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Abstract

Mirror coding for signed numbers is de-
fined by means of a set of primitive powers
of two {+27,-2"} .-2°}  where signs of the
usual set used in 2's complement representa—
tion are reversed. Use of the mirror repre-
sentation is shown as an alternate design
avproach and is illustrated by a Special
yurpose adder design in mirror code, by an
alternate proof of a basic property of sign-
ed-digit arithmetic and as another interpre-
tation of cells used in some array multipli-
ers for gsigned numbers. Lastly, the con-
cept is used to define a variable mode re—
dundant coding, ullowing simple sign-flip-
ping without overflow,

l. Principle

Given & signed number x, its ordinary
two's complement representation ' is a
binary word X with at least four distinct
interpretutions. For a (n+1)-digit X (with
sign bit) let us write:

Az ax,  oX ..%  (axefor]) q)
X'z 0% & . x, (2)
X”:oa,irmt " ZL tee xo

Also, let VvCw) be the arithmetic value
of Boolean u (arithmetic 1 for Boolean 1
and vice versa) and let us denote by x, x’,

and x” the arithmetic values of X, ¥/ and

of X7, 12 ||, is the residue of x modu~
lo n, we have:

x = -v(a)2 + x’

(3)

x =[x n (4)
<" = ]x|,_m+t n-1 ¢
x = a)(-2") + ZV(ED2 )

Thus X may be seen as a residue modulo

2" with appended sign a on the left, as a
residue modulo 2°"'7, as a special signed-
digit number (digit range:§-1,0+13)
where the -1 would be restricted to the left-
most position only or, still (3,7) of a
weighted sum with coefficients in {o,+1} but
with weights taken from an inventory of
powers of two of both signs, namely

I= {-2%2"71_..- +2° +°) (8

We now turn our attention to this lust
representation, based upon (7) and (8). In
the set I, only one power of two is negative,
which is the least number allowed to repre-~
sent signed numbers. HoweVer} representation
of numbers in signed-digit 5- is, exce.t
for o, not unique and we may similarly try
to use other powers of two to represent
signed numbers. Doubling the inventory I,
by adjoining to it all powers in it with
signe reversed, would be the genersl signed-

Chinal

98

-8igit case,

Let us constrain it for econo-
my's sake and use only the set formed of the
powers with signs reversed.

A n m-t L o
I={+2 2", .2, .. -2} (9)
Here, all powers except the highest, are

negative. Let us use this set ("mirror
set") to represent signed numbers, i.e. let

us look for digits 5%, such that
A A A
\ A X

A
Xe @%, o 2 0 &,
 =r@7 - v(%, 2 e @)Y (1)

(@R, o) (10)

A
whereX may be called mirror code for x znd
its use, mirror srithmetic, owing to the
name just given to I. (Fig. 2). Let us de-
note the (new) number & with digits &; in
ordinary binary.

2, Relation of Mirror Code and Ordinary Code

Prom (7) and (11) we deduce thag
—[V(e)+v(ay2"+ & [rz)+ v = o

A
T+ =0
and thaﬁ digits %,

(12)

%ri those of the additive
’

inverse Zgiven %y
A -
L=z ®r (p=0)
N . +r
L1 % %
& (33)
:Z—xﬁ
=0

Thus going from I to f for a given num-
ber x, changes its representation e %ssoci«
ated with the additive inverse of x21
also arithmeticail obtainable by
from zero or 20+ {inversion base® ). Zero
is unchanged, and non-zero numbers are trang-—
formed according to the well-kmown set of
rules (13). These, alt&bugh reguired for
combinational inverters
yet are actually rarely used because gen—
eration of the additive inverse is most fre—
quently combined with a simultaneous sddi-
tion or subtragtion, which allows then to
dispense with ‘and use only X (Boolean bit
by bit complement)combined with a least sig-
nificaent weizght "hot one" Thig
that althoush the Boolean relution between
ordinary code and mirror code may be shown
to be a known one (13), the hardware to
switch has a non-negligeable cost, which,if
avoided,implies to choose between the ordin-
ary code wnd the mirror code. In this ree
spect the situation is different from the
distinction between positive and negative
logic which amounts only to bitwise reinter—
pretation of digit values.

subtraction

(sign-flippers4,9)

is to say




To use one system rather than the other,
does not make great practical difference at
the start. There is only a minute differ-
ence in the range of numbers represented:

xe [-2%, 2P1]= (1)
[+2%,=2%41 ] - $9)
pnd =[-2"+ 1, 2% - 1]
ond = {+2n3

pnd = {-2"}

pud = [-27, + 2] (15)

Por usual values of n, such differences
may be neglected for a choice between the
two systems, which then leads to staying
with the existing one. These differences
will be of interest, only if n is very small
which give them great relative value, or if
for ordinary n, both systems are used in al--
ternance within the arithmetic unit and
logic of the computer.

3.
If n is mgde egual to 1, then the do-

wmaines D and D beccme significantly diffe.-
ent (Fig. 3).

D
D

>

X (14)

One Bit Mirror Arithmetic

1
D= {-27, -2°, 0, 2° 3
D={ -2% 0, 2°,2%}
set B, instead of D, will be useful
whenever we wish to represent +2 with the

same ease as -2, l.e., with two digits only.
We now give two examples of application

(16}
(17)

where introducing i, D wiiz provide an al-
ternute approach to a probvlem.

3.1 Design of adder

Assume we want to design an adder im-
plementing
x +y - v(r,) (15)
Where x,y are (n+l)-digit numbers, r. is o
or 1 and, contrary to ordinary additgon,
minus sign precedes v(r.). Such adders may
be used for instance to implement addition

modulo 2k + 1. Then x+y-v(r ) may be ob-
tained easily in mirror code, and then re-
converted to ordinary code. The mirror

code just plays then the role of a useful
intermediate representation in the solution
process, just as sometimes a change of pos-
itive logic to negative logic may be used to

afford a convenient reasoning. .Here con-
sider first the ranks of x. and y. (least
significant digits) of x and y. e must
compute in mirror code
S, =V (xo) + v(yo)—vuro) (19)
X, Y57 v(xo)+v(yo)-v(ro) 8,8,8 éléo
000 ’ o) 0090 00
1l 11

883% 1 581 81
o111 0 000 00
100 1 001 11
101 0 000 00
110 2 010 10
111 1 001 11

Table 1
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(Table 1; ordinary code

8,818, 1
8,8,: mirror code)
Ry 1l ..o _.1A oA
vix)+v(y,)-v(r )=2"s,+278, ¥2% =275;-2 8,
( szysl,so,§l,§° e{p,l})
From Table 1, we deduce

sO=XO @ yOe rO

(20)

ri:?co70ro"'xo‘i;?o*'xoyo?o*xoyoro
XY X To+Y T, (21)
r{=maj (x,,y,,7,) (22)

where maj (u,v,w) denotes the three-variable
majority function. This can be seen as
a borrow logic with pernuted inputs and
combined with a code converter according to

(13) yields a possible adder design (Fig.4).
A more classical approach would be to write

X+ y = v(rg) = -[(=x) + (-3) + v(zx,)[23)

which would require three sign-flippers 453
and an adder. Another would be to write

x4+ ¥ = virg) = x ~(-y) - viz)

which would reguire one subbtractor and a
slgn-fiipper on the y input (Fig. 5) a solu—
tion with complexity simil.ur to that of Fig.
4 but diflerent, IFiaelly, a solution with a
layout clozc to t.¢ first one (Fig. 4) would
be to use an ordinsr, odder with zero carry-—
in form x + y and conditionall,  subtruct L

with a combinatorial decreweunter®.

3.2

(24)

Si;med~dizit bincry crithmetic

Convider two nwibers x,y with
m-t :

T= 3 x‘:)_'- ,
, -

x‘- )?’: 6{1,0,15
(T=-1)

irror reyresent.bion a”ferds a wore
visual vroof of the yroperty?2 according to
which generslized carry uropagation may be
restricted to threc stuzes (two interstue
intervals) by a suitable coding of inger-
stage carries ("trancfers") znd use of three
layersSOf cells which extend the usual half-
adders”, To do this, we start from operators
with two inguts in I1,0,1 and proieeg as for
an adder mude of half-adders onlylO-12, we
want to determine the nature of operctors at
each level and show that at level 3, carries
out are identically zero, which limits the
growth of the network to three levels, and
congeguently, the propagation length. Fig.
6 and 7 show the O-carry, 1 and I carry con-
ditions, for the different values of the

(2

5)

sum & of x!,y; and incoming transfer t;.

We illustrate now on Fig. 9, 10 the evoliution
oﬁ,sum digits and partial transfer terms
(t;,t% ) as we go through levels 4,B,C.
each ievel, use is mede of Fig. 6 and 7,
partially reproduced in Fig.Q, 10. Fig.
illustrates the condition* that (t}, r?)e?
{(1,1),(I,1))and Pig 10 uses tuis t0_show
that at level C the sum s’ is in{1,0,1}
which can be coded with a‘Zero most signifi-
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cant digit, i.e carries out of (C) cells are

zero. ? (a) cells generate carries whenever

possible, (b) cellg only when unavoidableb).

Thus, partial sums X;+ ¥, & + t and s? + ]

are coded with two digits, in ordinary mirror
code, as indicated in Fig. 10 and carries out
of (¢) cells may be kept equal to zero.

3.3 Adders with base 2 inputs and buse (=2)

output.

4ddders with ordingry base (+2) inputbe
may also be modified t0 nave an output in
slgned-digit code or base (-2) code (Pig. 11,
12, 13). Cells are defined arithmetically in
the corresponding graphs. In Fig 13, (a)and
() cells are defined by the following tableg

value variable
of direct |mirror mode
uviju+v code code code
00 ¢ 00 00 0;00
01 1 01 11 0;01
l 0 1 11 01 1;01
11 0 00 00 1:60
(d0; (al)
cell cell
mirror
uv J u+ v code
00 0 00
o1 1 11
10 1 11
11 2 10
(a)
cell

3.3 Variable mode arithmetic

Let us explicitly encods the convention
(direct, mirror) used to represent the num-—
bers, using an additional binary digit egual
to zero for the direct code (D) and 1 for the
mirror code (M).

Consgider now two numbers in this code
and their sum

x = Aaxn_l...xi...xo

= Bbyn_l...yi...yo
= Sssnsn_r,.si...s

Lo}
+
o«
| I

(o)

4,B,8,X;,¥;{18; 12,048 € {0,1} (26)
Addition in this variable mode code,
where A,B and S explicitly represent the code
used, requires to determine the rules for ob-

taining 8; at each rank 1, together with §,

To do this we consider the sum of digits at
rank zero, for which we do not know yet wheth-
er to assume a positive or negative carry-in
and try to encode it in direct or mirror code.
Then we deduce the operation to be performed
at a rank i.

At rank o we compute the sum of digits
Xoy Yo (with suitable signs due to A,B) and
expregs it in direct or mirror code. Thus we
have

Do = ((1Wy )+ (1) Bu(y )=

0 ez )1 ) (27

end this entails a curry (—l)v(T)v(rl) into

rank 1, so that generally, for runk ~( we

wust execute:
2 7 LYWy w0V By o
(-1) VP =-1)Y Pz, )+ (1) Vg
(28)
Vulues of 4,B,S,T7,U and the domains of

D, Di are given in Table 2, Allowed codes
£8r 2%aigit D, are derived from Tables 3 (a-gh

Table 2. Rangés and allowed encodings

Domain Domain Allowed
ABS of Do TU of Di Code
000 }o0,1,2 ¢0 j0,1,2,3 D
001 | 0,152 0l |e,1,2,3 D
010 |1,0,1 0 {2,I,0,1 D
011 1,0,1 01 {1,0,1,2 M
100 | 1,0,1 10 12,1,0,1 D
10l |1,0,1 01 |I1,0,1,2 M
110 |2,L1,0 10 %,2,;,0 M
111 12,1,0 11 1241,0 M
D | M

2 1] 10 1 1o1T 11
1 lo1] 12 0| col oo
o lool oo I1111 o1
f0,1,2] [1,0,1]

(a) )

LD | M | D | u
0 [000 | 00 3 11101
1 J111 ]| o1 2 ] 10| 110
? (110 | 10 1] 01111
3 lio1 | 11 0 | 00 1000
[0,1,2,3

(d) ]

Tables 3 (a—g). Direct and mirror codes in

D0 and Di number ranges.

The output code then must be chosen so
that U equals S, The second and seventh lines
of Table 2 mey be deleted as then lead to con-
tradiction between assumed value of S and al-
lowed code in the last column and we have
now the reduced Table 4:

Table 4. Bitwise operations. Output

A B Bit operation Code
00 v(xi) + v(yi) + v(ri) D
01 v(xi) - v(yi) - v(ri) D

v(x3) = v(yy) + v(x;) M
10 -v(xi) + v(yi) - v(ri) D

—v(xi) + v(yi) + v(ri) M
11 —v(xi) -v(yi) - v(ri) M

For the direct code (D) we have to imple— ?

ment ordinary addition sum and carry logic
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1—4(line 1) or subtraction logic2’4(lines 2
and 4). PFor the mirror mode we need a logic
which is the same as the one studied above in
example~3.1 (up to relabeling of variables),
in lines 3 and 5. For the last line it can
be checked that this is the same as additicn
logic. The sum digit is the same in all
cases. The carry digit then is given by
Table 5.

Table 5. Carries for variable mode addition.
AB Carry S
00 ma.j (xiv Iy ri)
0T [maj (8, ¥, 7))
ma j (xis Vi1 ri)
10 |maj (x, ¥5» 7y)
ma j (xi’ ¥i ri)
11 ma j (Xi’ ¥i» ri)

H|l+= Ol OO

Thus the output mode is variable if we
insist on single-bit carries and there is
some choice for it when A @nd B are different
We fan use two types of carry only by a suit-
able choice of 8. Then at most one fixed
variable will have to be complemented when

A,B vary. There are two such solutions (Tab-
les 6)
Table 6. BSolutions with fixed place comple-
mentation.
AB| Carry (I) | |  Carry (II) |

00 [maj (x;,¥;,%;)
0 1 |maj (Ei,yi,ri)
106 |maj (x—i’yi’ri)
11 |maj (xi,yi,ri)

ma, j (xi,iz,ri)
ma j (xi,iz,ri)

Sl
ma, j (xi’yiéri) 0
1
¢]
ma. j (xi’yi’ri) 1

= = O olw

Thus we have
By T X; @y ©1y
@ G~ maj (xi & ADB, A ,I‘i)

S =4

Si:‘Xi@yi@ri
() Ty = med (x5, vy, @403, 7;)
S =3B (29)
Addition may be performed with an ordin-
ary adder logic and conditionally comple-
menting x (bitwise) if mode of = is kept for
the sum and bitwise complementing y if mode
of y is used for the output. The condition
is whether A and B are different. ?he oper—
ation on Ty if e.g. x; @ (A ® B) is per-

formed outside the adder stage is similar to
condition switching between add and subtract

%l
when we perform x_+ (-1)Zf“)y with an ad-
der: y. ® C (or Cy, + CY,) has to be per—
formed For all stagts., Here the condition
variable has to be obtained from A and B
 (one gate). Furthermore, substraction may
- now be obtained by simply changing the mode
of the subirakend y,which forms its comple-
ment on a single bit basis. If conditional

add-subtract is desired of the form x+(-1)

v(C)y’ then the above expressions for 8, are
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unchanged, and for the carries we have
riy1 T mai(x; ©A @ B@C,yy,r;); S:E=A
Tivl = MJ(xi,yieA@.BGC,I‘i)i S=B (30)

which 1s similar to ordinary add-subtract,
the only difference being that the condition
variable is A® B @ C (or its complement p]
which may be synthesized in one or two gates.
Also, we may perform without difficulty the
more complex cperation

(-1)7®) x4 (V@) (31)
which in ordinary binary requires either to
exclude the case where both D and C are one,
or to use additional incrementing or comple-
menting logic*%.

Thus with variable mode arithmetic a
elightly redundant code (1 bit) is used. Ad-
dition and addition-subtraction may be kept
similar in complexity to ordinary condition-
81 add-subtract. Furthermore, the domain of
numbers is now totally symmetrical (-2m,+2n),
Complementation is then & one-bit o eration
without overflow and the quantity -(x + ¥)

(called comumal’® in the case ofbase minus

2,12_15) may be obtained as easily us x + y.
The possibility of using comums instead of
sums in addition, multiplication and divi- 5
sion, which appeared as a possible advantage

of base minus two versus ordinary binary,
thus appears to be applicable also to vari-
able mode arithmetic and without the range
dissymetry of base (-2) representation.

3.4 Cellular multiplier

In the Pezaris'® cellular multiplier
for signed-numbers cells of several types
are needed, some of which reduce to ordinary
adders, others requiring new logic for the
derivation of which a special formalism is
introduced. For 1-bit cells the following
operators are necessary4,

(@) v(xy) + v(y,) + v(ry)=2lv(xy) + 2%(a,)
(0)=v(x5) + v(5,) + v(zg)=2lv(z)) - 2°v(s)
(0) ¥(x,) = v(3,) = v(rg)=Zv(r]) + 2°(s,)

Cells (a) and (c) can be reduced to or—
dinary add and subtract stages respectively,
while (b) is typically a cell as gtudied in
3.1 and 3.3 above, with output in mirror code.

For 2-bit cells4’l6 one is an ordinary
2-bit adder, the other a mirror code 2-bit

adder and the third may be viewed as & casg-
cade of both types for 1l-bit length.
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Fig. 10,
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