THE IMPACT OF PARALLELISM ON SOFTWARE

DR. GARY W. COBB
TEXAS INSTRUMENTS INCORPORAT:ID
TEXAS

AUSTIN,

There seems to be a tug-of-war raging between
computer procurement technical evaluation committees,
computer designers and scholars of computer science
and numerical analysis over the issue of parallelism
in computations. Caught in the middle seems to be the
user community and the compiler writers. For the
scope of this paper, the term "user community" will be
assumed to be Fortran programmers who are involved in
solving problems that reaquire large computer resources,
e.g. plasma research, weather prediction, ray tracing,
seismic analysis, ecomometric modeling, weapons re-
search, reactor calculation, etc.

Parallelism within computer systems has appeared
in almost all major components of the more recent com-
puters, such as the ASC, B6700, B7700, CDC 7600, CRAY
1, HITACHI 8800, IBM 195, ILLIAC IV, MU5, STAR, STARAN,
etc. The impetus for this movement comes from the
emphasis placed by this user community on the fast
throughput of single large-resource jobs versus the
relatively slow increase in the speed of computer logic
and components. Of course, the first signs of paral-
lelisms manifested themselves in I/0 channels, inter-
leaved memory systems, cache memories, as well as dedi-
cated processors for operating system functions, sepa-
rate from the user's processor. With the possible
exception of parallel I/0 channels, these parallelisms
were installed in most Fourth Generation computers in
a manner that was '"transparent to the user", and so,
for the most part, their existence could be ignored.
However, the parallelisms found in the Fifth Genera-
tion's array processing computer systems are by no
stretch of the imagination "transparent to the user"
and cannot be ignored without significant impact upon
performance. The subject of the remainder of this
paper deals with the reflections of array processors'
parallelisms in software and the scope of the array
processing computers will be limited to the ASC, STAR,
CRAY 1 and ILLIAC IV computers.

The technical evaluation committees representing
the user communities that are searching for large-scale
computers continue to use the rather classical approach
of measuring the cost/performance ratio of prospective
array processing computer systems by requiring that the
computer vendor compile-link-and-execute a set of
Fortran benchmarks which is typical of the committee's
installation's job mix. Usually, several time-burning
kernels are selected from the installation's productioa
codes, along with a typical I/0 sweep program that
exercises one or more levels of heirarchical memory.
This selection is executed in standalone mode and in
batch mode to measure the throughput capabilities of
the new computer.

The vendors of the array processing computers
usually perform program conversion in order to warp the
kernels and 1/0 sweep programs into moderately opti-
mized solutions to the same problems. This often in-
volves the substitution of parallel algorithms for
pointwise (scalar) algorithms. Judgement is them made
by the technical evaluation committees as to the depth
of the recoding done by the computer vendors on the
kernels in order to measure how much of their installa-

220

tion's Fortran code will need to be recoded to exploit
the parali.elisms available in each computer being
measured.

This brings up a very important point. That is,
the dynam:c range of execution speeds of the array pro-
cessing computers is much larger than for the scalar
computers of previous generations. A pointwise algo-
rithm may be sped up by an order of magnitude or more
by converting the algorithm to one that exploits array
processing. Furthermore, the conventional measures of
performance, such as MIPS (millions of instructions per
second) and MOPS (millions of operations per second,
excluding loop control and logic) are being replaced
by measures of parallelism. In his paper entitled
"Multioperation Machine Computational Complexity",
David J. kuck has defined a measure he calls "utili-
zation'', Up, to be Op/(PTp) where p is the number of

processors. that an algorithm is compiled for, Tp is

the time required to execute the algorithm in p pro-
cessors ard Op is the count of the operations that may

be spread out among all p processors. It becomes the
task of tte hardware and the compiler to maximize U

while still insuring hazard-free execution of the algo-

rithm. Figure 1 illustrates this point.
LINE NO. FORTRAN STATEMENT
1 COMMON/NAME/A(100,9,7), B(100,9,7),
1 ¢€(100,9,7), X(100,9,7), Y(100,9,7)
2 DO 1 L=1, 7
3 DO 1 ¥K=1, 9
4 DO 1 I=1, 100
5 X(I,K,L) = 1.0/X(I,K,L)
6 A(I,K,L) = X(I,K,L) + Y(I,K,L)
7 B (I,K,L) = X(I,K,L) - Y(I,K,L)
8 1 C(I,K,L) = X(I,K,L)* Y(I,K,L)
9 END
FIGURE 1

Let p denote the number of processors available,
assuming that each processor is capable of executing
any instruction or any array operation, as in the ASC
and the ILLIAC IV. The ASC's optimizing Fortran com-
piler maxinizes utilization by determining as many
equal-instruction-time, nonhazardous array operations
as possible, and, failing that, to split up one or more
operations into disjoint array operations of equal
length to calance the processing across the processors.
Note that lines 6, 7, 8 are independent from one
another, but all are dependent on line 5's output, X.
Due to the ASC's three-loop hardware-indexing capa-
bility for its vector operations, partitioning may be
done on any one of the three loops, so that the com-
piler's selection algorithm involves all compile-time
constant lengths for the outermost one that is as
closely divisible by p as possible. Figure 2 shows the
results of this scheme for p=1,2,3,4 for single and
double precision variables. ©Note that +, - and * are
equal-stream-rate instructions in single precision, but
in double precision + and - are equal stream-rate and
* is about half as fast.

P Precision Resulting Array Operations

1 Single or
Double

Four vector operations result to be
executed sequentially.

2 Single or Six vector operations result; line 5

Double is partitioned two ways on I, lines 6
and 7 are executed in parallel and
line 8 is partitioned two ways on I.
3 Single Six vector operations result; line 5
is partitioned three ways on K and
lines 6,7,8 are executed in parallel.
3 Double Twelve wector operations result; each
of lines 5, 6, 7, 8 is partitioned
three ways on K.
4 Single Twelve vector operations result; line
Double 5 is partitioned four ways on I, lines

6 and 7 are partitioned two ways each
on I and line 8 is partitioned four
ways on I.

FIGURE 2

The STAR also has a stream unit having two inde-
pendent processors, each of which is partitionable for
like instructions. Therefore, for the Figure 1 code,
the maximizing algorithm for U_ requires 6 vectors for
32-bit precision and 8 vectorsPfor 64 bit precision,
since all arrays are stored continguously in memory.
However, if line 4 were changed tc read "DO 1 I = 1,
10", a timing trade-off must be made between executing
252 vectors of length 10 or processing and then not
storing 90% of the results by use of a control vector
on 6 or 8 vectors, as described above. Both cases
diminish U

For the CRAY 1 macihine, the maximizing algorithm
for Up is obtained by executing 686 vector instruc-

tions each of length 64, followed by 7 vector instruc-
tions each of length 28. A trade-off similar to the
STAR algorithm would need to be made if line 4 were
altered to read "DO 1 T = 1, 10", diminishing Up. For

the 64 processing element ILLIAC IV the maximizing
algorithm for Up is obtained by executing 392 array

operations each utilizing all 64 PE, followed by 4
operations each utilizing 28 PEs.

The major importance of this analysis on Figure 1
is the understanding it brings up the variety of com-
piler optimization algorithms that are required to
maximize multiprocessor and vector utilization, if
some degree of 'transparency to the user'" is to be
maintained. However, the compliment of this problem
is precisely what the iadividual array processing com-
puter users face - that of knowing the central pro-
cessor architecture, the hierarchical memory system
and it's buffering characteristics and the optimiza-
tion capabilities of the Fortran compiler.

Figure 3 shows somz source code which inhibits
compiler optimization dramatically. Since compilers
classically compile one source module at a time, then
there is no hope of collapsing the code in Figure 3,
the code "hides" from tne compiler the length infor-
mation so that length tests and array operation setup
code, usually scalar code, will be required to be
executed each time through the subroutines. IF - tests
like in line 4 of SUB1 have plagued array processor
compiler writers in the past, but recently some general
approaches to generating array instructions for DO-

loops with IF-tests in their range have been developed.
To recognize parallelism from Fortran, some array

LINE NO. FORTRAN STATEMENT

1 COMMON/NAME/A(100,9,7), B(100,9,7),
€(100,9,7), E(100,9,7), F(100,9,7)

2 L=0

3 10 L=L+l

4 DO 1 K=1, 9

5 CALL SUB1 (X(1,K,L),100)

6 CALL SUB2 (A(1,K,L), X(1,K,L),
Y(1,K,6),100)

7 DO1TI=1,100

8 C(1,K,L) = X(I,K,L) * Y (I,K,L)

9 1 CALL SUB2 (B(I,K,L), X(I,K,L),-Y
II,K,L),1)

10 IF (L-7)10,10,11

11 11 STOP

12 END

1 SUBROUTINE SUBl (R,LEN)

2 DIMENSION R(1)

3 DO 1000 I=1, LEN

4 IF (R(I).EQ.0.0) R(I) = 1.E-50

5 1000 CONTINUE

6 DO 1001 I=1,LEN

7 1001 R(I) = 1.0/R(Y)

8 RETURN

9 END

1 SUBROUTINE SUB2(R,S,T,LEN)

2 DIMENSION R(1),S(1),T(1)

3 DO 2000 I=1,LEN

4 2000 R(I) = S(I) + T(I)

5 RETURN

6 END

FIGURE 3

processor compilers key only off the DO statement, so
that the non-DO-loop evident in lines 2, 3, 10, 11 of
the first source module usually evades detection.

The purpose of the example given in Figure 3 is
to demonstrate the "fragilness' of Fortran source code
that has been written for an array processing computer,
as in Figure 1. An unknowing programmer might replace
the Figure 1 code by Figure 3 code, say to avoid a
divide check, and time out at ten hours om a job that
previously completed in one hour! Of course, a case
should be nade now that a source code that has been
revamped to present a maximum degree of parallelism to
an array processor's compiler, will usually execute at
a rate equal to or greater than it's previous genera-
tion ancestor code on a previous generation scalar pro-
cessing computer. Hence, the revamped code represents
an intrically equal, if not superior, algorithm, re-
gardless of which array processor is used.

A higher level of parallelism has been carried
over from the Fourth Generation computers to those of
the Fifth Ceneration - that is asynchronous I/0 and
other operating system services. The Control Data
system's concept of the '"station", IBM system's concept
of asynchronous data channels and the ASC system's
concept of distributed tasks among the virtual pro-
cessors of the peripheral processor are three examples
of these perallelisms. As one might expect, in the
absence of a Fortran standard for asynchronous I1/0,
the Fortramn syntax required to invoke this feature is
quite varied from CDC's BUFFER IN/OUT to IBM's
FORTBDAM to ASC's QDAM. Technical evaluation committees
are again faced with subjective decisions to make in
evaluating the flexibility, useability and performance

performance of these parallel operating system
services.

In summary, it has become clear over the past
decade that two major factors influence the execution
speed of a large Fortran program; they are the
selection of the algorithm and the interface between
the user's coding technique and the compiler's optimi-
zation characteristics. Many scholars of Numerical
Analysis have begun to rethink some of the algorithms
for solving some of the more classical problems of
science, and a solid base of literature is taking form
to address the parallelism of these algorithms. This
research along with the new array processing computers
should form an adequate stepping stone to the succeed-
ing generation of computers. And, to complete the
tug-of-war, the technical evaluation committies have
a difficult, and often times very subjective, job of
selecting a new large-scezle computer, whose cost/
performance ratio may be low for existing small-
memory-scalar-algorithm models, but which will increase
in its performance as kncwledgeable users begin new
models, using parallel algorithms.

Acknowledgement

The author wishes tc thank Al Riccomi, Dan
S8ifferd and Dick Roth for their discussions and, of
course, the typist Mary Eaugh.

References

Butler, Margaret K. "Prospective Capabilities in
Hardware", ERDA-wide Conference on Computer
Support of Environmental Science and Analysis,
July 9-11, 1975, Albuquerque, N. M.

Cobb, Gary W. "What a Vector Machine Can Do For a
Meteorological Problem'", presented at the
Symposium on Complexity of Sequential and
Parallel Numerical Algorithms, ONR, Carnegie-
Mellon Univ., Pittsburgh, Penn., May 16-18,
1973.

Owens, Jerry L. "The Influence of Machine Organization
on Algorithms", presented at the Symposium on
Complexity of Sequential and Parallel Numerical
Algoritbhms, ONR, Carnegie-Melon Univ.,
Pittsburgh, Penn., May 16-18, 1973.

Wedel, Dorothy. 'Fortran For the Texas Instruments
ASC System', Proc. of Conf. on Programming
Languages and Compilers for Parallel and
Vector Machines, SIGPLAN Notices, Vol. 10,
No. 3, PP 119-132, March 1972.

222

