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SUMMARY

This paper presents a new method to study arithmetic
combinatorial circuits. Using pol¥nomial associated to

the input-output sequences and to the system, it is possi

ble to solve the problem of minimization of the num=—
ber of the component blocks. Particularly, the impor=
tant case of the multiple outputs elementary units can
be treated.

Applications of the introduced procedures to multie
plier and to fast networks for performing convolution
are presented.

I. INTRODUCTLON

The design of arithmetic arrays using macrocells
seems to be very promising for many reasons. High
speed of arithmetic operations is an 1mportant requis-

rement for general purpose computers and for many
special processors as well. The possibility of us-
ing macrocells greater than the conventional fulle

—adders, in large combinatcrial or pipelined arithme—
tic arrays, allows the designer of digital systems to
obtain fast and complex networks with a relatively
small number of equal modules. Furthermore , the
designer of integrated circuits can proficously decide
the complexity of arithmetic operators, considering
the technological convenience of their implementation.

A recent paper proposed a formal characierization
of the arithmetic combinatorial circuits and presented
procedures to minimize the number of elementary "trian
gular" units Z_/ in a parallel multiplier of positive
numbers. Another paper 2 showed how very fast multi=
pliers of signed numbers can be designed, using macro
cellular iterative structures, whose cells are pseudo=
—adders having several inputs of some weights and one
or more outputs for each weight. For these modules
the techniques presented in 1 are not sufficient to
solve the abovew-mentioned minimizatior. problem.

The purpose of this paper is to present original
methsds for minimizing cellular arrays containing cells
that can also be not triangular. The cells must be,
hovewer, elementary "Operative Full Systems", accord=
ing to the definition introduced ip _part II, that is
realizable with only fulleadders [:/, This class 1is

[j/ An arithmetic unit is "4riangular" if it has only
one output for each weight.
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the most important and excludes only the blocks that can
be realized, either with full adders or half adders.
The generalization of the precedures introduced here
to all c%@sses can be found in another paper 3. Final
ly,example of applications of the minimization proce~
dures to the rultipliers described in 2 and to pipelie=
ned arrays for performing convolutions  will be
presented in parts IV and V.

II. ANALYSIS OF ARITHMETIC
COMBINATORIAL CIRCUITS

In the followin§, many definitions and properties
introduced by Meo are extended to the general case
and the polyncmial transforms of the system sequences
are introduced. They are useful either in analysis
or in synthesis and offer simple and practical inter—
pretations that are omitted here for the sake of brevi
ty.

Definition 1: A Binary Arithmetic Combinatorial Cir-—
cuit (BACC) is a combinatorial network having p+1
input sets I; and q+1 output sets Uj:
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each indicate an
binary signal coming

where the symbols xi, and yi,
output lead as well J as the J
out from it,

Definition 2: The number i is the relative weight of

an input x € I. or of an output y11€ U . Let

m = IIll t g rmmter of inputs of the set I, it
n, = |U.| the number of outputs of the set U,
e < m.? the number of inputs of the set I. O that

i
are really excited by a binary signal, then we intro-
iuce.

Zg/ The cells realizable with full-adders can be, of
course, implemented in other waysSto minimize the
delay.




Definition 3: The Lead Set Characteristic Sequence
(LSCS) of a BACC is the sequence:

mp, m

D .
i
M(z) = z m oz
i=o

s I
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and

the associated z~transform, is the Input Characteristic
Polynomial (ICP).
The Output Characteristic Sequence (0CS) of a BACC
isst
nq, nq_1, sesy Myy B

and
k! i
Wz) = > n, 2
i=0

is the output characteristic pelymomial (OCP).
The Excitation Characteristic Sequence (ECS) is:

ep, ep_1, EEERCT I
and
P i
E(z) = Z ei Z
i=0

is the Dxcitation Characteristic Polynomial (ECP).

Definition 4: An arithmetic network built up with BACC
is regular, if the following conditions are verified:

3.1) each output can be connected to at most one input;
3.2) each input can be fed by at most one output;

3.3) if an output and an input are connected, they must
have the same weight;

3.4) every input of the arithmetic network must affect
those outputs of the network.

Definition 5: The Network Characteristic Sequence (NCS)
is the sequence:

M =17y eooy M

P D 170 By T Py

and the associated z-polynomial:

D .
#() = 3 (m = n)e"

is named Network Characteristic Polynomial (N.C.P.).

From the above definitions, cne gets:

#(z) = M(z) - N(z) (2)

The following propositions justify the introduction

of @#(z).

Proposition 1:

i) if two arithpetic sub-networks, whose NCPs are
respectively #{1)(z) ana g2 (z) , are connected ac-
cording to Definition 4, the resulting network has
an NCP ¢(z), as follows:
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(n (2
#(z) = (2) + §(z) (3)

3i) multiplying the NCP @(z) of a network by a positive
integer p, a new z=polynomial is obtained, that is
again the NCP of another network:

#(z) = p §(2) (4)

k
iii) Multiplying the NCP of a network by z , a new
NCP is obtained that corresponds to a shift of  the
weight~reference by k positions.

Definition 6: Characteristic Sequence of a Regular
System (CSRS) is the sequence of positive integers:

a, a ceey By @
m! “met? *°°T 71 %o

where a. is the number of equal BACCs whose leasi
significgnt weight is shifted by j positions with
respect to the least significant weight of the whole
network; the associated z=polynomial:

m .
1
s(z) = Z:: a, 2
i=o
is the System Characteristic Polynomial (SCP).

The BACC that compose the system are called cells
or macrocells. Defining as ¥ (z) the NCP of the
cell, if @(z) ie the NCP of a regular arithmetic
network, then from proposition 1 and definition 6 one
getss

#(x) = ¢(2) s(z) (s

Definition 7: A system is separable if its NCP ¢(Z)
can te written as:

¢(z) = le(z) + P(z)

with the polynomials ¢(z) and P(z) satisfying the
following conditionss
P(z) £ 0

a(z) £ 0

and the degree of Q(z) is <€ 1=1.

Intuitively, a separable system is composed of two
or more distinct subesystems that can be studied indi
pendently.

Propesition 2: Lets

#(z)
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The proof comes directly from definition 7.

Definition 8: An Operatively Full System (OFs) is one
that when all the inputs are excited all the outputs can

vary.
For the OFSs, the (1) becomes:

1 1
z m, 2 = E ni 2

i=1 i=0

(6)

The eqn., (6) can be rewritten, on the basis of de=
finition 2, as:

M(2)
which, because of (2), implies that:
#(2) = 0;
therefore the NCP can be divided by (2-z), giving:
#(z) =

An important property of T(z), for the non—separa-
ble systems, is given by the following theorem:

- 1(2)

z) (=z +2) (1)

Theorem 1: An arithmetic network is a non-separable
OFS if and only if $(z) can be written as in (7) and
the coefficients of T(z) are all positive numbers.

Proofs
Only If. The OFS can be written as in (7); it ree
mains to prove that if OFS is not-separable, then T(z)

has every coefficient positive., Let:
p=1 5
7(z) = Z 4,z
i=o
b i
Moo= (2l b o) (-2 e2) -
i=0
he1
h+1 i
= -t 2 + 2 n (wz +2) 2:: b7
i=o0

¢ (z) is obtained from Mh(z),neglecting the term with
h+1

(2 -

het

2t v (~z42) D b, o

. 1
1=0

The proposition 2 imposes ¢ (2) > 0 for every h<p-l;
thus:

g(2) = 2% Pyo
h h

and th 7 0.

If,
If §(z) can be written as in (7) the system is a ors,
if ¥ » 0 for every h % p-1, then ¢ (2) » 0, thus
the OFS is not separable for proposltlon 2.

Corollary 1: Every regular (cellular), non=geparable
OFS5 can be implemented with only full-adders, that is
with sub-systems whose NCP is:
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(8)

Every cellular non geparable OFS is composed of
cells whose NCP G(z) /3/ can be expressed by Corollary
1y as follows:

&() = s(z) (~z +2)

The NCF of the whole network, because of (5), can
be expressed as:

#(z) = s(z) 6(z) = s(2) (10)

In the cellular arrays, for which (5) holds, set-
ting z=1 in the polynomial S(z) gives the number
of cells in the arithmetic network.

-2z + 2

v(z) =

(9)

s(z) (=z +2)

ITI. SYNTHESIS PROCEDURES

The general problem of designing the cellular BACC
with the minimum number of elementary blocks, each
realizable with only full—addeis, can be now set as
follows.

Given E(z), N(z) compatible with it, that is

E(2) ¢ M(2)

and G(z) satisfying eqn. (9), find $(z) such that the
OFS, having $(z) satisfying eqn. (10), will accept
either E(z) and N(z). Furthermore,S(1) must be the
minimum,

In general, there is more than one solution to this
problem and the resulting system can have an NCP that
does not match exactly E(z) = N(z), that is m, > e,

for some value of i, To obtain the minimum own
sequence S(z), the following procedure can be used:

Step 13 G(z) is factorized as in eqn. (9)
Step 2:
N(z) is

#*(2) (11)
Step 3: If @#*(z) can be factorized as in eqts (7),the
polynomial R(z) is easily determined:

#*(z) = R(2) (-z +2) (12)

otherwise another NCP, ¢?(z), factorizable, by -z +2,
having all coefficients greater than or equal to g*(z),
must be founds

pi(z) = $*(2) + X(z)

The polynomial K(z)} can be obtained in the following
vay [4/ 3

#*(z)
g*(2) =

The NCP $*(z) that accepts exactly E(z) and
computed:

- 5(z) - N(z)

= R(z) (-z +2) (12 bis)

is evaluated with z = 2, giving:

E(2) = N(2) < 0

Z;/ It can be noted that s(z) is the transform of the

— sequence of full adders that form the macrocell.

[4/ Te proof that K(z) computed as in Step 3 gives
the polynomial R(z) of the minimel solution is
reported in Appendix.




3.2 The coefficients Ci of the positive binary number
- g* (2) are found-

Z ¢, 2 == (2 (13)

3.2 Flnally K(z) is given by:

P :
K(z) = 2 . . (14)
i=o0 *

An important result at this step has been obtained;
in fact the polynomial R(z), that in any case has been
determined, indicates for each weight, the minimum num
ver of full=adders necessary for implementing the BACC
when the chosen cells are the same full-adders.

Step 4: In general @#(z) must include g*(z) or $*(z),
that is, remembering equs. (10), (12) and (12 bis),the
polynomial S(z), solution of the problemmust satisfy
the following relation:

S(z) s(z) = R(z) + H(z) (16)
where the unknown H(z) is a polynomial, having non-ne
gative integer coefficients.

This equation shows that the minimization problem
can be formulated as a positive integer linear program
ming problem:

Find 5(z) such that:

i)  the coefficients of the product S(z) s(z) are
greater than,or equal to,the corresponding coefficients
in the polynomial R(z);

ii) 8(1) must be minimum.

H(z), that gives a measure, with the full-adder as
unit, of the greater cost to implement the BACC with
the macrocell than with the full-adder, in many inte-

resting cases,it can be easily determined using the par

ticular properties of M{z), N(z) and G(z).

5(z) is thus obtained by means of faster procedures

of division between polynomial with integer coefficients.

Furthermore, from eqn. (16), a lower bound to the
minimal number N of cells can be obtained:
= 0(1) .._(_l.
s(1) ;

It must be noted that also Meo solved the problem
using integer linear programming methods, but his for=
mulation fails when cells having more than one output
at the most significant weight are used. Eqn. (16),
allows to obtain the right solution in any case; an
example of cells that cannot be considered with the
procedure of Meo is presented in the following para-
graph,

IV, MACROCELLULAR MULTIPLIERS

In this paragraph the minimization methods are ap-
plied to implement full multipliers using a new family
of macrocells introduced in a previous paper <. For
what is interesting here, where the generation of the
partial product bits are not considered, the single
cell can be represented as in fig., 1.
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It has no input at the most significant weight, 2k+1

inputs at the least significant weight and k+1 at all
the others. The cell has, moreover, k outputs at the
most significant weight and one output at all the

others. As a result it is a OFS. Its NCP G(z) can

be written as:

k=1 . K
G(z) = = Kz + Z xz’ + 2
i=1
and can be, furthermore, factorized for corollary 1,
giving:
kw1

a(z) = x (Z (-2 +2) (17)

For the sake of sunpllclty an M by M bits full multi-
plier will be considered. The full multiplier is an
arithmetic arrays having two M bits multiplicative
inputs W and Z, two M bits additive inputs H and K,

and 2 N bits output @, related as in the following for

ml a2
Q=W.Z+H+X (18)

The full multiplier can be used also to implement
the product of numbers represented in 2's complement
form, using the algorithm and the correcting networks
proposed in another paper 4, The minimum number of
excitation leads in a full-multiplier is the one cor—
responding to the following ECP:

te Momjm2 | Mt et
E(z) =. (341) 25 0 B +Z(J+1)z +
J=O J=°
M1
+ 2 Z:: z‘.j
j=o

Furthermore, there has to be only one output for
each weight; so the OCP of the network will be given
by

211 .
Nz) = > 2 (19)
j=o0
For the NCP, one getst

#(z) = B(z) = N(z) = = z

fm?
+ E:: (J + 2) z
J=0
because #(2) = 0, for theorem 1, the following factori
sation is obtained:

N2
Vi1 ~ 2N j=2
2 + E:d Jz J +

j=o

+ (M+1) z

%3

hi
3

M;q




Mea?2 M2

. 2N jom?2 Ml <=, 3 3b) n =1,
#(z) = (=z +2) Z (341) 2z s+ 2 (341) =z Jep=1 - ke
- j= : y 2N je=2 = X 2M =j=2
= = (20) R(z) = > (541 e S () T
comparison with equs. (12) gives: j=0 j=(m=1)k
M2 M2 k1 .
2Mew juel il j 2N k=2 .
R(z) = 2_ (§+1) 2= 9+ Mz  + (3+1) 2° #(mxa1) 27 L ST (G1) 2 ke
j=0 j=0 (21) j=o
Now the zepolynomial H(z) has to bte found, such that: m k=1 .
=1 + (j+1) 2° .
R(z) + H(z) = 5(z) R[Z 2° (22) = (mmt )k
j=o . As for case 3a), one gets:
with the condition that $(1) is minimmum. }é:} Plim 2 m k1 Dl o
! o . R(z) +H,(2) =k ) =z 4o+ Mk Z z +
In order to solve the problem, the following poinits 1 ':: '=(m-1)k
have to be considered. I= Y J m k=1
2hlemity ka2 - j )
1) If S(1) is minimum, also H(1) is minimum, because: + (m+1 ) kz - +kZ z° 4.4k Z 20 =
j= j= 1)k
R(1) + H(1) = s(1) X5, ot - =0 j=(m=1)
hence: b} 2l 2k 2Nl
5 =k (Zz)z + 4es +mz +
H(1) = s(1) k” = R(1) . j=0 -
k 1)k 2wk @
2) A1l the coefficients of R(z)} + H(z) must be multi + 142 2 +.eatm z(m_ ) ]-@- (m+1) z .
ples of k, therefore, H(z) can be rewritten as:
=
B(z) - H (2) +k Hy(2) 3e) nZ2.
where U (z) is such that H (z) is minimn and Analogously with t(hekp?evmus cases, one gets:
icients ' =3 3y | 2l 212k
I}:(z) + H1(z) has all the coetficients multiples of R(z) + H1(z) -k ‘t (Z ZJ) [z Tk + 22 1+
* '\. J=O
3) et M=mk+n (0=<n <k = 1); in order to de=
§- k
termine H1(z), three cases are of interest. Fooot M z21 k-1 + m z<m_1)k Feeet 2 2 +1J +
3a) n = 0. . o - pop T2 j
S U jm? S, 2 o + (me1) 27 754+ ST (m+1) 20,
R(z) = E (3+47) = +Z’_{(3+1) z +ooot %;rrﬂ{ %;’nk
J=0 j=k
m kel oMemic? k=1 . 4) Using the results obtained above, the z-—polynomial
+ (3+1) 25 97° & Z (i 4+1) 2%%...+ H.(z) can be determined in order to make R(z) +H(z)
j=(m=1)k J=o dfvisible by the NCP of the cells given in (17);
m ke2 . the following cases are of interest.
v 2 GG e j) n - 0
j=(m=1)k o —

It must hold:
In this case H1(z) can be easily determined; it must o

~1
corresponds to the minimal "filling" of R(z), that X 3 2M~ke=1 2M, 2kt 2lfmink=1
. . (Z z°) |z + 2z vee z +
makes R(z) + H1(z) divisible by k, leading tol s

ke
2N juu2 \ m k=2 .
R = 2)k
(z) +H,(2) Z;; K 2z + + (1) ,(m=2)k e e ST zJ+H2(Z)=
s g=(m=1)x
2l jeu2 k=1
+ 2k z + oee + I
- = 5(z2 z°) 3
25 () (2 #)
k m-1 k1 A
- 2MmjmR < J it turns out that there are two equivalent solutions
+ Z mkz +/ kst + ..+ for H.(z), namel
=(m=1)k =0 PANE Y
mk=2 .
+ > xmaz’ = £(a) - m
j=(m=1)k 2x"
k=1 \
_ ), 2kt 2l 2k 1 2, \ (m=1) k=1
"k<2 Z/)JZ +2¢2 Fouot H2(Z)—mz ]
J=0 - selecting the former, one gets :
g ] )
n 2R 2 e () 2 )k]+ 2kt 2him2kc1 k1
o 5(z) = 2 +2z 4 vee +m 32 +
. ,)‘
+m zJ +m z(mmll)k + (m—‘l) z(mm")k + eee + 1,
j=(m=1)k

S(1) =1+2+ .. +m+m+.,. +2+1 =m (m+1) .
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4v) n £ 0

Assuming that a summation has zero value if the up-
per limit is less then the lower, Ho(z) is determined
from the condition: -

k1
)} ek 2M=2k=1
(2{: 2?) [zzr 2 AR
j=0
2M=kmme1 (m=1)k .k
m z +mz + .00+ 22 + 1]+
mk+n=1 OMeiua2 mk+1e=2 .
£ 5T (me1) 27T > (m1) 2+
j=mk j=mk
k=1 |
i
+iy(2) = 5(2) (3 2)) 5
J=0
H2(z) must be such that:
mk+4n=1 j mk-+n=2 j
< J
{m+1) Z z° +(m+1) >, 2 +H2(z) =
J=mk+2n~=2 Je=rk
k-1 ;
= az) (2 2)) ;
j=o
mk+2n-2 5 k=1 3
(m+1) :E: z° + HZ(Z) = q(z) (Z:‘z Y s
J=mk j=o

q{z) is an unknown polynomial.
Two sub=cases are of interest:

i) m-2+14%£%
ii) n—-24+17>k.

k + 1
For sub-case i}, n< = 5 y the summation

mk+2ne2 |
E: 2° has less than k terms, then H2(z) must
j=mk

extend the summation to k terms, leading to:

a(a) = (m+ 1) 2" 5,
2N mekims 1 Hewktiime 1 k
S(z) = z° + .40 +m 221 R (m+1) 2
1k
+ m z(m- ) + oees + 1

S() =1+ ceo +m+{(m+1) +m+ us + 1 =

=m(m+1) +m+ 1 = (m + ‘I)2 .
K - N S R
I S <" zJ has more

For sub-case ii), n 7 5 _—

than k terms and it has to be completed by H2(z) in
order to have 2k terms; thus:

mx 22 oy et ;

(m+1) = :E: z" o+ HZ(Z) = (m+1) z ZE:: 7=

j=o0 o

mk , k L

={m+1) 2 (2'”)(242),
j:[_)

alz) = (m+ 1) " F(E ),
5(z) = LN e 4 gt (m+1) z(m+1)k+

k ‘m=1) x

+(m+1) 2" wm 2 + .00+ 1,
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142+ +m+e(m+1 ) +(m+1) +m+ .o +1=

(m+1) (m+2) .

s(1)

Structure corresponding to the minimum number of come-
ponents found above can be arranged as iterative arrays
of macrocells. The details of such structures, as well
as the extension to signed numbers, a discussion on
cell implementation, taking into account the partial
products generation, and the delay analysis are repor
ted in another paper <.

V. FAST NETWORKS FOR PERFORMING CONVOLUTIONS

The proposed minimization procedure can be also ap=
plied to any BACC, such that its output can be obtained
as a sum of positive partial products. As an example,
it is possible to implement a fast network to compute
the following sum of products:

S = ﬁ: XY, (23)

i=1
To increase the operation speed two techniques can be
used: pipelining and paralleling of operations. The
latter is considered first: three products are perfor-
med at the same time. Let:
By = Ky Ty 0 T R T
1=1,...8/3
eqn. (23) can be written as:
N/3
5= 2. I, (21) ;
1=1
where N is supposed to be a multiple of 3 for simpli-
city.
Furthermore, a recursive procedure can be alternati
vely used:
Sp =8, +2 =1, «ouy, N/3
S = ¢ (25)
%/3

with the initial condition:

S = 0
(o]

lultiplication Algorithm

The multiplication algorithm must be chosen aAC
cording to the representation of the factors.

In the following, the eqns. (22), (23) and (24) are
used for computing the output of a linear filter (re-
cursive or not). Its coefficients X, are fixed,
thus they can be represented in sign and magnitude,
while Y., the samples that can be obtained from other
computation, are 2's-—complement binary fractions. The
result of the multiplication must be also in 2's~come
plement form, to compute Z.. The algorithms that con
sider negative factors, like Booth's method and Row
bertson's second method, must be rejected, because the
partial products matrix becomes larger than in the
positive case. Furthermore, also the algorithms for
2's complement parallel multipliers 445 give, in
this case, solutions more expensive than the special
procedure developed here.

L;;

jl i
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Fig. 2 - Positive partial products matrix for M = 6,

Let (x , Xy oo xM) and (uo, Fqr eees yM) be the
representa%ion, in 2' complement form of the generic X
and Y, whose value is given by:

M

x=-xo+Zx, 2'J=-x0+x*
=1 7 (26)
M .

Yamy +D .7 2% ==y +71*

[ - J o
j=1
where x and y_  are the sign bits (0 if positive, 1

if negative), and X*, T* the fractional parts.

The representation of X in sign magnitude form is

(xo, %*), where ¥* indicates the magnitude.
Btween X* and X* there is the relation:

0

* = Ix if x
[o]

(21)

X% =1=%X* if x 1
(o]

The true value of the product P can be given by:
= = X*Y* - * o *
P =Xl = X¥* mx Y¥ oy X¥+xy (28)

The following representation of P, as binary 2'comple
ment fraction, must be found:
2N .
P=w=p + E:: D. 2_3
¢} o 3

Two different cases are considered,

Case 1: X positive: Using X* and Y* as factors, the

M by M bit partial products matrix is obtained; by means

of (27), its value Q is:
Q= X* Y% = X* y*
A corrective term C must be considered:

X*

(29)

T* and ?*, the 1's complement
Remembering that:

C=P=Q==-y, m Y, ¥

Case 2:
of Y*, are

X negative:
multiplied.

il

1w i* a2

¥* (30)

A can be obtained:
Q

]

X* Y% = 1 = X% = Y* 4+ X¥% Y% = (1 = X¥) 2

—M“' "
PRI Il I (31)

238

In this case using eqns. (27), (28) and (31) and the
relations

y0-1=-y0
C becomes @
~ ]~
C=y, (1 = %%) = X* 4+ 2 X*=
=i~ ~
=2 Xr-y X* (32)
Sinces

-

)i
2

S
The eqns. (29) and (32) can be summarized in one forw

mula onlys

_M)

c 2 (33)

—M ~ =
* X

7 x Boe (x, @y,) @+

thus the true value of the product P iss
~ =M ~ =, =}

P=Q+C=X*Z*¥+2 x X¥+u X*¥+2 u
o <] o

with: (34)

u
[o]

xoD Yo
2, =50y
Fig. 2 shows an example with M = 6 of the all po=-
sitive partial products matrix, for the multiplication
algorithm As can be seen, the corrective
terms are and one 12 bit binary
fracticn,

S I

proposed.
one bit of weight 2

In the following, we will consider M =
cedure of eqn. (25) is used to show how it
plied to the minimization method in a more difficult
case than eqn. (24). When, otherwise, the speed of
operation is the most important parameter egn. (24)
allows one to use standard pipelining techniques, be-
cause it is not recursive. The sum of eqn. (24) is
executed "modulo 8", to take into account a possible
ra ge of the result., Under the previous assumption
the ECS is:
(1,141,4,47,10,13,16,19,22,25,31,31,28,25,22,19,16,13,

11017) ?

9. The pro
can be ap-

while the 0CS iss
(1'111111111!11111‘l11111,1l111’11111l1117111) .

Referring to step 2 of the procedure of minimization,




the sequence of coefficients of ﬁ*(z) is:

(—1,0,0,0,3,6,9,12,15,18,21,24,30,30,27,24,21,18,15,
112,9,6) .
The correcting polynomial K(z) is obtained as follows:

N(2) - &(2) = 21?4210, P

and so:
1 1
K(z) = 2 745047
‘The polynomial ¢?(z) has the sequence:

(~1,0,1,0,3,6,9,12,15,18,21,25,31,30,27,24,21,18,15,
1121916) 3

and that associated with R(z) becomes:

(1,24346,9,12,15,18,21,24,27,29,24,21,18,15,12,9,6,3) .

Realizing the network with the full-adder as cell,
the minimum number requested is 5(1) = 282, less than
using 3 multipliers for 2' complement numbers and 2 ad=
ders.

The chosen cell is one of the family presented in
part IV, because k equals 3, its NCP G{z) can be writ=
ten as:

a(z) =—3z3 + 3z2 +3z2+6=13 (zE + 2+ 1) (=2 + 2).

Two possible realizations can be cbtained with binary
trees of carry lookahead adders.

Referring to step 4, the following relation must be
satisfied:

38(z) (22 + 2+ 1) = R(2) + H(2)
thus H(z) can be written as followss
H(z) = 3 H1(z) +rH2(z)

where H,(z) is the polynomial that must be added to
R(z) to give a polynomial with all coefficients mlti
ples of three.

Begause the polynomial R(z) + H(z) is divisible
by z +z + 1, H1(z) = O4 and sc the NCS of the net—
work performing eqn. (2}) ist

51 = (11010121111131212141313’3t272721111’1)
and the minimum number of cells is (34).

Remembering that G(1), equal tc 9, gives for every
cell the equivalent number of full-adders, the number
of full~-adders, wasted in‘S1, is 24. A look at S(z)
suggests that these structures cannot be very fast, be
cause there are not zeros in the sequence of coeffi-
cients. So another network, faster than the former,
is found, forcing to zero two successive coefficients.
The resulting NCS is:

S2 = (1,0,0,4,0,0,7,0,0,10,0,0,9,0,0,6,0,0,3) .

The number of cells in this case is 40, If the cell can
also generate the sequence (343,3) of partial product
bits, as in ref, , an iterative structures can be ob-
tained from the sequence of cells S_,. In this case can
be shown that Bﬁe maximum delay of the structure is
approximately = s if the carry delay of the lookam
head adders is equal to the sum delay T and M » 3,

The time necessary to compute S of eqn. (24) is thust

i) 2 M

—_—

7, =
1 3 3
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latching all furthermore the outputs of the macrocell
as shown in fig. 3 at every clock six factors can be

Ibit CLA
3Ibit CLA
3 bit CLA
Ibit  LATCH 45t  LATCH !
I J I |
CLOCK
Fig., 3 = Cell implementation.
presented at the input of the structures. The rate of

the clock can be approximatively E—'; because of the
cell implementation., After —/ giocks the final sum
of the partial results stored”into the latch is obtai-
ned, by-paBsing the registers. The time for computing
S in this case is

i 2T+ T
a

T=7y
where 1?; is the delay time of the array.

CONCLUSIONS

A new methods to study arithmetic combinatorial
networks has been presented. It gives many interest—
ing results in analysis and synthesis, allowing to
obtaining the minimum number of modules in cellular
arrays using in general linear programming techniques
or, in many-interesting cases, faster procedures. The
cell must be "operative full", that is they must
be implemented with only full adders. No other re=-
striction are imposed. An extension to the most geng
ral class of networks is reported in ref. 3, Applim
cation ¢f the minimization methods to macrocellular
multipliers and to fast networks for performing convo
lutions are also presented,
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APPENDIX

The following theorem must be proved, when eqn. (12)
is not satisfied:

The polynomial K(z), evaluated by means of eqys.(13)
and (14), gives a polynomial R(z), satisfying em. (12
bis), and such that R(1) represents the minimal number
of full=adders necessary to implement the wanted BACC,
when the full-adder is used as elementary unit. .

Proof:

Dividing f*(z) of eqn. (11) by (=z +2), a negative
remainder -B is obtained, so the following relation
can be writtens

#*(z) = P(z) (~z +2) = B (A1)
with

B =~ g*2) = N(2) -E(2)> 0
Let us consider two polymonials @* 1(2) and g*, (g¢),

factorizable by =z +2, and obtained by g*(z) a.r].ging
two polymonials K1(z) and Kz(z) :

#5,(2) = #(z) + K, (2) = R,(2) (~z +2) (42)
?2(2) = g*(z) + Kz(z)-- R2(:z) (=z +2) (43)
wheret . n
K1(z) -2 K1f zi
2 i
K2(z) =§i KZi z
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K,I(1) = K2(1) =B>0

because of eqns. (A1), (42) and (43).
Subtracting eqn. (42) from eqn. (A3), one can obtain 3
T1(2) = #1(2) = X (2) = %, (2) = [R,(2) = R,(2)](~a+2)
(a4)

The evaluation of eqn. (A4) with z equal to 3, é&ives:
R(1) = Ry(1) = K, (1) = k(1) (85)

This relationship shows that the determination of the

minimum R(1) is equivalent to the determination of the
minimum K(1).

Remembering tgat:

k(1) = i X,

=1
m, i
K.(2) =
j( ) Zi ky 2
i=1
between all the possible representations K.(2) of B the
one that gives the minimum, Km(2) K.(1) is"the binary re
presentation of B J i

K (2) = B =~ ge(2) =3¢, 2

thus Km(z) satifies eqn. (14).

(46)






