THE LOGIC OF MODULO 2k + 1 ADDERS

by

Jean P, Chinal

Abstract

The design of modulo 2k + 1 adders for arbitra-
ry k is considered, with the objective of achie—
ving a logic structure as regular aes possible so as
to allow a convenient implementation in large-soale
integration technology (LSI), It is shown how the
design problem can be reduced to the recursive ge—~
neration of a subtract signal and to the merging,
in various degrees, of the corresponding logic with
the logic of an ordinary adder or, alternately, of
a so-called signed-carry adder which ig defined and
designed itself in general, with both recursive and
explicit carry schemes. Modulo 2 + 1 adder designs
are given, one with conventional adder, another ba-
sed on signed-carry adder and a third, derived from
the signed-carry scheme, where subtract signal ge-
neration and carry logic are merged. This last sche-
me can be set up with two backward recursion chains
and five or six forward ones. Two more basic va-
riants are finally indicated for this integrated
scheme, aiming at reducing as much as possible the
residual logic structure irregularity presented by
the most significant position in the word,

1., Introduction

M?dglo m adders are basic to error-coded arith-
metic ''" for detection or correction of faults in
digital processors, for operand or check word arith-
metic 3145 op for the design of residue genera-
tors °, Also they are used in binary-coded residue
olags arithmetio 7+8 , Por multiple-residue error
checking 8,9 an4 for residue class arithmetic it is
necessary to implement modulo m addition for seve-
ral distinet moduli having some mutual relationships
such ag being mEtually prime 8 . Moduli of the

form 27 -1 or 2° +1 are often advocated, owing to
the simplicity of their implementation. Both are
very convenient for residue generation of an arbi-
trary binary number owing to the poseibility of ai-
viding the numger in chunks of lﬁngth k and using
tree networks « Also modulus 2 -1 addition is
closely related to double zero digit-complement ad-
dition 10,711,712 gng jg 1dentical to non-overflo
wed, (*ingle) negative-zero digit complement arith-
metic 13 .

Additionally, modulus 5 adders and generators
appears in various hardwired binary to decimal
schemes , in BCD srithmetiec 17 and modulus 9 co-~
mes into play for BCD aritEmetic checking, Finally
large moduli of the fo 2741 may be used in con-
Junction with modulus 2~ _q in multiple checking
or residue arithmetic 6+9 gp as to provide pairs
of moduli that would be at the same time, diffe-
rent faog 2%, very olose in value and mutually
prime '/,

In the search for moduli that would lead to
logically "simple" modulo m adders, those of the
form 27 41 ugpear the most interesting ones after
the lowcost 3:4 moduli of the 2% -1 type and will
be investigﬁted here. For comparison with the bet-
ter known 2% -1 modulus, the logic for this latter
case will be derived anew, using the, same type of
approach that will be used for the 2 +1 case.
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2, Two-level and one-level arithmetic
for modulo m adders

Let x and y be two modulo m residues, coded
in binery with k bite and let ‘x+y[ denote the mo-
dulo m sum of x and y, i.e. the modﬁlo m residue
of the ordinary sum x+y. The network computing
Ix+y| ~ will be called a (restricted) modulo m ad-
der. Unrestricted adders might gimilarly be used
as a name for adders that would accept any numbers
x and v (not necessarily residues already) and
compute |[x+y| , but will not be considered here
for ths momen%. Then we can write x, y and m (mo-

dulue) ag pure binary integers.
TEOXp T X mox Y€ for)
3:: ng_i 3‘; . H:: Oéx)é(m (2.1)
m = OmE 1,,, mi o mg m&_iel(lﬁ-lsm<?_£)

vwhere the assumption on m means that it is coded
with k digits and no less., Then

[l = 2y —v(t)m 22)
= S{gn (x+y-m) (2.3)

where v(u) is the arithmetic value of boolean

u(1 for 1 and 0 for 0), sign X is the boolpan sisn
116 of X, equal to the leftmo?§,1gk+1) bit in

2's complement representation ’ (here sign x,

gign y and sign m are zero, but have been explic#-

ly represented in (2.1).

Equations (2.2) and (2.3) defined a two-level
arithmetic procedure which is widely used in BCD
arithmetic, iterative division networks and in
division algorithms based on the comparison method

14,15.16,22 | IT left as such it oan be implemen-
ted for instance with a sign detection network and
an adder., If the sign detection function is a sub-
function of a two-adder network computing first
x+y-n, then +m may have to be restored by a third
adder and this is analogous to the restoration me~
thod for a division step 14,15,22 | 1n the follo-
wing however we will derive explicit expressions
for the subtract signal t. A first solution will
be to use t as a gating signal to perform a condi-
tional addition of the classical type. Another is
to combine the logic of t with the adder logic to
be subsequently used so as to obtain & scheme whe-
re sign-detection and adding step are fully inter-
meshed in what may how be, called one level golution,
Two level solutions for 2°-1 moduli are well known
for any k and one level solutions hgv7 been reper-
ted for small specific values of k °’ and for ar-
bitrary k (e.g. ) . Similarly fyo-level solu-
tions are used in BCD arithmetic (moduli 5. and
10) and one level sglu’tions, previously reported
for small k's only » will be given for arbitra-
ry k in this paper. Basic notations are defined in
the appendix.

3. Sign-detection logic

For an arbitrary modulus m, subject to as-
sumptions of §.1, if we call r; and r'; the ocar-
riee generated, respectively, in addition x+y and
in subtraction (x+y)-m, then it cen be shown
that




Sign (xry-m)= maj (o3 )
:.ré+1“ _
= maj ( ﬁ,o)r’)
= r‘srﬁ (3.0)

where r, and r'y can be expressed in turn as fune-
tions of x4 , y; and mj variables to determine an
explicit expression of t. Such computation will be
presented below for moduli 2¥ -1 and 2K 41,

3.1 S8ign~detection logic for modulus 2¥X -1

Let us write

5=x+3, (>».1)
Then
- 5 ... S5 2.
S %A% (>.2)
with (of. appendix)
5, = xc$2i$f'i = pLeB FL (%:o) (>.3)

1
r;'.+1— G.‘. +P;rL

Similarly, denote by S' the sum x+y-m and e ifs
digits ¢

(3.4)

(>».5)
Then s8'4 and r'; are the sum and carry digits of a

subtraction 15,16 given by
S=semer/ (K=0) (».6)
’ S !
ey = M2) (si,ml,ri

For modulus 2K -1, and for positions 0 to k-1
inclusive

m.=1

and by recursively applying 42.?2 or using an ex-~
rlieit carry expression 11,14,76,22 we get
-1
ro= 5.
;}:O a
= T s.
I=° g
£-1
=[P
j==?
~P
et (3.7)
Whence
t =Gy, R,
= 60,&-1 + a,ﬁ—i
=T, 8 (2.8)
Thie last term is the transmitted carry 16

for bdlock [0,k-1] y {.e. the value of ountput carry
ry for an input carry ro forced to 1, Usually in
cyclic carry adders only the generated carry

G 0,k-1 (value of ry for ro forced to zero) is
used. The result will remain equal to |x+y| )k _4
modulo 2 “~1, but, when x+y equals 2k -1, wiil be
left ams sueh and will thus not be a residue,
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3.2 Sign-detection logic for modulus 2K +1

Assume again x and y to be residues. They may
require k+1 digits to be represented so that we
will extend x, y and m representations one more po-
sition to the left and apply (3.0) for k+1 instead
of k. Using the same symbols 8, 8' , sy , 8'y , 74

r'y{ for that new case, we have
L=0xX,x .X .. X 3,
ﬁ &-t 3 © ( 9)
3= % o
m=01 0 ..0.., 1
g - r s s 6. w5 (r: carries)
B R b PR (>.10)
x+Y-m = ...sésé1... 8 . 8 (v carries)
(3.11)
Ther carries generated i*\p?gitions [0,k-1]
are deoremen:;tion carries 1,12.15 and
-1
r'=Ts+s (3.12)
ﬁ'. 3:04
' =maj(s. 1+ (2.13)
Ret . ¢ X S 3 )
—_ r
— 5ﬂ + .
~- 5 + 5 (>.14)
B j=od
Also
rﬁ‘?’.: Gal&
= G& +’Iér&
but if (3, , yx) equals one of the pairs (0,1)
(1,0) (1.¥) then carry r is zero as the first di-

gits of x or ¥y or both will be zero. Thus

Té\l" =0
=6
Ret” R
Finally
. PR —
sgnlxog-+ 0] = R,
= C"ﬁ (5¢+ e (3.15)
t = G + 5 "—I
et %% (>.16)
Note : If x and y are not constrained to be resi-
?uesé)then GO x ’ and not Gk should be used in
3.,16)., ’

4. Signed-carry adders for modulo 2K +1
arithmetic

Three solutions will be desocribed correspon-
ding to increasing integration of the subtract mi-
gnal t with the adder logic. The least integrated
scheme is an ordinary word-length adder with an
iterative correction network on its output., In the
second solution, ordinary full adder stages are
still apparent (although not s word-length adder)
and are supplemented with a correction network
feeding signals between stages, In the last and
most integrated design, a completely mpecialized ad

der is evidenced, with a bidirectional iterative
structure.




T s e

4.1 Adder with output correction network

In this scheme the ordinary addition is perfor-
med by a k position adder. A correction network is
applied to outpute 83 (0< ¢ <& ), computes t
sccording to (3.16) and, using t as a gating si-
gnal, conditionally subtracts 2X +1. The latter
operation is itself a decrement operation for posi-
tions 0 to k-1 inclueive and a special-purpose lo-
b gic for rank k. Thus

s'= x+y - v(t) (4.1)
; s.=s olr (ogigk-1) (#2)
: S)ﬂ: S, @ o) (‘rﬁ’
w =5 @ tr’ (4.3)
i " oy
tr = [c;ﬁ+ 5o( ‘,Za}dﬂ (~,;T£°<") (4.4)
R-1 ,(~1 _
= [Gﬁ + sﬁ(o‘Z:-ft’)‘l (\J=°5d
;g R 1 oty
= (Gaﬁ + ﬁ’&SL)S' ( S)i:a'ms‘ ;S= }LS )

Terms 8y and 3] can be computed recursively
from the left and the right respectively (Fig. 1
ga) cellsg and combined with Gk , 8k and si terms

Fig. 1(b) and (¢) cells) according to (4.5,4.‘11'3'.

4.2 Adder with integrated sign-detection and add
logio )

Both adders in this category use the opera-

tion
T+y — v () u & {o1}

(4.5)

If we have an operator to implement it, then
it can be used for the k positions from the right,
the k+1 th again being obtained by an ad hoo
scheme. Thie will be obtained by using for u the
function t, Phe procedure here parallels the one
used for modulo 2X -1 addition where we perform

S = xey+v(D (4.6)

However, due to the fact that v (t)has now to
be subtracted from x+y rather than added, another
logic operator is needed which we will call signed
carry adder, owing to the property it will eviden-
ce,

5. Signed-carry adders

5.1 Definition
By definition such an adder will compute the

sum
, ) —
Z=x+y +v(t,) ro’ € {011} (5.1)
(T=-1)
The terminology and the choice of the domain
for t'y may be justified as follows t if we try to

add, d?git by digit, the numbers x, y and -1, the
partial sum for position 0 will be in the gset

{ -1,0,1,2) and, if we code it in two's comple~
ment form,this will produce a carry in the set
{-1,0,13 . Then for the next position the sum
of the two digits and this carry will be in the
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set { -1,0,1,2,3 5 which will agein yield s carry
in the set {-1,0,1} . So that, as soon as we assu-
me t'c capable of taking the value T , all inter-
stage carries will have a sign and no ocomplication
results from assuming té in the set{ 1,0.15
(instead of 7,0 only ).

5.2 Signed-carry adder stage logic

Let us call in general ti the signed carry in-
to position 1, ge can write :

t = 1) ey et e {01} (52)

E. = —2 v (t't) + 20w (L) (53)

==Lt E)+ 2 () 20w

The absolute value is v(ty)
v(tg) while the Boolean sign
we "must have for every rank i :

VXY +v () + = 2 (B )+ 20 (B4

vhere 8; will be the sum digit and t'i 1 the new
carry. %his is an equation between two num-
bers, of which the binary digits must then be
equal.,

Eaoch side, can be_ calcoulated with binary addi-
tion rules 1f'¥2’f5’£% « Denoting by r] the car-
ries for that addition :

V)Y )+t = - 208 + 2 () 2w ()

anfsthe usual sign is
is tg ti » Then

f=xeyeh | ooy, o
5?=;0_‘ég:,‘9;)f;) K@yt

sc=% . 6t

Dol )+ Lots) =2we) 6 )+t ) *20”(5:()5 N
Equating the two sides yields

s =x0y o/l

Gog=ma) (2 9. 6 ) @ £, (5.8)

" > U "(L

" =24y £C

(L+1£1+1“ Lgc C't ¢

fhe last equation is of the form
ax = b

and is soluble if?’
;b =0
[majz; y. t) e PTFL 236 =0

which can be seen to be identically true, so that
~ > T 7 : )
Cor™ % e tg Lo+ Tz, e 6,8 (59)

+ 1L v
(4]

where T ie an arbitrary function of Xy Y5 o0 by
and t; . It is possible to choose T 8o that,
for instance

oo j/

Cor= G ta (5.10)

Whatever the choice of T,th- product t; ty
meets the simple relationship (of (5.8) and nota-
tions in appendix)




£k et t (5.11)

(+1 (#1 < 1 C

i

o\ o
d':o o ©

The logio for the signed-carry adder sts )
can be written1kn1garme of zero generate (Gi§ one

gener tgz(Gl)‘ and propagate symbols (P;)

15,16, a8 follows :
S = F'::et‘._ (og € ¢B-1) (5.12)
t mc’ePt @'t (5.13)
+L ' t ¢t L L
vl _ It ) 0 f-r J
C(‘+1 = CL < (t(u 'E:"u: Cc t: tL ) (5.14)

An iterative adder with sells implementing the
above equations can be devised (Fig. 2). Each cell
is slightly more complicated than an ordinary
full-adder stage. But 1t is also possible to make
use of ordinary adder stages, if we separately ge-
nerate the ti t products, to be used in the
441 rolationship » by means of (5.13). We then
get the scheme of Fig. 3. This is then very close
in complexity to the scheme that would use an or-
dinarg adderifor x+y and & parallel decrementer

11,1 to subtract one. However the recursive
computation wigh the (b) cells determines pro-
ducts of the G1 terme (known before the adder
starts computing) while in the solution with de-
crementer the product formed are of the s{ sum di-
gits of the adder.

In general, the above computation is very clo-
se to the one that may be used for base -2 adders®

5.3 Explicit carry logic for signed-carry adders

We can also express tij+1 &8 an explieit
(non-recursive) function of variables Gg . Gi .
PJ in ranks 0 to i inclusive and of tg and .
Let us denote by Go,i » Pg,3y the ordinary genera~
te and propagate functiong for block 0,i-1 and
by G& i the product of Gg terms (zero generate
terms) frem 0 to i-1 inclusive

-1
Gola = .”GS (5.15)
' I=°
Then )
) ”
tl’!’f‘i t(“f'l = Go,i. CO t; (5.16)
1 - ”
t,,= G ® Rt @ G, bLt, (517)

We can now use this last formula to substitute
ti + then ty_4 etc. until all intermediate t' s
have been elimi nated. It can be meen that vg
have

=G Bbo gLt
with ‘

G, =6 +FR Gy (59

G, = GI+P G (520)

Po,i = F Po,a-x (521)

Coi = RGLiy @ G ig (5.2%)

G,; = & G, 1 (529
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where the first three are formulas 22 for the
classical generate and propagate terms and the
fourth one resultes from the elimination scheme.

Expression (5.18) is explioit and only uses
three parameters Gg i . Po,; end GY,1 (versus Goa
and Po,i for classical adders) and thg signed-car-
ry of least significant weight. The Gy, 4 term can
be simplified in (5.22). as

ol " ’ o !
&S, =" ST 6«:/«'.—1.]G£ G,y G%

o 7
- G} G%A-L
. =Gt
‘:»;,‘i 2: = O (5.25)
Hence, applying this to rank i-1
~ U _ ( 7 u B~
C"o,i. - F:' GO,"-‘i)Go,i-l * PL Go’ -1 (5.26)

vhich shows Gs' 1 to be of the form A+BGH , , ..
A and B are separately computable., To build an
explicit carry adder according to (5.18) it is suf-
ficient to generate Go,i » Pg 4 and Go.i and com-
bine the terme according to ?’5,18).

Explicit expressions may be obtained for Gg i from
repeated application of formulam (5.22) or ' (5.26)
in much the same manner as for ordinary formulas
(5.19,5.20) and yields terms of a similar complexi-
ty. For instance

G, =G,6,G e R6GeRRGCaRRA ()

o .0 o

Gor= 6,&® £ge BP
O

6,:»,12 ce P

Algo, recursion formulas (5.15, 5.19, 5.21,
5.26) allow to build another adder, in which all
carry magnitudes sre funoction of the carry sign
ang magnitude in the rightmost position only
(to to). The logic is
5, = Ret, (o<igR-1) (5.28)

Y s
tl:-!-l. = C’o,«'.${>o,{.t¢>69 el € €

O/(_ g o

with Go g0 PO i G6 1 and Gg 1 generated recur-~
gively.

6. Iterative modulo 2k +1 adders

Modulo 2K +1 adders will have a regular struc-
ture for positions 0 to k-1 inclusive and a sepa-
rate logic for position k. We will consider for the
moment only the carry generation in bloock [p,k-1]
(which includes rk) and the sum generation in
[0.k-1] and only later will consider the sum logic
of the irregular stage k.

6.1 Adder with single decrement signal generation
Such an adder uses the signal t (3‘16) accor-~
aing to (5.13) with :

8, =t (6.1)

The modulo 2X +1 adder thus uses, to generate
the sum and carries in block [0,k-1] a signed-carry
adder to which the subtract signal t is fed as a
least ﬁignificant carry. It is oconvenient to take
both t3 and ty equal to t. In this solution , the
main problem is to generate the pignal t. As we do

by
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not have a ordinary adder to provide the ordinary
sums 845 from which it could be computed, other lo-
g8lo must be used to obtain t in terms of what is
nov available as inpute, i.e. the GJ , Gl . Py

terms, Basically the difficult part is to obtain
Ty of which t is a simple function (3.16).

Computation of Ty

The term Ty » 2qual to the produet of all ;3 ie
one if the result of ordinary addition, with Tq
carry-in at the rightmost position, is all zeros,
i.e. if the two numbers, limited to their first k
positions, are either the boolean complement of
each other (1 =1), or the true complement of each
other (r, =0). The first situation happens if the
addition block propagate P k=1 is one while the
second happen if at some p?ébe in the two numbers,
there im generation of 1, together with propagation
on the left of it and generation of zero in all po~
sitions on the right. Thus we have & first way of
expressing r), as an explicit function of all pogi-
tions

) R-1 1 - . P
2;‘3-%0 §+1/£'1% GZ';’-ir; " \O"‘.l

which may be used for ahort modules. For long modu-
les however some recursion formule is necessary.To
obtain one, consider the two conditions for a block
of digits to produce an all-zero block of sum di-
gits with respeotively an input carry of 1 and an
input carry of zero. For a block[71,3] and a car-
ry-in of 1, the function that signals that condi-
tion is the block propagation Pi,j « For the same
block and a carry-in of 1, let us denote the all-
zero condition by Ri,J and also let us deaignate

r, (6;-1=°;r=°) (6.2)

by Z3,4 the all-zero condition regardless of car-
ry-in, Then we have.
ZAL,") = R‘.',é r" + P‘.-,J. r.-‘ (6.5)
vhere r; is the carry of ordinary addition. Then
r .7
g = "okt (64)
= Ro,ﬁ-i'("]‘ + Po,{z-x ()
=R #1 (65)

Now the Ro k-1 ©an be computed recursively, it

turns out, either from the left or from the right
of the words. For instance, from the left ("back-
ward recursion") we have
. _ ) ) 1
Rikr= Ry 8160+ F G,

AT B (66)

P. - >
LR1= Fi+L, 17 (67)
Onoce ri is generated, ty iiself is obtained

thru (3,16") and may be then connected to the to ,
ta or ta to inputs of signed-carry adders of FPig,

2.3 and 4. The total rreopagation lengsh is 2k po-
sitions (k positions in each direotion), the same
a8 if 1k were computed isclately by & forward re-
cursion (6.18).

6.2 Adder with multiple decrement signal generation
The bamic idea for this adder is to recompute

separately for each variable positisn i the fixed

term Ro X-1 thru anexpression adapted to each 1.

then to look for a recursive generation of such an
expression, and finally, to combine it for possible
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simplification, with the P terms which come into
0,1

play for the same poaition i.

For any position i, we have

"Z'Oﬂk-i = Z‘é+l, ﬁ-lzo (6.38)
:ZL-‘L’ﬁ-i RO,L
=(Rug et Trt) + Ry %t R

—(Ri+l ,E-i G’e]; + FEH., -1 Go‘i )Ro,i- (6.9)
an expression which as such would require the gene-
ration of the R terms both forward and backward.
This is a possible scheme (in combination with
(5.28) ), for Ry 4 can also be obtained recursively
as we will see béiow (6.18). However, another molu-
tion which we now consider is to determine the re-
cursive parameters which will actuallg be needed af-

ter t is multiplied out by Po ; and Gy , . Thus
t ‘Zt =(6§ * Sﬁ'—i) R (6.10)
R =R G R a6 BB e
= Riﬂ.,ﬁ-x Fgu’- +—R_°l‘ Eli (6.12)
Now, for G"

- —, — _
'}ZG”' =R 815Gt Rt et G:,,;c;,c*‘ Ros 5:,'{ 0

ﬁ)l(. (X 4
(6.1%)
The five compound "forward" parameters Po g0

_— — " " -
Bo.1 Po,3 + G0,1 Go,1 + %5 G931 ana Ro,y

"
Ga,i could be computed from PO,i y GO,i . Go,i and

Ré.i the first three of which are computable re-
oursively as we saw before, while the fourth one
will be found of that type also. Thus, we can set
up two backward recursion chains and four forward
chains and in each point i combine their values ao-
cording to (6.6.6.7) , and (5.15,5.19,5.21,5.26).
The maximum propagation length for any i will be a
constant number k of positions.

A last type of solution may be obtained by
showing that the five above parameters are themsel-
ves computable thru recursions which are of the sa-
me type as for the four "primitive" parameters of
which they are functions.

6.3 Recursion relationships for compound parameters

U _ ] y ~) 1
%,i%,z = ( Pc%,c-ic’o,e~1+ R (’oli-l.) G+F. Ga, -1
(6.1%)
7 Yy
= PL Go,l'rl. [6:'i~1 C"o, [—JL] + 6«'. Go,i-.l. (6 '15)

GG = (PL G;,i-t G«:L-z +F (;c'»,i-t >(C’° *RCe :)

O,f. c;,i
- o (6.16)
—_ ! 4 ’
- PL Goli-l [GO,G:—LGDI('-ll +- GLGOI'l—l (6[7)
R = ( RL/;"L + R ri)ﬁto,'t-x (6.18)




R°.':-— Er‘“ +}er)RoL~1
= ( PL GO,L~1+ PL G’o 2 1)Ro ~1
Ro,x‘. = (PLC’O,L'-i +R o,L--j.)“‘Rolg_i (6.49)

PL (60,;--1 + Roli—l) +'Pi (Go/(.—l +Ro,[-1.)

(%,,;_Ro, = R C’;, i-1 (.Go,i—l + é:-—x) (6.20)

-7 - n -
+ P ,
Pl. G‘o,..- 1 Gol(-l ((Jo,i-l .'_Ro,i—i)

= PG . YR
[ Go‘ -1 Go’i-l F\D' -1

* PLG{:,L-IRO,L—i * PG .G G .

o,i~1 0,-1 To,-1

For the last identity we have used the fact
that

1 =

Bhqy G4 =0 (6.21)
Also, it introduces two new compound parametera
R [ n
of the types Gé,i Ro,i and Go,i GO.i 0.1 which
themselvea can be obtained thru recursions of the
previous types. The first one is constantly gzero
and can be eliminated. The second is identical to
the Po 1 rarameter already generated :
’

r B - [ o/
G°,LR°,'; - [PL (Go o1 ¥ Ro,i-i_)"- E(G% £—1+ Ro,i-l)]G.G .

/] (% QL‘i
(6.22)
o Y .
=G [_Gola-iRO,i-i.}
] o .0
= Gi. v 6-160 Po = O
R, o J ~ fen
".iGo,i G°,‘~ = (Gé * Go’i.-i)ﬁji.(%,i-t (G:),i-i Go,i-4)+
o 7
* GG,y ] (6.23)
— Vakd v/d
- E. an,i—LG;’i—l o,c-1
— =
= Fi ey [T G% IC%
=R. BB =&,
Hence
1 = b}
Go,i.RO,L = Pi.Gc-,L-x [Gol -1 o,i.—i] + P{_}(),lg_x
(6.24)
Lastly

o, (-

O,LWL = P;.Po -1 (5’—:+- o,i-i) (625)

=R (R + Rt Roor)
=R E,, -1
= E.‘.
wich entails ‘
wb: = B (6.26)
B, = (&R (627)

Thus ti+1' for any i, can be generated with the

i "
six forward parameters Go,i’ Po,i' Go,i’ Go,i GO,i’
G"

— " —
0,1 Go,i , 60’1 Ro,i vhich may be used instead of

the five parameters G y G!

”
0,1 * Po,1” %,1 7 60,1 'R, 4n
Also in both solutions the backward parameters
Ri+1,k—1 and Pi+1.k—1 are needed, Wifh the six for-
ward parameters solution, the cost of having an ad-

ditional recursion chain shonld be weighed againset
the fact that r'k Gs | may be then generated, for

each rank i, with 3 gates having 2, 2 and 3 inpute
instesd of 4 gates having 2,3,3,3 inputs, A design
with the six parameter solution is given in Fig. 6.

cells (a,b.c,c',0") correspond to equations (6.6,
6.7,6.14.6.16,6.20.6.24).

Initial conditions

G = G, ; Gp4=0
Poo= R y Fi,-i =1
G{:,o: O 6;4— 1

o= F Ry q=1
Goox= 1 ; G:;'_I: o
C’Z,qu,o: 6(: J C’:-LGo,-i =0
GoeCo=CL 3 GG, =0
GoRoo=R 3 G R =0
Rea=R o Req =t

Logic for rank k.

In rank k we must add the signed carry for
signed-carry addition x+y-v (t) and also subtract
v{t) (corresponding to the 2K component of modulus
2K +1), The sign t" of the incoming carry into po-
sition k will not appear in the expresmion of the
sum digit and we will have

9o [=]
S el
where 8, is the sum resulting from the use of tk in

the same way as for positions O to k-1 and t is
Gk + LI RO k-1 ° in which all three terms are also

(6.28)

it
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+G. G, + G R .+p —)
generated from the nestwork. Thus the above network "*"',ﬁ“i o '-"'1,&'1 o, 84-1,&-16’0}%,‘,

is irregular for position k. T o P A\ s
+ R(C-’Li-ilﬁ-‘l + ?La’-i‘,&--i +Go’£. + o,L)GO"'
r —_— (7.14)
=G, +( 5. . -
1. Alternate designs L& Gc+1,6'1kt+l,£"1 + Gu 1}-160,41*-6&1,&4 by
We may wish to fuse the 8 term, in the expres- + P£+1 Bt Go . Ro _)+- T (6 § 1'*'?:)6,’.
sion of t, with the logic expressions of 17: , 80 ’ (A e, R- o
as to leave only the variables at rank k (Gk‘ L (7,15)
or T g as the irregular terms. As we have seen
(3.15 Thus the carry 41 (ef (5.18) ) can be computed
t= rﬂn +5& "&’ from G, , , tPy 4 and tGy ; obtained above. With
L -G expressions (7.9,7.14) 1t can be implemented with
b= o,& (7.0 forward parameters Gy g Py 4 .(}6,1 Ga.i Ro.i
— 7.2 - "
= G&+ EGo,i-x t2)  (or Go,1» Po,qg + G4,y » GF 4 LR Gy, 4 end
G" vwhich again involves one more chain,but sim-
S, —
= Pﬁ & rﬁ (7'5) p?é% gates), The generation of Ga 4 may be then
1
p ‘ (7‘1) avoided if T, may be assumed zero, This would be
= &$G° g_‘_ ’ the casge if we treated separately the case where
! one or both operands equal 2K ang the other cases.
- G.T Such a scheme would involve a T,. gate, to switch
- 6ﬁ k @ Golf--i (7'5) the computation to either one 05' two networks, one
Then _ _ to form & number equal to v(Gy) (2k ~1) 1r T, is
t =(6€+_IZG 8 )1—(6 TeG 2 )r (7.6) one and to use the above network for Tk = 0. Then
OR-1 R ﬁ’ o,R-1 & this operating constraint, the above network would
= == -— = —— implify to
=GkG, B +GL(G, +C, T\ 6,T °
Rk ok % E( oR.1 Gc- 1 k)+G£ £ .. =G . eP lec”t (716)
—_ — —_ tL oL O ¢ o/('
- r G 4
Gt RG AR T R(S 40 ) 4 P t-C » (210
Hence (ef (6.26) ) ol v = <'+1,£~1 ol ’
ey "o - A .
C}Z(: G'QF:,L + QG‘, l_le,( + 'Tg Pof,'_ (78) Go,l: b= [6“*1’ #-1 R('ﬁl, ﬁ-l + 64‘.4 1,5'1 601(. A
=, +6; R.+P 2,G.RIC. (18)
=(6,+T,6 +T, P, . 6""1,{’1/\,0( i+, 8.1 5 ¢ 0,(J oLl .
( TR of-1 i) O This latter network assumés x and ¥ to be resi-
() T G )P dues., but this is not necessary for the more gene-
:( gt g+ :o’ R-1 o, ral one described by (7.9.7.14§.
Both typee of networks in §.7 require a backward
= (Tﬁ'f‘éo ﬁ-L)P N recursion to generate the G:L k terms. Thie can be
4 done with the relationship '’ 15,
— P - ~
o= (Te+ _ifi,l—i_) o _ (.9 G 4= ROl B I G, (7.19)
te, . c e REACPRIE= ' ' /
b= G Rtk R s % TG0 Appendix
with (7.10) In ordinary addition of binary numbers x and y
_— \ the gensrate ropagate and transmit functions are
G X G Z(G. +P G . ' defined as follows. For a block (0,1] of digits and
0,‘-1 B o L+1,£-1 H-',‘*i ot an adder assumed to operate on the digite X5, ¥y
'(R(u $-1G, "~+¥é34»1 E-lGo£+RoL)6:£ for this block (o £ J < (), then the generate

function is the carry out of position i, for a car-
—_— (7n) Ty into position 0 equal to zero and the transmit
= G L8 iRi.  Bq +G. ! G . function is the carry out of the same position vhen
“iR- +1, k- i R-1 °e the carry Into position O ig a one. The propagate
+ G':“ Bt R . +P " ) -G”. funotion for block 0,17 is the product of propaga-
' o, ¢ G+, R- 1) oL ot ol te functions for each position j., Let us.use + for

— the logical sum {inclusive OR), @ for the exolusi-
Goﬁ + rﬁ - (G C. +P G ) ve OR, conoatenation for the produot (AND) of va-
k-1 t+ 1,,5"1 oL 5*%‘-‘ o4 riables and overbare for complements. Let us deno-
R = . —_ te for any block(i,J] (1 £ J) of digits G, 3
+( L+1,‘§—L ot iﬂ,ﬁ—lGa,L"'RO,f) Ti 3 and P:l 3 the generate, transmit and propagate
’ Y
—— e _(7'12') funotions. Then we have the following relationships
= G’«Ln gyt Reis By +Go L +R_ and conventions 15,1821
. . ’ 4 ’ 7’,5)
tG” . _ : - ( (1) properties :
=[G T (G 8i R, 27 +
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P. = .
o J:Lf
B =%y )
1
Gol‘ = GL-"-'DL 60’1-1 ) = Zt-g;_
o ' o U
C’o:. = G,'_""P{Go -1 7/ C"L,:: x4
oL = CEEL *'72}
ol — 6)-@1[:. + ’3’1-1.,(.. C.:,a'a
(ii)conventions :
!
Gl:/i = 6‘ P Gbli—i =0
Pii=F o FPoea=t
jlli = T ; 72i_1::1
Gl and Gg are so-called O-generate and 1-gmerate

terms respectively.
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Figure 1.  Classical Adder with Output Correction Network for Moduls 2k+1 Addition. (k=4)

Figure 2.  Signed-Carry Adder.

Logic:

5= Pi@i by T ORI =ty
Arjthmetic Value of Carry:

6= (0¥ e
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Figure 3.  Signed-Carry Adder with Ordinary Adder Stages.

{+) cell: ordinary full adder
{b) cell: and gates
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Figure 4.  Signed Carry Adder with Gy ;, Gg,.Gg ; Py ; Interstage Variables.(g;=Gg ; 1)
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Figure 5. Backward L Generator.
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Figure 6. Another Modulo 2K+1 Adder with Six Forward Chains and Two Backward Chains.
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