CHARGOGGAGGOGGMANCHAUGAGOGGCHAUBUNAGUNGAMAUG

A Novei Multiply-by-Three Circuit¥

by
Caxton Foster, Edward Riseman, Fred Stockton and Conrad Wogrin
Computer Science Department, University of Massachusetts

Amherst, Massachusetts

Recently, while considering the connection of a
48 bit word computer to a 16 bit computer, we felt the
need for a fast and inexpensive device that would
multiply a binary address by a factor of three. Since
3N = N + 2N, there is an obvious solution of providing
a normal adder circuit and presenting one set of in-
puts with N and the other with N-shifted left one
place. But, there is a great deal of redundancy here
since knowing one input we have complete knowledge of
the other.

Seeking to take advantage of this redundancy, we
have spent some twenty man hours and have saved one
gate per stage over a conventional full adder. Since
the ultimate circuit is to be a "one-of" this is
scarcely economic, but it has been fun. Before going
further, the interested reader may enjoy puzzling
over the problem for himself. We make no pretense of
minimality, but we have a circuit with 6 gates per
stage and a propagation delay of one gate per stage.

Some More or Less Blind Alleys

Before stumbling on the "solution" presented in
the next section we explored several ideas that did
not seem to be too helpful. We mention them briefly
below.

Any binary number can be thought of as sets of
successive ones separated by one or more zeros, It
is an interesting property of binary arithmetic that
a string of S successive ones bounded on both ends by
zeros will, when multiplied by 3, result (if con~
sidered by itself) in a pattern of "a one, a zero,
§-2 ones, a zero, and a one" right justified under the
original string. Thus 01111 produces 101101 etc. The
only *xception to this is the pattern 01 which pro-
duces 011. Two or more zeros between strings of ones
isolate them from each other with no interference.
Single| zeros between two strings of ones cause the
right-most two bits of the pattern generated by the
left-hand string (normally equal to 0l) to be comple-
mented producing 10. This approach while interesting
and probably extremely useful for a serial adder, did
not help too much with our problem.

A second approach was to consider multiplets of
input bits. For example, we examined the four pos-
sible values assumed by adjacent pairs (00, 01, 10,
11) together with the carry (if any) coming in from
the right. This method consistently produced varia-
tions on a full adder per stage (or sometimes worse)
and consequently was abandomned.

A third approach was to replace the original
equation by: 3N =N+N+N.

At the ith stage the circuit must accept a value

of 0 or 3 for Ni plus carry from the next lower stage

and the one below that. This produces numbers as

*The title of this paper refers to the Indian
name of a lake in Massachusetts which reputedly means
"Yfou fish on your side, I fish on my side, nobody
fish in the middle.” The reason for choosing this
name may be seen by examining Figure 5.

185

large as 5 (101) which represent (reading right to
left) a sum value, a carry, and a double carry. This
double carry output of a stage can be handled by send-
ing it two stages to the left instead of the normal
one stage shift for carry output, or by sending both
the carry and the double carry to the stage on the
left, one with weight of one, the other with a weight
of two., Once again, this approach did not appear too
fruitful.

The Present Method

The present method is based on the scheme of
carry by pass as discussed by Gschwind (Gschwind, H.,
Design of Digital Computers. Springer-Verlag; New
York, 1967). If both input digits are ONE at a given
stage (in our case, if there are two adjacent ONEs)
a carry will be guaranteed to be generated at this
stage. If both inputs are ZERO (two adjacent ZEROs)
then it is known that no carry can be generated at
this stage. A ONE and a ZERO (alternating ONEs and
#EROs) will propagate a carry to the left if one ar-
rives from the right, but will not generate a carry
on its own.

Consider the ith stage. To its right (toward
less significant bit positions) any one of four dif-
ferent conditions may obtain. The immediately ad-
jacent bit may have been ONE (conditions A and B) or
ZERO (conditions C and D) and the nearest equal pair
may have been a pair of adjacent ONEs (conditions B
and D) or BEROs (conditions A and C). Between this
equal pair and the present stage there may have been
0, 1, 2, . . . pairs of alternating ONEs and ZEROs.
Thus we can define the four conditions as:

A= (10)™ 100
B = (0" 11
c = (01)® 00
D = (01)™ o011

where the power "n" represents the number of repeti-

tions of the enclosed pattern (n =0, 1, . . .).

Figure 1. The state transition diagram




The conditions presented to the i+15% stage (the
one to the left of the present stage) will be a func-
tion of the conditions at the present atage and the

value of the ith digit of N. Suppose that is a ONE.

Then condition A will change into condition B, D will
do the same, B remains B, and C converts into A,
Figure 1 shows the complete transition diagram. The
value to be output at a stage (that particular bit

of the product) will also be a function of the input
condition and the value of Ni' For conditions B and

C the output 1is equal to N,, while for states A and

D the output is the inversé& of Ni. Since both the

behavior and the output of conditions A and D are
identical, they can be "merged'

Look once again at Figure 1. If the input condi-
tion is "not C" (that is, it is A or B or D), and the
Nidigit is a ONE, then the output condition is B.

Similarly, if the input condition is "not B" and the
Nidigit is ZERO then the output state i1s C. Figure

2 shows a circuit to realize this behavior constructed
from two NOR gates. Condition A-D ig represented by
"neither B nor C." This represents a pseudo-carry
propagation delay of only one gate which is twlce as
fast as a conventional full adder without carry look~
ahead or carry bypass circuits.

The value of the product bit can be generated
by the circuit of Figure 3. We thus have used a total
of 6 gates per stage, which 18 one less than required
by a conventional full adder.

5o (7
T
¢ N; =

Figure 2. The "pseudo—catry" propagation circuit

— B
>— N

——— C
R —— N
| — B
—— N
Figure 3. Circuit to generate the product bit

186

Other Uses

Now that we have this multiply~by-3 circuit we
can find some other uses for it. For example, a con-
ventional multiplier capable of multiplying two
arbitrary numbers can be built by adding either ZERO
or the value of the multiplicand into the shifted
partial product depending on whether the bit of the
multiplier is ZFRO or ONE. Since a times-2 circuit
is trivially simple, we can now have three possible
outputs from the multiplicant register (N, 2N, and
3N) which, together with ZERO, can be selected for
adding into the partial product depending on whether
a pair of bits in the multiplier is 01, 10, 11, or
00 respectively, This would then form the final pro-
duct with only half as many additions as would a con-
ventional multiplier. Of course other methods of
speeding up multiplication already exist.

Higher Products

Before going on to look at X7 and X15 nulti-
pliers, let us recast what we have learned about the
X3 multiplier. At each stage the value of the input
digit is either 0 or 3. Carry propagating in from
the right can have a value of 0, 1, or 2, Thus the
maximum input can be 5, which generates a sum of 2
and a carry for the next stage worth 4/2 or 2. Sum-
marizing this in tabular form we have:

carry input = 0 input = 3
in carry sum carry sum
out out
] 0 1 1
0 1 2 0
1 0 2 1

From this table we can construct "transition trees",
These are shown in Figure 4.

Now suppose we write:

input = 0 input = 3
2 0
+ +
1 1
+ ¥
0D 24)
Figure 4. Transition trees for a X3 circuit
0 c C=X"F8
1
2 B B=X T
Figure 5. The Boolean equations for the pseudo
carry lines of a times 3 circuit.
carry in variables
0 C
1
2 B

which means that if C=1, we know the carry in is 0,
if B=1, the carry in is 2, if both are 0, the carry
in is 2, and we "don't care" about the case where

both B and C are 1. Note that this provides a form
of "Gray Code". From this assignment and Figure 4,




we can generate Figure 5. Looking at the "falling"
transition tree (X=0) we see that the new value of
the carry will be 0 provided X=0 and the old carry
was not 2. In equation form we write C=X'E., Simi-
larly, looking at the "rising" transition tree, we
have a new carry of 2 provided X=1 and the old carry
was not 0; or B=XC. These two equations are, after
substituting NOR circuits for ANDs, just what we de-
rived by inspection of the patterns of bits above.

Thus encouraged, let us consider a times 7 cir-
The input variable X has values 0 and 1 cor-
Carry can range from

cuit.
responding to weights of 0, 7.

0 to 6. The table looks like:
X =0 X = 1[W(X)=71]
¢arry in carry out  sum carry out  sum
0 0 0 3 1
1 0 1 4 0
2 1 0 4 1
3 1 1 5 0
4 2 0 5 1
5 2 1 6 0
6 3 0 6 1

The transition trees are shown in Figure 6 and
a choice of pseudo-carry variable assignment in
Figure 7. Note that we have not tried to minimize
lines (this will catch up with us later on) but cir-
cuit delays. The equations for the product "S" of a
given stage are

z

BvCVEVF

S = XZ vV X&

[

A similar treatment of a "times 15" circuit is
shown in Figures 8 and 9.

Before the reader rushes off to design a new
high speed multiplier based on these circuits, we
should point out that a "times 2P - 1" circuit will

require 2" -2 pseudo carry lines per stage. Even
for n = 10 this will be rather more than one would
like to have, and for n = 32, will indeed be large.

.m?u‘k =~ O ““PU* =4

iﬁf? é{é <€1 R\ JFL
/ 3 9
\ \/

|
8 ¢

Figure 6. The transition trees for a times 7
circuit
carry variables true equations
0 AB B = XA'T
1 A A=XT
2 AC. c = XOF
3 none
4 DE E = XAE
5 D D =XB
6 DF F = XDE
Figure 7. Variable assignment and Boolean

equatiors for a times 7 circuit

187

14 13

input = 0

input = 1
2 11 109 8

&7 \6/ \5/ \4/ (g \8/2 3\ /4 5\16/ |
\3/ | \\/ \1 1/ 7
N O\
l |

0D 14

1
\

Figure 8. Transition trees for a times 15 circuit
carry variables true equations
0 ACG G = XCH
1 AC C = XACT
2 ACH H = XADJ
3 A A=3XN
4 ADT I = XBEL
5 AD D = XBN
6 ADJ J = XBFN

7 none

8 BEK K = XACG
9 BE E = XAT
10 BEL L = XADI
11 B B = XG

12 BFM M = XBEK
13 BF F = XBFK
14 BFN N = XFM

Figure 9. Variable assignment and Boolean equations

for a times 15 circuit




