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This paper presents a recently discovered general
computational method, amenable for efficient implement-
ation in digital computing systems. The method pro-
vides a unique, simple and fast algorithm for solving
many computational problems, such as the evaluation of
polynomials, rational functions and arithmetic expres-
sions, or solving a class of systems of linear
equations, or performing the basic arithmetics. In
particular, the method is well suited for fast evalu-
ation of commonly used mathematical functions.

Introduction k

The subject'of this paper is a novel computation-

al method, described in detail elsewhere.' The
principal idea of the proposed method is based on the
recognition of the importance of the following issues
in the design of fast algorithms for numerical compu-
tations. The first issue is concerned with the com-
patibility of the problem representation with the im-
plementation environment. Many well-known methods of
computations may seem optimal from a. human point of
view but this can be hardly true when, for example, a
digital-type hardware must be used for implementation.
The second issue relates the redundancy in the ‘number
representation system to the complexity and the speed
of the algorithms and the associated primitive oper=
ators.

When a computational method is being considered
for possible hardware-Tevel implementation, one is usu-
ally concerned with 1) its application domain, ii)
the required set of algorithms, and i11) the required
set of primitive operators. With these, one also
associates a set of properties, for instance, the speed
the complexity and the cost of implementation, numeri-
cal characteristics of the algorithms, etc. Ideally,
an implemented computational method should have an
unrestricted domain of applications, a single but
simple algorithm to be performed and only those primi-
tive operators which are efficiently realizable in the
given implementation technology. The proposed method
comes close in satisfying these design objectives. It
also provides, we believe, a highly potential alterna-
tive in the design of numerical algorithms compared to
both the parallel techniques, utilizing a multiplicity
of general-purpese processors and the strictly hard-
ware-oriented algorithms.

One of the original motivations of this work was
the problem of fast and efficient evaluation of common-~
ly used mathematical functions. The method evoived
while attempting to solve this problem with the above
mentioned objectives in mind: an open domain of appli-
cation, as in function evaluation methods, based on
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the classical approximation techniques2 with the per-
3-10

.

formance of the hardware-oriented algorithms

The computational algorithm of the proposed method
shares some properties with the incremental compu-
tations in the digital differential analysers (DDA)
although it is not based on an integration principle.
The potential of such an algorithm in implementing
multiprocessing systems has been recognized also by
Campeaul1,12,13,

The Computational Method

In this section a general evaluation technique,
named E-method for brevity, is defined in general terms
as:

(i) A problem-dependent correspondence rule Cf,
which associates independent variables xs

dependent variables Ygs and parameters p. of

a given computational problem f(gf,gf) with

& system L of simultaneous linear equations

Ae ¥ = be in such a way that there is a one-one
__-f-'_ X
correspondence between dependent variables Yes
i.e., the results of f, and the solution
y of the system L. The elements of the matrix
3% and vector be must satisfy certain conditions,

as specified tater;

A problem independent algorithm for solving
the system L in time linearly proportional to
the desired number of correct digits of the
solution y, and which is amenable to an ef-
ficient implementation.

A computational problem f is said to be L-
reducible if there exists a correspondence rule Cf,

not necessarily unique. The E-method is applicable
in all L-reducible problems with an equal efficigncy:
the computational algorithm remains invariant while
the particular correspondence rule, no more complex
to perform than the assignment of values, character-
izes the problem.

The correspondence rules will be illustrated later
in several application examples, while the algorithm is
given next.

The Computational Algorithm

The algorithm is defined in such a way Fhat the
following, for an efficient imnlementation dimportant
properties hold:

a) The algorithm generates the most significant
digits of the result y first in such a way '
that once generated digit, y., at the step j
will not be affected by any subsequent step

b) The basic computational step is invariant

with addition as the only primitive operator;
the selection procedure which generates one.
digit of the result per step is deterministic
and feasible on a limited argument precision




so that_the stép sxecution time is independent
of the length of operands;
¢) The algorithm has ‘an “on-1ine" capability with
respect to the independent variable. Namely, ¢
i=171,....,mf are the digits of the in-
deﬁ ndent variable x then only the digit x.
need be used at the (j + 1) st step. J

Definition 1: An m digit radix r representation of
a number x, |x|[< 1, is a polynomial expansion

m ,
sign x. I x, p7)

j=1 1

X

where
X; € D, wvi
and D is a given digit set.

Definition 2: For a given radix r

s @ set of con-
secutive integers D is '

i) a nonredundant digit set if its cardinality
satisfies
Dl =r
ii) a redundant digit set if
D> r
Definition 3: A symmetric redundant digit set is
defined as
Dp = {-0,-(p-1),...,-1,0,1,...,0-1,p}
where

Le<per-1.
2

In particular, D is

i) minimally redundant if

D] =r+1
P
so that
=r
¢} 2
assuming an even radix r;
i1) maximally redundant if
D | =2r -1
]
so- that.
p=r-1.

Consequently, the representation of a number x is
redundant or nonredundant depending whether x.eD or
xisD. In the case of a redundant representation

. sign x = sign x]
SO X=gx, r ',

Let n be the order of the system L and J= 1,2,...,m+]

the recursion index. Define: the Jj-th digit vector
S (5) o () 4 (@)
i) . J J .
Q - [d] :d2 ] 9---)dn ] s
the j-th residual vector 5(3) as
(3) -, () () )
v o= [z]. 22y ez ]
and their vector sum yﬁj)as
w3 - gla) L) . [W](J)’WZ(J),. .,wn(J)]
where
W(J)=d(a)+z(3)’ P12,y v
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Let s(w(J)) be the vector selection function
)« sty )50t ()]

such that

i=1,2,...,n v

and the selection function is defined as follows:
sign wi(J) []wi(J)I + 1/2J

-for 'wi(j)l A

: ; (1)
d.(J) = s(w.(J)) = . .
i .
i sign wi(J) IJwi(J)lJ
-otherwise
where w denotes the integer part of w. The selection

function s(w.(J ) is,

for practical purposes, repre-
sented as a }ounding p

rocedure, modified at the end-

point§ of the domain to avoid digit values

]di(J | >p. It simply maps a w-subinterval [k-%,k+)
to an integer k. Furthermore, define the n-th order
matrix g(x? as

6(x) )

L= A0 = (o500

where 1 is the identity matrix and A(x) is the non-

singular qoefficient matrix of the system L defined by
the correspondence rule Cf. The maximum vector norm

%=
and the consistent matrix norm
n
Al =max ( z la,.|),
e = mex (2 1o

as the only norms considered, will be denoted
and [{A]], respectively.
Theorem 1

If

(2)

maxlxil
i

as [lx|

6(x)
bound o satisfies

0 < a< yrpleel)y
o]

Ibff < &
bound 7 satisfies

/2< ¢ <1

< o

where the

where the

and
4 (9

j € Dp,v- Vs

17

then the following n-th order system of linear re-
cursion§
ﬂ(J) - g(J) + £(J) - r(é(;l-1)+ a(x) Q(J-])) (9)

J=12,...,m
with the initial conditions

9(0)
(0)

z

=0

b

=p (10)

generates m leftmost correct digits of the solution
v=A"00b




in at most m+l steps as the sequence

{gﬂj)}, Qﬂj), vy selected according to (1). Namely,
the generated solution
m+1 . . m+1 . .
‘Y_*=Z Q(J)Y‘_J=[Z d-'(J)Y'-J, s
j=] jn]
m+1 . i
g ald)ydy (1)
= "
satisfies
* -
he-xf <" (12)
Proof:

The consistency of the system of recursions with
respect to the selection function (1) is proved in-

ductively. By the statement of the theorem,
0), .
1% <<
Assume that .
TS
Then ] _ )
w9y = gatd) + 29 (13)
R FRARS I |
<8 v v e - gl
<rgtragp
=rg+ rE%(l- : :'] )10
=ptz.
Since
290 < 490 - g0 ang sign ald) < sign Wld) |

by definition of the selection function S(ﬂ‘J)), it
immediately follows that

1280 < ¢ .

The convergence is proved by showing that the
solution error vector
*
shl=y -y

h = [hysh

12722
satisfies
af < ¢ (

After m+] steps the following holds:

g(mﬂ) + E(mﬂ) - m+1 p—+ g(x) [r; Q(J)r‘m+]-‘]]
3=1
. (16)
- _]_[ T Q(J)rm]‘J]
3=
or
pom=1 (m+1) _ b - A(x)~xf - 6(x) d(m+]) -m-1
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Let

(m+1) _ [e](m”,ez(m”,...,er(]mﬂ)]

(£(m+1)+G(x)d(m+]))r_m-]

Since y = Af1(x) b,

hey-y =aT-- ™Dy an
The error after mtl steps is, therefore, bounded by
g = ja™ 0 (- ™I (18)
< ool ™y
Since G(x) < a <1 by definition for r > 2, the
matrix G(x) is convergent, i.e.,
Tim [6(x)1P = 0
peo
By the well-known resu]t]8
la ol =z + 6t + 62x) +..
2
< "_I_" + "g(x)" + "g(x)" +o..
<1+ ? oP
p=1
S ']
T« =3 (19)
Also
le™ 1 = e Y 2™ g gt
< r ™ Ngtap) (20)
Therefore,
. Lrap -m _ -m
h < —. L r =y
Jof 2 - s o
where 1
Yy = (22)
2(r-1)
for minimally redundant digit set and
1
‘Y —_—

» (23)
for maximally redundant digit set. Sirce Y< 1 for
r>1

all < 7 0

Theorem 1 completes the general specification of
the computational part of the E-method. Clearly, the
recursion formula may be computed in time independent
of the operands precision, provided that the approxi-
mate, low-precision value E(J) of the sum E(J)

satis-
fies the selection requirement
(3) oGy .o

l'>7 - w I <z (24)

where A is the given overlap between the selection
subintervals as illustrated in Figure 1.
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Figure 1. Limited. Precision Selection Procedure

The relationships between the selection overlap
A and the bounds &, ¢ and ¢ are sumarized in the
following table: :

Radundancy-in 0 :
3
Mode of Operation:

: : .Operand
Precision Deperdent

€3 oo

a0

|

VUperand
Precision Independent, ’

IR NeO

In
i

@ < S{1-alr-1)) a <A1
E

b

[SIEN <i£i-1.

1

Table 1. Re]at%;nships BéEWeen Bounds

Error Properties

The error behavior of the E-method appears to be
quite favorable. It can be seen that if the system
L satisfies the bounds, as required by Theorem 1, then
it is insensitive to small perturbations in elements
of A(x) and b since the corresponding condition num-
ber of the system's matrix satisfies

a0 = lacall - fa o] - L2 < 8,

Moreover, by definition of the computational algorithm,
no roundoff errors are generated when E-method is ap~
plied. The inevitable effects of a finite precision

number representation! gre of minor consequences.

Scaling

The conditions (5) and (7) of Theorem 1 on norms
of matrix A(x) and vector b, imply that, in general,

an adjustment of the size of the elements aij and bi

will be required. Although scaling commonly appears
whenever fixed-point representation arithmetic is
used, it can be handled without serious difficulties.
The E-method, however, requires more consideration of
the scaling problem!, byt the details, for brevity, are
omitted here. We note that in many applications,
scaling can be easily performed while in certain

cases the scaling requirements can be accomodated by
redefining the problem.
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Summary of the F-method

The E-method is summarized below for reference
convenience:

Part 1 (Correspondence)

Given an L-reducible computational problem f,
apply the correspondence C. on the arguments and para-
meters of f in order to obgain the coefficient matrix
A and the vector p of the system of linear equations L.
The correspondence rule C. must guarantee that the

elements of A and b can be made conformable to the
conditions:

z laijl <a, vi

sl <z, wi
Part 2 (Computation)

Algorithm E

/ Initialization /

/ Recursion /
2. for j = 1,2,...,m1:

2.1 w3 ) _prali-y |
9.7 g(j)+s(ﬁ(j));

/ Termination /
3. HALT

/ The result(s) of f, for the given precision m,
are represented by

.Z* = m;] d(j) l"-‘:i
=1
* * *
= Lypypseny, ] /

On_Implementation.and Performance of the
E-Method

The basic computational block, the elementary
unit EU., is a hardware structure implementing the
basic récursion formula (9) or, more precisely, the
recursion step of the Algorithm E. It seems preferable,
from the implementation point of view, to restate the
basic recursion formula (9) as follows:

(3-1),

W <ol g (25)

k=1 !
where g = -1, so that the need for explicitly cal-

ij :
culated residuals ng) is avoided.

As indicated by Figure 2 where a global structure
of the elementary unit EUi is shown, the evaluation

of w:J basically requires an s~operand adder. In
many practical applications s is rather small., In
order for the time of q?dition to be independent of

operand precision, W, J need to be represented in a
redundant form.
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Figure 2. Elementary Unit Structure

The selection procedure, defined by the selection
function §(wgJ)) is performed by the block S, which
forms Qi(J
cant

by converting a few of the most signifi-
digits of ng) into nonredundant form. After
rounding w, J), the integer part represents the se-

lected digit di(j). The precision of W1<J)is basically

determined by the overlap A and the number s of
summands. A1l functions of the selection block S can

be easily implemented. The previous value di(j_]) is
saved in register D. The coefficients {aik} may be,

for better storage efficiency and simpler adder struc-
ture, represented in a nonredundant gorm. The single,

signed digit radix-r multipliers diJ are incorporated

through the selection networks {SNk}’ each capable of

forming required multiples of a; The carry generator

K
C would be needed if, for example, a radix complement
representation of negative numbers is adopted. In that
case, the selection networks merely form direct or
complement of a possibly shifted value of A The
complexity of the selection networks increases for
higher radices, and since the additional multiples ap-
pear as summands, complexity of the adder will also be
increased. Therefore, a higher radix, while reducing
the necessary number of steps for a given precision,
does increase both the time to perform the basic re-
cursion and the complexity of the corresponding ele-
mentary unit.

The central part of an EU, the multioperand adder,
can be implemented in various ways in order to achieve
the desired speed/cost factor. The registers Rk store

the corresponding coefficients sy throughout a par-

ticular evaluation; their number for the elementary
unit EUi is determined by the number of nonzero ele-

ments in the i-th row of the matrix G(x), i.e., the
number of inputs to EUi' Register RW and the corre-
sponding data path must accommodate the redundantly
represented wiJ). The initialization, i.e., the exe-
cution of the particular correspondence rule C_ is per-
formed by loading the coefficients [aik} and b, via

the initial value entry bus.

The control requirements of an EU are very simple:
assuming a synchronous mode of operation of the entire
configuration forthe elementary units, synchronizing

pulses on which the transfer of w1.J into RW occurs,
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are all that is needed. The same clock pulses, de-
fining the basic step, are distributed to all units.
By controlling their number, one can easily achieve
a variable precision mode of operation.

The time required to perform one recursive step
on an elementary unit is defined as:

tO = tA + ts + tT

where tA is the time to generate w(J) in a redundant

;
form, tS is the selection time and tT is the

register transfer time. Both tS and tT correspond to

a few gate delays-~(3-4) tg, so that tA appears as the

dominant factor, which depends on the number s of
summands and the adder structure. For practical

reasons, s may be defined to denote the number of
radix-2 summands, i.e., the higher radix or re-
dundantly represented operands are replaced by their
binary equivalents. Then a simple adder structure,
consisting nf s-2 levels of full-adder rows, will have

a tA = 2{s-2) t_, assuming 2t_per full-adder. More

sophisticated adder structures,!? i.e., Dadda-type can
considerably reduce this time. However, when s is
small, 1ike in polynomial evaluation, it can be seen
that, for radix 2, ty = O(]Otg).

A Graph Representation of a General Computing Con-
figuration

An L-reducible problem f of order n can be solved
by the E-method on a structure consisting of n inter-
connected elementary units. The computational
algorithm E indicates that the intercommunication
requirements are simple due to the fact that the ele-
mentary units are functionally related to each other
only via the digit vector d. This implies that the
physical connection between the units EUi and EUj only

needs to accommodate a transfer of one, signed radix

r digit. In common multiprocessor structures, used for
fast parallel computations, the processor inter-
communications usually require full precision width.

A computing structure for solving a given prob-
lem f by the E-method may be conveniently specified
by a computational graph Gf(V,ﬁ) where
Vo= {Vi|1=1,...,n} 15 a set of vertices and K is a

connection matrix, defining a set of directed arcs.
Each vertex Vi corresponds to an elementary unit EUi,

symbolically represented as in Figure 3 where the
outgoing arc di carries the digit generated by EUi and
one or more incoming arcs d., inputs to EUi’ carry the
digits generated by {EUj}. The connection matrix

K = (kij)nxn is in one-one correspondence with the
matrix G(x) = I - A(x) of the system L as follows:
1 if gij #0
Kij = ‘ (26)
0 if gij =0

and kij = 1 specifies that the arc dj is an incoming

arc for the vertex V., i.e., the connection matrix K

defines the relation "receives from" between the ele-
mentary units {EUi} of the computing structure. Note




.

k
\r‘
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that the utilization of di for internal functions in
EUi’ as indicated in Figure 2 need not be specified
on the graph unless gij; # 0.

e
oy

Figure 3. Elementary Unit: arapi
Representation

The Computational graph Gf may be acyclic or
cyclic. The graph Gf is acyclic if and only if its

"connection matrix K is strictly upper {lower) triangu-
“lar. In a practical sense, a cyclic graph Gf corre-

sponds to a problem f which involves division.
Importantly, a graph Gf provides a direct estimate

of the required time and implementation complexity.
If N(K) denotes the number of ones in the connection
matrix Enxn then the computational structure requires

at most N(K) + 2n m-digit registers, n adders with
total of N(K) + 2n operands and N(K) single digit
interconnections. It is assumed that two registers
are sufficient to store W value in a redundant form.

If N, = [{dk}] denotes the number of inputs to the
i-th elementary unit, then EU; requires s = (Ni+2)
operand adder and that many registers.

The time tO required to perform one recursive step

is clearly determined by the parameters of the ele-
mentary unit EUk such that Nk = max (Ni)' The total
i

time, then, for the E-method evaluation, assuming an
m-digit precision, is

Te(f) = (1) tg

if no scaling is required, and

TE(f) = (m1+c) tg
otherwise, where integer g > 0 is defined by the par-
ticular scaling requirements.

We conclude this section with the following re-
marks. The functional properties of the E-method,
namely the step-invariant nature of its computational
algorithm and linearity of its primitive operator,
make an adaptation both to a variable precision mode
of operation and a variable number of elementary units
rather straightforward. We mention also that the
"on-Tine" capability of the E-method can be particu-
Tarly important in real-time applications.

On_Applications of the E-method

We begin by describing the evaluation of poly-
nomial and rational polyncmial functions of a single
variable. It can be seen that any polynomial is
L-reducible, which is not true for rational functions.
However, L-reducibility of a rational function can be
assured by taking into account the appropriate con-
ditions when the coefficients of the rational function
are being defined.

While considering problems of evaluating poly-
nomials and rational functions, we will attempt to
provide relative measures of performance with respect
to a conventional sequential or S-method and a paral-

Tel or P-method of computation. We will use the speed-
up S, efficiency E and cost C factors as defined by

Kuck15, but under different assumptions. Namely, as a
matter of implementation complexity standardization,

we will assume that a processor used by S-, or P-method
is equivalent in its capability and complexity to an
elementary unit of the E-method. We will also consider
all three methods in a domain of operations on a hard-
ware level so that the usual assumption that each a~-
rithmetic operation takes the same unit time does not
hold here. The relative performance measures for the
other application examples can be derived in a similar
way and are omitted here.

Evaluation of Polynomials

Let U ;
P (x) = I op; X (27)

be a u-degree polynomial with real-valued coefficients
{pi} and the argument x ¢ [a,b].

Assume that p and x are vectors with p,'s and all

representable values of x e [a,b] as the components,
respectively.

If
lef < <

and (28)
flx]} <«

then the problem of evaluating the polynomial Pu(x) is

immediately reducible to the system L: A(x) y = b of

order n = u+1 according to the following correspondence

rule CP:

] for i=j;

aij = ~-X for j=i+1, i <y
0 otherwise ;

‘ (29)

Pj._1 for i=1,2,...,u+]

bi =
0 otherwise,

as illustrated in Figure 4. The system L is then
solved using the Algorithm E so that after m+] steps

* M (5) -

¥ =.i§]gJ r (30)
satisfies \

[P (x) - yTI < (31)
and

Ik=$_] X o< (32)

for i = 2,3,...,u+1.

The computational graph GP is shown in Figure 5.
ATl the elementary units EUi, i=1,2,..., n are i-

dentical: each one requires an adder with one re-
dundant (wi(j)) and one nonredundant (X’dii%) operand,

or, effectively, a conventional adder, where r=2.




1 ~-X .Y'r po
T -x .y2 p‘l
1 -x Y3 Py
X
1 -X
1 Yy P

Figure 4. Correspondence Rule CP

In general the conditions on norms (28) may not
be satisfied and an appropriate scaling of pi's and

x must be done prior to the evaluation. The required
scaling in this case presents no problems.!

n-1* . e

Figure 5. Computational Graph Gp

We now consider the performance of the E-method
in polynomial evaluation relative to the S-, and P-
methods. Both these methods are assumed to be using
an iterative multiplication algorithm so that the basic
processing unit in all three methods can be considered
equivalent in complexity and speed. Furthermore, we
assume a fixed-point representation domain with no
scaling requirements. Denoting addition time as tO’

we have the evaluation times and the number of
processors for E-, S-, and P-method as follows:

TE(Pu) = (m+1) to, ng = TR

TS(PU) =um tO’ nS =1 (33)
To(P ) = (kogu + (0(2og )/ Z)m) t., n = 2u

P u 2 ‘ I 0* P

We have assumed that the P-method uses Maruyama-Munro-

Paterson algorithm for paralilel polynomial evaluationl6,

Following Kuck]S, the E-method algorithm for poly-
nomial evaluation has the speedup factor SE:

T
=S Ly L
Se 77 u(m+]) =u, (34)
E
the efficiency factor EE:
S
u m
Ep = 5= (4=) (—=) > 0.5 foru>1, m>3 (35)
NE pt+1 m+1
and the cost factor CE:
CE =g - TE = (1) (m+1) tO (36)
Similarly for the P-method algorithm:
S Tg u mo
oYM Vi VM
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P 1
P 0% 5V Vi (37)

CPzZU (M + V’ﬂm) tO

where M = Kogzu. As a reasonable measure of per-

formance, Kuck suggests the ratio of effectiveness,
given by speedup, and cost of the method so that the
A-method is better in performance than the B-method if

S S S
max C—A,E—B— =C—A- (38)
A B A
It can be easily seen that
S
. £ m i
lim — = - — R ——
C 2 mt
oo B (M)t 0
while (39)
S
lim o = 0
p
Ve
S
With_respect to the precision, both lim == = 0 and
S C
. p moo “E
Tim T J but
m “p
S C 2ulog,u
lin & L = 9% Sy for s 1. (40)
e TE P p+]

This indicates that the E-method algorithm is
better in performance noticeably than any P-method
algorithm for the evaluation of polynomials under the
previously stated conditions. Furthermore, the E-
method algorithm has a behavior of performance measure
qualitatively different from the considered P-method
algorithm, as illustrated in Figure 6. In this ex-
ample it is assumed that m = 56, r = 2 and, for presen-
tation convenience, that tO = 102 units.

P
/0/ ~S—L
c E
S P
Tr
\O\ \P -
—_—
2 . s 16 2 *
Figure 6. Evaluation of Polynomials:

Performance Measures




Evaluation of Rational Functions

Let Ru »(X) be a real-valued rational function:
H j
T p. X
P {x) 2o Py
RU \)(x) = 2 = 120 (41)
’ Q,(x) v ;
z g; X
i=0
Without loss of generality it is assumed that
qs=1. Let
0
A(x) y= b (42)

be a nonhomogeneous system of n simultaneous linear
equations.

Theorem 2

If max(u,v) < n-1 and the ccefficients aij's, b.'s

of the system (42) are put into correspondence with
the coefficients pi's, g.'s and the argument x ac-

cording to the followinrg rule C

R
1 for i = j;
9. for j =1 and i = 2,3,...,v+1;
a.. =
n - for j = i+l and i = 1,2,...,n-1;
( 0 otherwise;
Pi.p  for i = 1.2,
bi - { 0 otherwise,
then D](x) P (x)
y](x) SOy T 6%(?7 - Ru,v(x) :
Proof:

By the Laplace expansion of the determinants.(

The correspondence rule CR defines a Tinear syétem
L:
tion Ru,v(x)' Algorithm E can be carried out on a

A(x) y = b for a given L-reducible rational func-

configuration represented by the graph GR with

n = max (u,v) + 1, as illustrated in Figure 7.

‘
I
\\

Figure 7. Computational Graph GR

Gge

The adder structure of the elementary unit needs to
accommodate at most two nonredundant and one redundant
operand and that, for radix 2, can be easily achieved
with a two-level conventional adder. The conditions
under which a rational function_is L-reducible are
considered in detail elsewhere. An example, given

in Appendix, illustrates the evaiuation of rational
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functions.

Let us consider the performance of the E-method
in evaluating rational functions under the same as-
sumptions as in the previous section. The sequential
S-method has

T(R

~ m
u,v)»v(w‘vﬂ) 5

S 0’

assuming that two digits of the multiplier, or the
quotient at the end of the evaluation, can be retired
at each step. Since

) = (ne1) ¢

the speed-up of the E-method is

TE(Ru,v

with an efficiency
i3 OBt va%%.d B
" 2(max(u,v)+1)

EE -

For u=v, EE > 0.75.
for which

We know of no P-method algorithm

Ru,v) 5-TP(Pmax(u,v))

and

En(R

P u,v) S EP(Pmax(p,v))

s0, on the basis of the conclusions made in the previ-
ous section, we may again conclude that the E-method
is faster and more efficient than a P-method, under
the stated assumptions.

Evaluation of Elementary Functions

With a capability to efficiently evaluate poly-
nomial and rational functions, the E-method can certain-
1y be used for the evaluation of arbitrary functions
for which suitable polynomial or rational approxi-
mations exist. Hence, the evaluation of a given
function would be characterized mainly by the corre-
sponding set of coefficients, which can be kept in a
local storage area of the computing configuration, or
on any other convenient level in the available storage
hierarchy. Furthermore, the evaluation could be per-
formed easily in a variable precision. In general,
given a sufficient number of the two-input elementary
units, an avaluation of a pelynomial approximation
would take TE(f) = 0(10m) tg, where tg js a gate delay

and the radix is binary. Since the relationship
between the speed and the cost of the E-method is
linear, a wide range of evaluation requirements can be
easily accomodated. It may be of interest to mention
that Algorithm E can be easily adapted for fast multi-
point evaluation of a given function,

On Performing the Basic Arithmetics

The basic recursion of the Algorithm E can clearly
be used for additions, subtractions or multiplications.
The result obtained will be in a redundant form. By
considering division as an L-reducible prob]em],
Algorithm E can be used to generate the quotient and
the remainder in a deterministic fashion!7, with basic
recursive step executable in time independent of the
Tength of the operands. The computational graphs for
division and multiplication are shown in Figure 8.




. d; dy

(a) (b)

Figure 8. Computational Graphs for
Division and Multiplication

Evaluation of Certain Arithmetic Expressions

A set of elementary units can be conveniently
applied in evaluating certain expressions, such as
multiple products or sums, inner products, in 0(m)
recursive steps.1 For example, the multiple product

P

PC = Hci can be easily evaluated as a degenerate case
i=1

of a polynomial. Since

p * -m
e -yl <, =12,
k=i
if ¢, = x, wi, the E-method generates the positive

! 2 .3 4 P
integral powers of x : x“,x7,x",...,x" in (m1) steps

on p elementary units. As before, it is assumed that
factors <5 satisfy the range conditions. In general,

any arithmetic expression which can be put into corre-
spondence with a system L, can be evaluated in 0(m)
steps. For example, to evaluate
h o= a{f+gc) + e(1+cd)
1 +ab +cd

one may solve

1 -a 0 e
b 1 -c Yy = f
0 d 1 g

where ¥1 = h.

Certain implications of the E-method on the so-
Tution of systems of Tinear equations and a possible
reduction of the required complexity of iterative
algorithms in general is discussed in some detail in ]‘
No attempt is made here to discuss the implications
the E-method may have in fields 1ike digital signal
processing or linear control systems. It may be ex-
pected that the proposed computational technique can
be efficiently used in many special purpose computing
systems or devices.

Conclusions

In this paper a recently discovered general evalu-
ation method, amenable to an efficient hardware-level
implementation, is presented. The proposed evaluation
method, referred to as the E-method, is characterized
by several important performance features and appears
applicable in many common computational problems, such

as the evaluation of polynomials and raticnal functions.

It also brings together the following issues which, we
believe, are of fundamental importance in the design
of algorithms:

i) the choice of algorithmic representation
compatible with the implementation environ-
ment ;

11) the problem of redundancy on the algorithmic
Tevel;

1i1) the problem of redundancy in a number repre-
sentation system.

The first issue is concerned with the problem of
minimizing the number of algorithms to be implemented
in order to solve a set of different problems. As is
demonstrated here, the replacement of a given set of
problems by a unique, isomorphic problem gives rise to
a single algorithm to be implemented. The algorithm
can, hopefully, satisfy the speed and cost objectives,
among the other properties. And this, in general,
would imply a small number of different primitive oper-
ators, simple enough to be efficiently implementable.
In the E-method addition appears as the only required
primitive operator. The corresponding algorithmic
representation, considered as a way in which the compu-

tations are to be performed, has direct implications
on the available parallelism and hence, the achievable
speed. In a traditional approach, with four basic
arithmetics as the primitive, indivisible operators,
the parallelism is exposed or introduced by transfor-
mations of the original computation sequence so that
the time dependencies between the required operations
are minimized. The E-method demonstrates another
approach in parallelism exposition: a systematic left-
to-right, digit-wise processing minimizes the necessary
delay between dependent computations and can achieve
a parallelism up to one digit delay, having important
properties like a simple, deterministic control.
Furthermore, this approach is related to the second
issue. Namely, it can effectively reduce the required
complexity of an iteratively defined algorithm, by re-
ducing the number of necessary operations. It also
affects the choice of the primitive operators. It is
of interest to remark that in many parallel algorithms
it is, on the contrary, necessary to introduce redundant

operations 1in order to achjeve para11e1ism.]9

The problem of redundancy in number representation
systems has long been recognized as a 8en%ra] issue in
achieving efficiently fast a]gom‘thms2 21 and it will
suffice here just to note that the E-method is another
example where the redundancy in number representation

has an essential role.

The theoretical basis of the E-method is simple
yet, we believe, extendable to other interesting appli-
cations. Certainly, Algorithm E itself can be con-
sidered as a primitive operator which can be utilized
in fast parallel schemes, not necessarily of the type
defined by the E-method. The E-method can be in-
corporated in a computing system in two obvious ways:
as an autonomous arithmetic processor with several
elementary units, or, by providing the processors in a
multiprocessor system with the capabilities of an
elementary unit. Finally, it would be of interest to
consider the changes in an instruction set which could
make the E-method efficient for use on a software level.
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Figure 9. Evaluation of sinh(x) ~ R3’4(x)
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