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Summary

A new system of numerals is introduced
for representing numbers in base 2N, for N¢8.
The new notation greatly simplifies arithme-
tical operations on numbers. For example,
for N=3(4) one obtains a notation for octal
{hexadecimal) numbers in which one can perform
addition and multiplication much more easily
than in the standard notation. For N=8 one
obtains a practical way of representing
numbers to the base 256. A simplification of
the decimal notation is also presented.

1. Introduction

The Indo-Arabic decimal numeral system
has been the most widely accepted notation
for representing numbers for many centuries.
Quite different systems, however, were
popular in the past and the binary, octal and
hexadecimal systems have recently attained
great prominence in connections with compu-
ters. There are two basic features that are
characteristic of all the major numeral
systems in use today. First, each of them
has a relatively small fixed base—the
largest being 16 for the hexadecimal.
Secondly, each contains distinct and unre-
lated abstract symbols that represent its
digits. Specifically, the binary, octal,
decimal and hexadecimal systems use,
respectively, the sets of symbols {0,1} ,
{0,1,2,3;4,5,6,7_}, {Oa132,394;5)697y839} ;)
and {0:1:29334:51‘6373839aA,B:C:DaE:‘F}- In
contrast, the numeral systems of the past
did not always have a unique small base and
the symbols for digits were often made up of
more elementary symbols. The following are
some examples:*

(1) The Babylonian numeral system was a
combination of sexagesimal (base 60) and
decimal. It used just the two elementary
symbols ! and < , which represented decimal 1
and 10, respectively. The main difficulty
with this system was that it Aid not possess
a symbol for zero and its numerals did not
have unique interpretatiom.

Examples. =3, mv=4, W=7, < =11,

1< W =1x60+25=85 or
=1x602+25x60=5100.

(2) The hieroglyphic numeral system used by
the Egyptians had special symbols for various
powers of 10. For instance,

n=10, 9 =100,

|=1, ) =1000, and £~10

so that
0 0 00=20000123.

Fiistorical references are lListed at the end
of the paper.

76

(3) The Attic system of the Greeks had the

following symbols:
V=1, =5, A=10, P =50, H =100,

™ =500, X=1000, X =5000, M =10,000,

™ =50,000.
Thus, e.g., [© XX AN =7068.

(4) The Roman numeral system, of course, is
quite well known and is still used occasional
ly. It has the following symbols:

I=1, V=5, X=10, C=100, D=500,
For example, MMMDIXVIII=3568.

M=10C

(5) The Chinese had a veriety of numeral
systems. The "stick numbers'’ and their Sangi
derivatives in Japan (beginning about A.D.60C
used an Arabic-like decimal place-value
system with the symbols

T

1 | O
5 6 7 8 9.

1 2 3 4

In an even position from the right, these
were converted to
=] L L=

Therefore, e.g., _L TT =78, and Llll=2683,
The symbol for zéro, '"'O", made its way to

China from India in the middle of the 13-th
century. The first recorded6history of zero

in India itself is A.D. 870.

I

(6) The Mayans of Central America had,
perhaps, the most logical and advanced
numeral system of early civilizaticn. It wa
a vigesimal (base 20) place~value system
superimposed on a quinary (base 5) notation.
The Mayan priests had devised a symbol for

zero as early as 300 or 400 B.C.. Their
symbcls for digits were
D . .. ear  asee . (2] XIS TXTS
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19.

Mayan numerals were written vertically and t
only irregularity in their system was that,
in recording of time, the third position

represented 18 and not 20. That is,

- 6x20x18x20=43200 +
== . 10x18x20= 3600
< 0x20= 0
eoe 3= 3
46803




What is remarkable about the Mayan
numeral system is its elegant simplicity,
The representation of 5 by - is a distinct
improvement over-the Chinese I\ since it

allows the Erinciple.of superposition to b
used in performing of addition. For exampfe,

==t+-t=2=% and ==+ --- =gz , The difficul-
ty that it shares with the other numeral

. systems of the past is its excessive

¢ dependence on ideographic symbolism. On the
. other hand, the In§o~Arabic abstract numeral
systems in use today require complete

¢ memorization of addition and multiplication
. tables and are not practical for large bases.
Even for base 16, which is the natural system
for many computers, few people can perform
multiplication without conversion to the

decimal representation.

q In Section 2 of this paper we propose a
I formal system of numerals in which numbers to

base N (N<8) can be represented without the
necessity of memorizing more than N
elementary symbol, plus zero. In Section 3

! we present examples cf such formal notation

¢ for the quaternmary, cctal, hexadecimal and
base 256 (N=8). In Section 4 we consider a
possible formal representation of the decimal
L numerals. However, since 10 is not a power

* of two the degree of formalization of this is
much less than the other systems considered
in this paper. Finally, in Section 5 we

. discuss the advantages and disadvantages of

. formal numeral systems.

2, The Concept of a Formal Numeral System

2 Our entire system of numerals for a base

“EB, with B=2N for N48, is based on the simple
t idea of associating an elementary stroke for

lleach power of 2, called elementary digit, that
s smalleﬁ than By Then to form a symbol for

a digit 2 M4eeet2 K yhere N, < vee <N <N, we

simply combine the elementary strokes for

N N
2 1,...,2 k, Figure 1 defines the elementary
strokes for powers of 2 considered in this
paper.

) - \ s — s

N — ?

1 2 4 8 16 32 64 (128

Figure 1. Elementary strokes and digits.

he rules of combination of the strokes
re {llustrated by the representation of the

~] in base 256. For a smaller

base, of course, the appropriate subset of
8trokes in Figure 1 would be used. Some
[ examples of these are illustrated in Figure 2.

[N

tal N NS IS

Fig., 2. Formal digits in bases 4, 8 and 16.
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Note that although our numeral system is
based on the binary coding of numbers, it uses
on the average far fewerelementarary symbols
than in the binary representation. For
instance, in base 8, —=10(binary), =100,

~N =101, < =110, <J =111 and ~X =101110.
Thus, the number of elementary strokes in a
digit is equal to the number of 1's in its
binary expansion.

An alternate way of deriving the same
concept of a formal numeral system is to
define a set = of N elementary strokes whose
subsets would denote the digits of the system.
There are 2N possible subsets of ¥ , with
the empty subset being denoted by 0. For
N=2 let Z={l,7} . Then {1}, $13,%°%, and
$ 1573 are the possible subsets of ¥ . These
can be represented, respectively, by 0,1 , ",
and -1 . The most natural interpretation of
a compound symbol is to assume that it repre-
sents the sum of numbers denoted by its
constituent elementary strokes. Thus, we
conclude that if | represents the integer 1,
then — and 7] represent 2 and 3, respectively.
This argument can be extended to arbitrary N.
For example, for N=3, if we assume that \ =4,
then it follows that ~=5, < =6 and N =7,

The only freedom is the rule for combining the
elementary strokes.

3. Examples of Formal Numeral Systems

The binary formal numeral system (N=1) is
identical to the standard notation except that
1 is replaced by | . We now consider, in
order, the specific formal numeral systems
obtained when N takes on the values 2, 3, 4
and 8.

3.1. The Quaternary System (Base 4, N=2)

For base 4 the set = of elementary
strokes is {1,~} . We define | =1 (decimal),
T =2 and 71 =3.  Figure 3 then presents the
addition and multiplication tables for this
numeral system.
ol My XL~
VT TIo VIV T
o —iT ol
apeln - S i

Fig. 3. Addition & multipl. tables for base 4

Since addition and multiplication are associa-
tive and distributive only operations between
the elementary digits of Figure 3 need be
memorized. In case of addition this can even
be further reduced by noting that the addition
of distinct elementary digits results simply
in the combination of their associated
strokes. Figure 4 then presents the reduced
addition and multiplication tables for base 4.

X1~ X1y -
]

- 10

Fig. 4. Reduced add. & mult. tables(base 4)




To obtain the sum of two non-elementary
digits we first add their | strokes and then
the strokes. This is similar to the
addition process with abstract symbols which
proceeds from the right-most digit to the
left. The important point to remember is
that if two digits have no strokes in common,
then their sum is denoted by the combination
of all their strokes. For the quaternal
system this situation arises only for ~+i="1
and addition with zero. However, the range
of application of this rule increases
considerably as the base becomes larger.

Multiplication by a non-elementary digit
can be performed in terms of its elementary
components as in the usual multiplication of
decimal numbers. The only difference is that
subproducts must be aligned on the right. For
example,

1y TOX 312 x
1 3

1y 312 (=312x%1)
e 1230 (312x2)
= 7707

To multiply by a number containing two or more
digits we simply use this scheme along with

the standard rule of multiplication.
Example. T X 312 x
a” 32
-0 1730 (312x2)
1Yy 312 (312)(1)
170 1230 (312x2)
={710 23310

Besides the fact that the complete
addition and multiplication tables need not be
memorized, an important advantage of formal
numerals is that a digit can be constructed
piecemeal. Consider the addition ~+ ~— + 71,
One can immediately conclude that the right-
most digit of the result contains the
elementary stroke | . Then by noting that
“+7+7 =17, the final result [T can be
obtained. This piecemeal construction of
digits is even more useful in the handling of
carry figures in multiplication. Since a
carry figure must be smaller than a multiplier
digit or any multiple thereof, we can formulate
the following rule for it.

Carry Figure Rule for Formal Numerals

Let a and b be formal digits and let e be

an elementary digit. Then if exb=d2d.l and

exab=d3déd19 dl,'dz, d; and d, being digits,

then dé contains d,. (Actually, d, must be

a single elementary stroke.)

In other words, the carry figure can be
directly written in the result. In contrast,
when the standard abstract symbols for
numerals are used, the carry figure d, must be

recorded separately and then added to the
product exa.

Examples.
M '\ - X

10

78

Here, the stroke ) in 7 can be recorded as
the carry figure from the product —x~ ,

irrespective of the product | x~ .,
(2) T x
=T

Here, the same phenomenon occurs twice.

3.2. The Octal System (N=3)

In the octal case, we extend the set X
of elementary strokes of the quatermary
system by introducing the stroke \. which
denotes the number 4, The rules of combination
are defined by the representation of 7 by < .
The octal digits then are

| - TN N < N
1 2 3 4 5 6 7.

As in the quaternary case, we can restrict
our attention to elementary digits in definin
the addition and multiplication tables (Fig.S%.
For addition, the trivial cases of the addition
of distinct elementary digits are again not
included.

X[y TN\

Xl =~ VTN
BCaRND - Jio
NN oo

Fig. 5. Addition & mult. tables for base 8.

Examples of addition.

=1

(1) '+ N=N, + N\ =Y, 4

2) S+ =N N+ 7 =N NN =N
3 b

(3N + )V =X, Vi) =10, N4&N =17

(4) N+3X+N +10="Y

In the last example, as in the quaternary
system, one can immediately conclude that ]is
part of the right-most digit of the resultant
sum. The stroke \ can be added later to
obtain <.,

Examples of multiplication.
(1) N x

|
To obtain this product, we first form

“x\ =

and then since —x~ = we add \ to ~ to
obtain < . Finally, ~x\ =10 completes the
result,
(2) NN x 537 x
AN 6
== 1776 (537x2)
NN 2574 (537x4)
ANOA VA 2;072

Here, the carry figure rule of Section 3.1 is
applied several times. For instance, in
multiplying TN by — the following steps are
traversed:

a9 x
Step 1: " xl=" -
Step 2: Tx=N N

\ <

Step 3: " x\=10

Step 4: " x 1=

[N

Final result.




On the other hand, in performing addition the
carry figure cannot be immediately written
without regard to the digits in tKe next
column to the left. For example, <+ =70,
w?ereas, N+ =10 which has a carry figure
of |.

3.3. The Hexadecimal System (N=4)

We define the set Y of elementary strokes
for hex as {1, =, ~,~} , with - representing
decimal 8. The digits then are

P7ANNTYR "4 7 71 ¢ ¥V <3
12345678910 11 12 13 14 15.

Of course, 16 would be represented by 10 and,

€.g.s 33 by 1. Figure 6 contains the hex
addition and multiplication tables.

X =\ s

X[l =\ 7 P TIN Y
X+X [~ [N[~]io] “[=NT/To
~ N[/ ol

/171070 \NO

Fig. 6. Addition & multipl. tables for hex.
Examples of hex addition.

T+X =, A+X=1Y , N+4¥=1¥,

Before we presert some examples of hex
subtraction, we introduce a definitiom, and a
rule that simplifies the subtraction process
. when a subtrahend digit is larger than its
corresponding minuend digit.

Definition. Let X be a digit in a formal
numeral system . Then, the complement of X,

denoted by X%, is the combination of all the

| elementary strokes of the system that are

i not in X.

. Rule of Subtraction from |0. Let X be a formal
. digit, then

\ 10 - X = X%+1,
f Examples of hex subtractiom.

< - 1N -
a X
~ 7 A

I The rule of subtraction from |0 is used in
# the second example to obtain 10-X =71+ =\,
i Then, < + \ gives 7 .

[i Examples of hex multiplication.

7 x X7 ox
— SN
A X
I < 10X
X IFAN
\Y J08
\ XX N

 An example of hex division.

| AN 7“2’ )
Nie) i_ (AR
“AX
- 7/ N (7% N)

l Remainder

3.4, A Numeral System for Base 256 (N=8)

To form a numeral system for base 256 we
let ¥ be the full set of strokes in Figure 1.
That is, we extend the formal hex numerals b
defining —=16, * =32, =64 and y=128. The
rules of combination of the strokes are

defined by :g which denotes 255. Thus,
X =16+8+4+2=30,
N =64+32+4+1=101 and
¥ =128+4+2+1=135.
In base 256 any 8-bit number (byte) is
represented by a single digit. Also, every

two-digit hex number corresponds to a single
digit in base 256. For instance,

10011101(2)= 4\0(16)= d (256) "

As in previous formal numeral systems
with base a power of 2, addition and
multiplication in base 256 can be performed
in terms of the addition and multiplication
tables for elementary digits (Figure 9).

) SN b m 2
XX TN [ s io]

Xl =N s7=38
HLEITINLZ2 2 | A,
-FINTETE ST o
NN e el
sl7tutd —l¢ ltoloNo
ol bl N P PR TR B N 2
L3 R T P 1S = N S
- |=1l e [to [F0[No)e PO[é0
2 Le [lo}-o\o|70|-0lbo |Ho

Fig., 9. Addition & multipl. tables for

base 256.

Examples of addition in base 256.
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Laun ]

At
=
A
+
1Ko
N
4*

7 l

~A

]

<[

£
14
1A=

Ep.




An example of multiplication in base 256,

[} b
fX )X
=

[ I}

S o

< |
BNFISEES
5|
N (xm)

2 T
) L_lbé‘
N § %ﬂ Final product

4. A Simplified Notation for Decimal Numerals

Since 10 is not a power of 2 a simple
numeral system like those of Section 3 cannot
be devised for decimal numbers. If the first
ten numerals (including zero) of hex are taken
as the decimal digits, then addition and
multiplication cannot be defined in terms of
these operations just on the elementary digits.
Further rules would be needed and the
resultant numeral system would not be signi-
ficantly better than the standard abstract
symbolism for decimal numbers. Using the
quinary (base 5) and a variation of the binary
systems, however, we will now present a
possible formal numeral system for decimal
numbers. This is not meant to explain the
evolutionary development of the decimal system.
It is intended merely as a possible notational
simplification of the representation of
decimal numbers.

Consider the standard quinary system with
digits 1, 2, 3, 4 and the associated addition
and multiplication tables as presented in
Figure 7.

+ 1 2 3 4 X 1 2 3 4

1 2 3 4 |10 1 1,2 314
2 3| 4 10 |11 2 2|4 11 13
314 j10 11 |12 | ‘3 3 (11| 14 |22
4 1011 12 |13 4 | 4|13 |22 |31

Fig. 7. Addition & mult. tables for base 5.
Let v denote the integer 5 and consider
the new set of decimal digits
1 2 3 4 « % 2 3 %
12 3 4 5 6 7 8 9,

The resultant decimal numeral system will be
called biguinary*. As in previous numeral
systems, we can use superposition to perform

* The standard biquinary representation of
decimal digits is (01,00001), (01,00010),...,
(01,10000), (10,00001), (10,00010),...,

(10, 10000) .

biquinary addition and multiplication. We
first present a conversion rule that will be
used on the entries of the tables in Fig. 7.

Quinary to Biquinary Conversion Rule for
Two-Digit Numbers.

Let X and Y be quinary digits. Then the
quinary number XY is equivalent to the
biquinary [Y/2]%, where

(1) [Y/2] is the largest integer in Y/2.
(2) % =X if Y is even.

=% if Y is odd.
For instance, 44(5)=24(1O) and 32(5)=IQ(10).

Biquinary addition can now be performed
easily by using quinary addition and the
equation ~+ -~ = 10,

Examples of biguinary addition.

(1) 3+4=12 in quinary. Therefore, in the

biquinary representation of decimal we have
3+4=2,  3+%=12, FH4=12, F4¥=1?,

(2) 4+4=13 in quinary. Then, in biquinary

we have

4+4=3, 4+H=13, GYHN=19,
To perform multiplication we only need
add the multiplication table of Figure 8

for -~ to the quinary table of Figure 7 and
use superposition.

X I 1 2 3 04 v~ Ny Y W

\/’\J 10 1~ 20 2~ 30 3 |40 |4v

Fig. 8. Biquinary multiplication table for‘J.f

Examples of bigquinary multiplication.

(1) 3x4=22 in quinary. Therefore, in biquinar;
we have ]

3x4=12, 3x%=2%, Ix4=32, Ix4=92,
(2) 4x4=31 in quinary. In biquinary we have
4x4=1Y, Wxd=31, 44=3V.,

5. Advantages and Disadvantages of
Formal Numeral Systems

The main advantages of the formal numeral }
systems proposed in this paper are that
(1Y they provide a logical relationship
between numerals and their associated
numbers, (2) they simplify arithmetical
operation, and (3) fewer digits are needed 4
to represent numbers when a large base is usedd

We shall now discuss these three points
in more detail.

(1) While most ancient numeral systems were
cumbersome because of their ideographic
excesses, the abstract Indo-Arabic numerals




are totally devoid of representational value.
. In a small base like B8 or 16 the formal

. numerals are no more complicated than the

-~ abstract numerals yet they present a clear

. picture of the structure of numbers. For

' a large base like 256 one cannot even conceive
* of a practical abstract numeral system.

. (2) In view of the examples and the discussion

¢ in Section 3 it is clear that it is much

¢ easier to perform arithmetical Operations

: on formal numerals than on abstract numerals,

} Much smaller addition and multiplication

¢ tables need be memorized and the carry figure

¢ in multiplication can be directly recorded

¥ in a product (by the rule of Section 3.1).

L. As another example, consider divisibility by

35 5, or 15 in hex. S$ince 16=15+1, a number

is divisible by3, 5, or 15 if the sum of the

digits in its hex representation is divisible

{ by 3, 5, or 15, respectively. This can be

; ascertained much more easily if the formal

|l hex numerals of Secticm 3.3 are used. For
example, one can immediately determine that

‘%Q4‘? is divisible by 15 (). On the other

- hand, in its standard representation, 79E,

' this fact seems much less obvious.

é (3) Under a uniform distribution, the average
§ number of digits necessary to represent
‘Enumbers in base 256 is close to half the

§ number of digits required in hexadecimal* and
f even less compared to the decimal. Aside

i from this, it is convenient to have a one-

f digit representation of a byte which is a

e common unit of information in many computers.
| Finally, note that any digit in base 256 can
¥ casily be recorded on a single column of a

. computer card (a maximum of 8 perforations).

. The main disadvantage of our formal

¢ numeral systems is that the existing abstract
i numeral systems are so well-entrenched that

} there will be a tremendous resistance to the
§ introduction of a new symbolism. The

} Duodecimal Society of America has for many

¢ years religiously advocated the adoption of

. @ numeral system in base 12, with T (deck)

i representing 10 and E (el) representing 11,

E with very little success. On the other hand,
L historically, there have been instances

¢ where formalizations that are based on

. logically sound foundarions and are of clear
utilitarian value have been widely adopted.
A case in point is the metric system. It is
therefore possible that a system of numerals
such as the one proposed here could find

i} some acceptance in the future.

* Only for numbers less than 16 there will be
an equal number of digits.
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