

/\D x:=Qx " /\D Xi=Vx o,

X>0 X<o

and for p=1(1)b-1:

/No.

¥ x for xe [Vx,Su(x))

X220 u Ax for xE[Su(x),Ax]
/\ O, = -0 (%), (6)
X<0 H

wherein the function SU: R —R is defined by

= - E
Su(x).- Vx+ (A x-Tx) B -

T and & are calle
rounding resp., Db is called rounding towards zero

and DO If b is an
even number, 'chen()::Db/2 is the rounding to the

downwardly and upwardly directed
is called rounding away from zero.

closest floating-point number.
V,H and Du

For p > 1 the roundings
(u=0(1)b) are defined componentwise.

With these roundings,[V f(x),Af(x)] is the smallest
floating-point interval containing f(x); and if b is
even, then Db/zf(x) is an approximation of f(x) with
maximum accuracy. So the computation of interval
bounds for f(x) and the computation of optimal approxi-
mations of f(x) can be substituted by the more general
task of computing Of(x) for all DE{V,A,DU(LF
o(1)b)}. For these approximations O f(x) of f(x), the
following theorem can be proved, simply by applying
the properties of the roundings ¥, A and D that
are studied by Kulisch 9,

For a function f: R" —RP and a floating-
point/xstem T:}Q] the following properties hold:
\

@/ \ (f(x) =" =OF(x)=F(x)),
xR" 0=(v,4,0)

b f(x) < Fly) =0f(x) < Of(y)),
()x,yelR”D-_-{V,A,D }((x) < fly) (x) £ Of(y))
u
)/ \, /\ (F(-x)=-F(x)=0f(-x)=-O (x)),
x<IR DE{DU;u=o(1)b}
(F(-x)=-F(x) = DF(-x)=-DBF(x) A
x=R A~ DFf(-x) =TF(x)) ,

ASRVAN

/ [F(x)-Of(x)|<e*.
xR De{V,A,DU} =

(x) 1

wherein absolute values are defined componentwise

and
LT Se b s even and O = O
) . b/2
b1 else
©) -IR{\NRP /ﬂ;‘\m {é h,o et =
ST A RSV S. B b x) cogin)

Remark: If the exponent range is limited by el,e2=1Z,
then property (d) is only valid if no exponent - over-
flow and -underflow occur, i.e, if [f(x)! a[bEI_l,
(1-b™1)p&23P,

As we want to execute the function f on a floating-
point system T, only arguments:<E'Tn have to be consi-
dered. The task of computing O f(x) for all
DE{V,A,DU (u=0(1)b)} and all x=T" was solved
by Kulisch 6 and Yohe 13 for the arithmetic opera-
tions +,-,+,/ and by Kulisch and Bohlender 7 for the
sum of n floating-point numbers as well as for the
scalar product. Yohe 12 finally gave a modification
of Newton's method which allows the computation of
Vvx and O&vX in the special case b=2.

In the present paper, algorithms shall be proposed
. n n

for the functions ¢ x., 11 X,

i=1 4=l]

x €T, and for functions that are derived from the

/X, wherein x; €T,

sum.

Several algorithms for improving accuracy in floa-

ting-point summation are known (e.g. Kahan 4, Linz 8,
Malcolm 2, Pichat 10y,
intended to deliver rasults with maximum accuracy,

But these algorithms are not
smallest interval bounds, and the properties of
theorem 1. The algorithm of Kulisch and Bohlender 7
sorts the numbers x; according to their exponent. For
large n this consumes much time, as the time for sor-
ting n numbers is at least proportional to n 'ﬁogth.
The algorithm in the present paper is based on the

one of Pichat 10; it manages without sorting.

For the computation of roots of floating-point num-
bers, a modification of Newton's method is used whicn
determines - under appropriate assumptions - the
smallest floating-point interval containing the zero
of a function. This method is applied on the poly-
nomial x"-a. In the case b=n=2 it is equivalent with
the algorithm of Yohe 1z,

1. The sum of n floating-point numbers

For the computation of the sum ;

'i=1 n

point numbers X5, We need not determine 31 X In-
i=1

stead, we can compute a simpler approximation

————

IX with the property

i=1 '

\\ n n ,
Gz x; = Oz x..(7)

(x;)sT DE{V,A,DU(LFO(].))J)}T 1 i

We will give an algorithm that computes such an appro-
ximation; &lgorithms for the roundings (7,15,[3U
(u=0(1)b) can be found in Kulisch 6,

n
Oz x: of n floating-

In the following lemmas, we introduce the notation and
the iteration method which will be needed in the summa-
tion algorithm.

Let us first define a binary relation £ on

L
Tb = %:{Tb,1

/A\ (xdy <= x=0v y=ovyeT - } (8)
xoy<T,* exp(y)-exp(x)
x4y means that y=o or all digits of x have smaller
exponents than all nonzero digits of y.

Lemma 1: Let T=Tb,1 be a floating-point system and
O: IR =T the rounding to the closest floating-point
number. Then for all x,y=T the foi]owing properties
hold:

(a) s=0(x +y)eT,

ri=(x +y) - seT,

(b) rds,

(¢) (z4x ~zdy =z4dr~ z24s) ,
zeT

(d) (x4 zv y4z =r<z) .
zeT

Proof: If x=0 or y=o0, then r=o0. So (a),(b),(c),(d) are

fulfilled. Else we define d:=exp(x)-exp(y) and assume
without loss of generality that d>o.

Case 1: d >1 =>s=x = r=y == (a),{b),(c),(d).
Case 2: d<1 ~Ax +y =0 =>s=r=0 = (a),(b),(c),(d).

Case 3: d<1Ax+y 0 =>x +yeTb,2]\{o} =

=>x +y = »0.m[1]...m[21] < b€, with = {+,-},

mli] ={0,1,...,b-1},m[1] 4% 0, e=2Z. Then s and r ful-

fil one of the following two properties:

(@) s = mo.n1]...m(1]+ b€, r = xo.m(1+1]...m(211- b,

(8) s *(o.m[l]...m[]]+b"]) b€, r = x(o.m[1+11...
m211-1) « b8

Therein r and s may be denormalized and r may even be

0. In both cases, (a) and (b) are evidents (c) follows
from

z4x A zdy =z x + y3
(d) finally follows from

r =0 v exp(r) < min{exp(x),exp(y)). [

Writing shortly (s,r) := x +y for s :=O(x + y),
ri=(x +y)-s, we can now formulate the iteration
method which is the basis of our summation algorithm.

Lemma 2: Let T=Tb 1 be a floating-point system. Star-

ting with x(o) E'Th, a sequence (x(k))

RUREGIOR

by
s, = xiK)

1 3
k+1 k
(sp+1,xp(Ny - sp-+xé+i, p=1(1)n-1,k=0,1,2,... (9)

(k) " k=0,1,2,...,"
s Xp YeT' is recursively defined

1
\
|
|
|
L
|
|
‘r

S
)(n = Sn ’

wherein s T are auxiliary variables.

Then the sequence (X(k))k=0 1.2 has the fo lowing

properties:

@/\ 0D e
ke i=1 ! j=1 1

VAN AN T C S PR
kel i,j€{l,...,n} J

Proof: (a) is an immediate consequence of lemma 1,(a).
(b) is proved by induction over k. It is trivial for
k=0, sc let us assume that it is valid for any k=IN.

Case 1: If k 2 n-1, then x$k+l)=xgk) (1=1(1)n), so (b)
is proved.

Case 2: If k < n-1, then xgk) 4 xgk) whenever
n-kgi<j<n. For p=n-k-1(1)n, the following properties
can again be proved inductively:

(k+1) g (k+1)

n-k-l<i<j<p-1 =X j > (10)
n-k-1<igp-1 =$’X§k+1)(5, (11)
n-k-1<igp-1, p+lgign =%>xgk+1)4 ng)’ (12)
plci<ign =£>x$k>< xgk) (13)

Properties (10),(11),(12) are clear for p=n-k-} and
property (13) is clear for all p=n-k-1(1)n. So let
(10),(11),(12) be valid for any p €{n-k-1,...,n-1};
then (10),(11),(12) can be proved for p+l as follows:
@ .02 = /\ k)

45 A
n-k-1gicp-1 !

N

~xlkel) gy () o g
! P10 nekelgigp-1 p+l

ARy /\ (e
P 11.(b),(d) n-k-1<igp P

N

~ kg xék+1)) = (10),(11) for p+l .

(10)
/\ (1) 4000

8) (13) = //\\ (k)4 x(k)
(B) (13) o1 ™% 11.(d) pr2gicn P

p+2gizn
=> (1Z) for p+l .
(12)
Therefore (10),(11),(12) are valid for all p=n-k-1(1)n.
In the case p=n we get from (10) and (11):

n-(k+l)gi<jsn == x$k+1)4 x§k+l),
which concludes the induction step over k. Thus (b) is
proved for all keN. []
In algorithm 1, the method from lemma 1 is applied in
Tb,21 on the computation of the sum of n double-
length floating-point numbers. Some modifications are
made: the index t takes the role of n-k in property

(b) of the lemma; zeros are eliminated; the iteration

16

is stopped, if the result can be determined from the
summands easily.

EEE%ZE]

= }

falso

mant (x,)b3¢3 157 (141) § mant (x) 2
8 :x Dt rax) | Qm b ! ! X

[ss 23] 3 i3 xpesgnlag b 2R o
FETRTEICINY S— é ()

ss 1= a<ss<»x;) '

exp(ss) e)@()sl)vsy.(ss) { sgx) v
v (mant(s5)0241) § Iranc(x.) » B1#3] 2

D=0

[

ep(ss) $ explxy) vsgnlss) § sgnixg) v true
v {mant(ss)bl+1] lm.r.t(xnibg“ﬂ 4

+
()

Algorithm 1: Sum of n floating-point numbers

Theorem 2: Let T Tb 1
(i»(l)n) n double-length floating-point num-

be a floating-point system and
X =Ty
bers. Then algorithm 1 determines an approximation

of
;

x1 ETZ]

A

\
x]) et

X3 with the property

:2
[=1

1

0y O=(9.4,0 (u=o(1)b)} i

Furthermore the following properties hold:

w /N /x (7 xeT
0=(v,5,0) i1

n
n =071 x; =
(x3) €Toy

i=1

A
m

N . .
wherein ¢ is defined as in theorem 1.

Proof: As we have seen in lemma 2, the sum of the X;
does not change and they are gradually ordered wrt.
the relation < . Therefore the iteration stops after

at most n-1 steps.

Case 1: If the algorithm stops because ngl, then (a)

is trivially fulfilled.
Case 2: If the algorithm stops because t=o, then all
x; are ordered according to £ and the greatest summand
Xn is the result s, unless the last 1-1 digits of Xq

=21

are all zero. In this case, b has to be added to or

subtracted from the mantissa of x,, to take account of
the influence of x _, on the result.
Case 3: If the algorithm stops because the summands

have no significant influence on x_,i.e.

XqgeeosX

1’ *“n-1 n
if they cannot change sign, exponent and first 1+1
digits of X then Xn is the result s.
The properties (b),(c),(d),(e) follow immediately from

theorem 1. n

Bemarks:

€2 =

1) In nearly all cases, the result is precise
enough after the first pass; so no iteration occurs.
Therefore the execution time is roughly proportional

to n.
2) If the exponents of the x; eTb 21 (i=1(1)n) are
bounded by constants el,e2, i.e. if
//\\ exp(xi) e{el,el+l,...,e?},
i=1{1)n - _
then an exponent range {el,...,e2}, el := el-2:1+1,

e2 - f]ogb(n)1 , is needed for intermediate re-
sults in X5 and for s.
This can be achieved by first decomposing the input

data x; into signed mantissas m and integer exponents

es.
i

3) Let Xi’yiE.Tb 1 (i=1(1)n) be floating-point num-
bers. By applying algorithm 1 on the products

Yy eTb 2],the scalar product []z X5+ ¥y can be
=1

vomputed for all roundings Oe{V, A 0 (
As matrix products and linear mappings

o(1)b)}.
are component-
wise defined as scalar products, we can compute the
following functions:

TnXTns(x,y)»——>D(X°y)eT {scalar product),

TanXTan xn

=5(A,B)=>0(A«B)eT™™" (matrix product),

™Mayx >0 (C- x + ¢)eT"(linear mapping),

. xn
wherein Ce "

cs 1"

is a fixed floating-point matrix and
a fixed floating-point vector.

Griiner 2 applied these functions on several matrix
inversion algorithms and got error bounds that are
better than those for single precision computation by
a factor of about n. Furthermose these error bounds
are valid in all cases, whereas for single precision
computation (as well as for ordinary double preci-

sion computation) additional assumptions are needed.

4) Algorithm 1 was intended mainly for the computa-
tion of scalar products. Some storage space is
wasted, if only the sum of n single-precision floa-
ting-point numbers X; =T is needed. This could be
avoided on the cost of more complicated termination

criteria.

As matrix multiplication is the most interesting
application of algorithm 1, we want to mention some
properties that were proved by Kulisch and Bohlender /
in abstract spaces. In the context of the present pa-
per, these properties follow immediately from theorem

2.

Theorem 3: Let T= Tb 1 be a floating-point system and

Tn n

The floating-point matrix operations

the set of nxn-matrices with components in T.

. TN SIXN L onXn X . . _
@7 T > T are defined by executed exactly, multiple application of this inequa-

/\\ ABB := O(A=B), *E{*s“a'}DE{V,A,DU}. tion delivers

nxn n .
hBeT Iyl < 1 x| < ippi/(1-b7 (17172
Then the following properties hold for all *€{+,-,+}: =1 -
(a) 7 - (A*BETnX”;»AB - AxB), Using]?czernouﬂi's inequation and the assumption
ABE oe {VA, o) n<b®'"¢, we find Tike Wilkinson 11:
(b) \ (A%B<C*D = A@B < C@D), L -(21-1)\n-2 O o (21-1)4d
a6,0,0s" " 019,08} C ¥ b/(1-b Jooets T (n2gh)<
(c) /\nxn /\ ((-MED(-B) = -AEIB ~ <14 2(n2)p (@D
ABeT O E{Du(uw(l)b)} =)
~ (-A)EB = AB(-B) = -AlB), Therefore, the following interval I€TR contains the
L Nl RIDB) = BB ACNIA(E) aage S Proce 21o1)
& I . oynm(21-
N (BB = AR(-B) = -ADE A |1Elx-j‘ €1:= sz‘:lpz‘ (1+2(n-2)b)1 (17)

~ (-AYAB = AL (-B) = -AV B),
With these preparations, the lemma can be proved as
(d) [A*B - A@B|<c*|AxB].

D‘E{V,A,Du} follows:
(16) => (0.ml11...m[1+1] <m~0.m[11...m[T+10+ b~

> me(e2(m2)b BTy 1 AT, =0 = (14). m
’ (17)

i
ABeTTT

(1+1),

2. The product of n fioating-point numbers

If xieTbJ (i=1(1)n) are floating-point numbers, As it is convenient to treat signs, exponents and

then their product can be computed exactly in rb,n-1 mantissas of the flcating-point numbers X separately,

and rounded afterwards. But this computation reguires we introduce the following notations:

n+(n-1)/2 multiplications of single-length m%n'tissas.
Therefore we will replace the exact result I X; by (a) sp=i+l,-1},mp=c.mpl[ll...mp[1+2],ep=Z are
T~ i=1 variables for the sign, mantissa and exponent of

x.ETb 21 and re- the product p resp.; the last digit mp[1+2] of

a double-length approximation i

1'

[[e §

1

n
turn to using 1 X only if this double-length re-
i=1

mp may be a dual digit which indicates whether
the result is truncated (mp[{1+42] =1) or exact

sult turns out to be too inaccurate. The following (mp[1+2}=0).

lemma gives a criterion for the property (b) m, = m fol. mi[l]...miﬂ], i=1(1)n, are auxiliary
R — . . P
i \ D,?T x; = D.H X . (14) vax.ﬂables with & carry d1.g1t mi[o]; ma,mb,mc,md.

DE{V,A,DU; i=1 i=1 alike. m=0.m[11...m[21] is a double length mantis-
Lemma 3: Let T=T) 1 be a floating-point system, *
2§n§b2]'2 and x; E’T (i=1(1)n) floating-point numbers. (c) m:=my xm, denotes the exact double-length product
With the downwardly directed rounﬂ%ug_/vz]: R - Tb..21 of the mantissas my and m;, provided that neither
from (2), an approximation p, i= I x; can be de- ' mj nor m; has a carry.
fined by 1=l (d) (ma,mb):=m denotes the decomposition of the doub-

n _ . . . _ _
ppi= T sgn(xi) . ‘721(-“ v21(v21“’<11 . lle) - h? length mantissa m into two single-length r_nan
i=1 (15) tissas ma:=o.m[i]...m[1],mb:=0.m{1+1]...m[21].
xgh)oo e Degl)

.

Then the following theorem holds:
With mant(pz)=m=o‘m[l]...m[21], (14) holds if
Theorem 4: Let T=Tb 1 be a floating-point system,

o.m{1]...m[1+1} < '_“(m) ey (18) n<bll?, x; T (i=1(1)n). Then algorithm 2 deter-
~oo.nll]...ml1+11+b >m+2(n-2)b mines an approximation p = ><1.e.Tb 142 of 1 X3
i=1 ’ i=1
Proof: For X’yETb,ZP we get from (2) and thecrem 1, with the property
(a): @ /N ol x -0p.
Dy (xt =iy D) g Il s vl s Dyq(lxlely 1)/ (x)=T" 0=V, 8,0, (uo(1)0)) =1
(\1_b—(21—1)) Furthermore the following properties hold:
‘ ' n n n
Considering that the innermost product in {15) can be (b) " \ (n xieT =01 X; = Hxi),
(x;)=T O=(v,0H} i=1 i=1 i=1

18

t)

(7 i= owmalil... mallinblilo

[
[md := omb(2] ... (1] o}
T

trie
error = 0? e

false

m > o~
1om + 220”2 2 >

| p:= sp* o.mpla]...mpl1+1]1 - b8 Dfalse Cpi=sp-omp(3]. . .mplis1]1 "0]
*n

2,31 Tent of the precision of the double length result

o 12 8p .« agnlxg)
ap 1% ap ¢ oxplxy) = 1

2.1: Decomposition

2.4: Exact product

®©
o

—

p:® spempebep

Crma <12 >——— Es_l—L_V—ﬁ :
mplI-jer+i1:emyUKT]
2 o.maf2]ma(3] ... ma{l]mbi1]

false mb[21mb(3] ... mb[1Imdl1]
o.mll(21ma(3] ... mdf1] o k2 3P I(DL}
iz e -1
Gl o T Groml T w0)
] Lfalse

2.2: Double-length product

2.5: Normalization

Algorithm 2: Product of n floating-point numbers
19

n
(c) (0 x5 Ty, =
(x;,):(y;)€T" Oe(9,0,0 il i=1

n
O 0 x;
i=1 i

n n
//\\n é;\\ 3 -0 H X, f<e*s| T %5
(T pe(Vv,b 0, }is= 1 =1 j=1

Proof: (b},(c),(d) follow immediately from theorem 1,
so we only have to prove (a}.

Case 1: (a) is trivial if the algorithm stops because
ngl in the decomposition § .

Case 2: If "error = 0" in the test t , then no roun-
ding error has occurred in w,. Therefore mp can be de-
termined in t from ma and mb. Otherwise some mantissas
md have been neglected in the course of Ty Then con-
dition (16) from the preceding lemma determines whether
the double length result p2:=sp-(ma+mb~b_])~b
cise enough.

e .
is pre-

Case 3: If md>onl > md+2(n-2)b"(1"2) | then condition

(16) is satisfied; therefore the first 1+1 digits of
the mantissa mp are correct and mp[1+2]=1 indicates
that some digits #o are cut off.

Case 4: If neither of the preceding cases applies,

then generally the double length result P, can no
longer be rounded correctly: for all [JGE{§7,£5,E)“},
and the product has to be computed exactly by the
algorithm The
In this algorithm the mantissasnw of the floating-point
numbers X; are:multiplied recursively and their pro-
ducts are stored as multiple length mantissas in those
m; which are:no more used. So for all j=2(1)n we have
n PN
T xg=sp e [(m n{?)4m§ N +m(J)°b 21, .+m§J)'b -1
i=1 !
. . . .bEP
Mi41°M542 -t myleb
Therein m.+1, ..M are the mantissas of the floating-
(3)
J+],...,xn andJm1
the multiple length product | ms.
i=1

n

point numbers x .9m§3) represent

The double loop in the normalization algorithm v can
be run through at most n+1 times, because the product
is not zero. After this loop the j-th digit of my is
the first digit which is not zero. Therefore the re-
sult can be determined from the following mantissas,
and mp[1+2] again indicates whether there are digits
30 truncated off. =

Remarks: 1} In most cases, Py is precise enough for the

computation of the product p. But no double-length re-
sult can be sufficient in all cases to get the correct-
ly rounded result. This is shown in the floating-point
system T=T10’2 by the following example:

20

0.25T, 0.5eT, 0.21%0.51%=0.1-107 13T |

but the intermediate result 0.214=0.16384:10"9 is no
double-Tength floating-point number, i.e. 0.2 4#T 0,4°
Therefore the product o. 214.0.514 cannot be computed
exactly by recursive double-length multiplication.

2) If exp(x;)=lel,...,e2} (i=1(1)n), then

exp(iglxi)e {n+el-n+l,...,n-e2},

3) The condition n;bZ]-2 is no serious restriction,
as the constant b217% is very large for ordinary
floating-point systems. It can be dropped if the
product is computed exactly for n >b2"2 .

4) In the course of the double-length product T, the
mantissas md are lost. Therefore the algorithm ™
cannot use the results of m, and has to start anew.
By storing the mantissas md, this could be avoided on
the cost of storage space and complexity of T

3. Roots of floating-point numbers

For a floating-point number ae T, we will determine
O%a for O & {§7,ZB,EJU} using a modification of
Newton's method. At first, we introduce some nota-
tions:
IR:={[a,b]; a,belR, a <b} denotes the set of all clo-
sed real intervals and IT:={[a,bl; a,beT, a<b} c IR
denotes the subset of all closed floating-point in-
tervals. Then the monotone, outwardly directed roun-
ding O : IR —>1IT can be defined by
OX = Olxpax,] i=[Tx ,DX,] (18)
X=[x]EIR
and arithmetic operations & : ITAT =17,
we{+,-,%,/}, by

/\ X® Y:=O(XeY), s {+,-,x,/}. §19)
X,YEIT
In the case of the division, o&Y is assumed.
Then the following theorem delivers - under appro-
priate conditions - the smallest floating-point inter-
val containing the zero of a function.

Theorem 5: Let T=T 1 be a floating-point system,
0

/ <xé°), two positive floating-

xgoj,xgoje T, 0<Xx
0)

,xéo)] —>R a real-
valued function with the following properties:

(a) ()f(E)zo,

point numbers and f:X(O):=[xg

gex'O
(b) /\ o<‘m1 < _(_lf X < m2<co R
mp.m, &7 xeX(o)\{E} B
-[m19m2] 3

(0)

(c) there is a function F:X'7" AT —>IT, with
(cl) (o f(x)eF(x),
x€X ‘T
(@) /iy (Fx)zev F(x) o),
XE X AT N N

(¢3) eeT =>F(E) = [0,0] {where & is the zero

from (a)).
Starting with X(o), let a sequence (X(k))k=0 1.2

of intervals X(k) = [xgk),xgk)]enT be generated by

(d) x{k*1)

k=0,1,2,...,
wherein m(X(k)) fulfils the condition

(e) m(X (k)) x(k]

‘~T and

) X),qu), if XKIAT has at Teast
3 elements,

(el)

xgk), if k is even
(k) , else.
X3 s if k is odd

(k)

(e2) m(X(k))=

For this sequence (X the following pro-

)kzo,l,...
perties hold:

k=N

(g)z/ﬁ\\ AT & pie.
ke IN

(h) \/ x(®)s 1) 5
kéﬁN

condition (e) can always be
satisfied,

oy (ko) _y(kotl)
=X(k0+3)

(ko*2)_

oX

(i) x(ko*®) - ore,e) = (7,06 .

Proof: Properties (f) and (g) have to be proved

simultaneously by induction. As the properties tri-
vially hold for k=0, we can assume that they hold for
any given keIN. Because of property (g) for k,
m(X(k)) can be chosen according to condition (e),
therefore X(k+l)
The induction step can be executed similarly as in
Alefeld/Herzberger L
From the identity (k)
€=m(X(k)) _fm(X*"7))

f(mgx(k)}2

m(xt*))-¢
and property (b), we get with the inclusion property
of interval arithmetic

exists.

(£ 4 mxky)

te,el ¢ (D), mexKDyy - pe(m(x(R)yy,
fn(x)y1 7 m.
Note that o¢ M and that this property holds also for
m(X(k)) = £. With (cl) and the definition of the

= XA () m(x)10 Fmex) om)

21

rounding O we get
te.e1 < [m(x {80y ,mx)y - Fmx®dy)

< tn(x*)),m(x ‘”)1 - Fm(x())y w
=ole£l < o(n(xK)),m

= tn(x %)y, m(x

= oOe.6) < xtk),

So we have proved (f) for k+l. Property (g) is a tri-
vial consequence of (f).

For the proof of properties (h) and (i), we first de-
fine functions fy,f,: X O)AT —T by F(x) =
[1’1(x),f2(x)] for all xeX(o
be expressed componentwise:

[nax(x{¥) m(x)@, (m(x)y A my3,
i fo(m(x()))> 0

)r\T. Then method (d) can

xg:lk+1)=1
' n(x)) @ £, (nx(K)y) A, |

Lif £om(x())) ¢ o

(n(x)) & £,(m(x))) @ m,,
e) 7 Fm(x) 3 0
min(x{) m(xt)) & £ (m(x(K)))y @3,

Lif fy(m(x()y) < o

Now we distinguish the two cases of (e):

Case 1: X(k)r\T has at least 3 elements.
({

Then x4 k) <)< xﬁk).

Because of property (c2), we get:

{a) F(m(X(k)

So in each case

Xék+1) kel) (k) _

<X2
x{k).

-
— X(k+1)
As x(o)f\{ i

k1s
so that X 0)

<

a finite set, an index ké must exist,

~T has at most 2 elements.

Case 2: X)AT has at most 2 elements.

Then one of the
(6) XKIAT has

y (k1)
(k+1)

following two cases occurs:

exactly one element ., Then

X1 = ore,e = 18,e
k+2) L S

=X - x(

k)

= Ole.E] .

Then one of the

(8) x'

following three cases occurs:

AT has exactly two elements.

(81) € = xgk)®f(xgk)
(82) & = x) e (k)
(83) x(lk)<£<x£k3<=>f

<=#>F(x(k))< [o,o]<iF(xék)).*)

1

In case (83) we have
(D - -0,
(e2) and (20)imply that

y (k)

= X

in the two other cases,

either

MO

or
W (k)

y(

X

k+1) _ y(k+2)

(k+1) 5y (k+2)
o)
rvad(a,n)

= [€,E

= [£9£

(k) = 10,01
M) = 10,00
x(L))é=>

1 =Olg,8]

1=010E,8]. =

3
— true
az1?
false
X := [a,1] X = [1,a)
Mz [(n¥ U ™D,an) Mz [Yn,nAA (am1)]

]

false
y = Olx

V)(E)/z l

card(XAT) E——)@n“

L X 2 3nly.y1 © (O 17571 & ta,al) D))
]

v)

I X i3 Xallxgx1] © (O1x]f

O (a,aPH) |

| X 7= Xellgu) © (O 05,416 (2,3 O) i

Algorithm 3:

Root' of a floating-point number

*) e F(x

X

(
1
(!
1

k)
k)

) ¢ [os0] ¢

) £ [0,0], F

X
(x{K)
*2

F(é)) and

) % [0,0]

22

Remarks: 1) Method (d) delivers O[£,8] = [9¢,D¢],

even if F is a bad approximation of f (provided that
condition (c) is satisfied) and evenif m(X(k)) is a
bad choice (provided that condition (e) is satisfied).
By an inappropriate choice of F and m(X(k)), method
(d) may degenerate into a trial-and-error method.

2) A similar method was given by Herzberger 3. But
without the assumptiors (c2,3) and (e), property (i)
could not be proved. In fact (c2) is the crucial addi-
tional assumption compared with Herzberger's version
of Newton's method. Without (c2) we cannot know,
whether a given xeT is left or right of the zero.
Therefore we cannot expect that (i) is valid and in
general we could not even find [WVE,AE] by trying

out all floating-point numbers in X(o)

3) The assumptions(a) and {b) imply that &£ is the only
zero of the function f in the interval X(O) and that
f is Lipschitz-continuous at the place £ . Apart from
this, f need neither be continuous nor monotone.

In the following theorem, the results of theorem 5
are applied on the computation of arbitrary roots of
floating-point numbers:

Theorem 6: Let H>1 be a floating-point system, ae T

21-2 , positive in-

a f]oat1ng point number and n < b
teger. Then algorithm 3 terminates after a finite
number of iterations and if a > 0 or n is odd, then
it delivers a floating-point interval XeIT with the
property

(a) /\ X = Ol"a,val= [¥"a,ANa] .

aes
Provided that ™aeR exists, the following proper-
ties hold:

(b) (
asT DO={V,H,0 }

o /NN

(
a,beT O={V,H,0 }

u
(d)/\ /\ "a - 0"™a| < e*-
ae T DE{V,A,DU} -

and if n is odd:

(e) /\ /\ o"a=--ava,

asT O=(0 ;u=0(1)b}
/\(Vﬁ—-anfnanﬁ--v”f)

asT

"Wael = O"a = "a),
ag b =>Dnv5§ Dn/B),

nVQ;|

Proof: (a) is trivial for a=o. For a> o, theorem 5

is used with

: . 1
X(o):= [l,al , ifaz ’
[a,1] , ifac<1l
[Vn,n&A(an'l)], ifazxl
M = s
e v("h),an, ifa<l

f{x) : K" - a,
F(x) := O x"10 13,21 ,

wherein Olx",x"1 = [(9x",Ax"] is computed with the
product from section 2. Then assumpticns (a),{b),(c)
of theorem 5 are satisfied, therefore the iteration
stops after a finite number of steps and delivers
Ol = 01™Va, Va1 = 19a,8aT . For a < o,
N/a does only exist, if n is odd. This case can be
easily reduced to the case a > o.

{(b),(c),(d),(e) follow immediately from theorem 1. ®

[Remarks: 1) Algorithm 3 delivers the smallest inter-

val containing "/, whereas in properties (b),(c),(d),
(e) the rounded resuit o"va for DE{V,A,Uu} is
needed. As can be seen from (2),(3),(4),(5),(18),
a"a for DE{V,A,DO,Db} can be determined from
o1z, val. For Du”/a (u=1(1)b-1), algorithm 3 has
to be executed in Tsz,1+1'

2) If exp(a) ={el,...
{n -el-n+l,...

,e2}, then an exponent range
, n-e2} has to be provided for inter-
mediate results.

Literature:

1. Alefeld, G., Herzberger, J.:
tervallrechnung. Bibliographisches Institut,
Mannheim (1974)

Einflihrung in die In-

2. Griiner, K.: Fehlerschranken fir lineare Glei-
chungssysteme. Talk at the MRI Oberwolfach (1975)

3. Herzberger, J.: Ober die Nullstellenbestimmung bei
ndherungsweise berechneten Funktionen. Computing

10, 23-31 (1972)
4, Kahan, W.: Further remarks on reducing truncation

errors. Comm. ACM 8, 1 (Jan. 1965), 40

5. Kulisch, U.: An axiomatic approach to rounded
computations. Numer. Math. 18, 1-17 (1971)

6. Kulisch, U.: Ober die Arithmetik von Rechenanla-
gen. Jahrbuch Oberblicke der Mathematik,
Bibliographisches Institut, Mannheim (1975)

7. Kulisch, U., Bohlender, G.:
implementation of floating-point matrix opera-

Formalization and

tions. To appear in Computing

8. Linz, P.: Accurate floating-point summation. Comm.
ACM 13, 6 (June 1970), 361-362

9. Malcolm, M.A.: On accurate floating-point summa-
tion. Comm. ACM 14, 11 (Nov. 1971), 731-736

10.

11.

12.

13.

Pichat, M.: Correction d'une somme en arithmetique
a virgule flottante. Numer. Math. 19, 400-406
(1972)

Wilkinson, J.H.: Rundungsfehler. Springer, Berlin-
Heidelberg - New York (1969)

Yohe, J.M.: Interval bounds for square roots and
cube roots. Computing 11, 51-57 (1973)

Yohe, J.M.: Roundings in floating-point arithme-
tic. IEEE Trans. on Comp., Vol. C 12, No. 6
(Jdune 1973), 577-586

