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Summary

An important aspect of any evaluative procedure
for developing high quality mathematical software is
testing the effects of arithmetic behavior on algorith-
mic implementations. This paper describes a proposed
design approach and various applications of a high-
level language floating-point simulator which has two
inputs: the program to be tested and a description of
the floating-point arithmetic under which the routine
is to be executed. A brief discussion of the motiva-
tion for this approach is given along with a review of
existing efforts to study the influences of computer
arithmetic on the accuracy and reliability of mathema-
tical software., An overview of the simulator's struc-
ture is presented as well as suggestions for experi-
ments to assist in determining the effects of floating-
point behavior across several different computer archi-
tectures. Present and future uses of the simulator are
also indicated.

1. 1Introduction

An important aspect of any comprehensive evalua-
tion of mathematical software is testing the effects of
computer arithmetic on high-level language implementa~
tions of numerical algorithms. Each computer has its
own floating-point number representation; its exact
form and use in arithmetic operations during program
execution influence the numerical accuracy (and hence
reliability) of the tested routine. Mathematical soft-
ware written in FORTRAN or ALGOL exhibit varying de-
grees of accuracy across diversé computer architectures
of the same or different manufacturers. Therzafore,
during both the developmental and maintenance phases
for math routines the effects of accuracy degradation
must be observed for a wide variety of existing and
future computers in order to make necessary software
adjustments in particular program versions.

We are in the initial stage of development for a
high-level language system to assist in observing com-
puter arithmetic behavior. The system has two inputs:
the routine to be tested and a description of the
floating-point arithmetic under which the tested rou-
tine is to be executed. Then the accuracy performance
of the program under those conditions can be simula-
ted. The resulting error propagation can be observed
and compared with output obtained under other restric-
tions., Such a system permits simulation and analysis
of past, presert, and future computerized floating~
point arithmetic on existing and proposed mathematical
software. The simulator also provides multiple pre-
cision capability.

In Sectiorn 2 we indicate the need for such a test-
ing facility and in Section 3 we give a brief discus-
sion of computer arithmetic features whose influences
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should be considered. Section 4 reviews attempts to
provide accuracy measures for scientific computations.
The objectives and criteria for our system are outlined
in Section 5 and an overview of the simulator's struc-
ture is given in Section 6. Section 7 is devoted to
defining experiments for use with the simulator to
check out a program's arithmetic behavior. Potential
extensions and uses of our approach are mentioned in
Section 8. Some open questions are suggested in Sec-
tion 9 and the paper concludes with a brief summary in
Section 10.

2. Need for Comprehensive Accuracy Testing

Highly reliable math software is a necessity for
the complex problems encountered in modern science and
engineering. Unfortunately, the rapid advance of com-—
puter technology coupled with the growing needs of the
scientific community have resulted in the production
of a large quantity of low quality software; many of
the routines have poor or undefined accuracy require-
ments and ignore the idiosyncrasies of computer arith-
metic. Furthermore, there has been a meager amount of
effective testing of algorithmic implementation beha-
vior under a wide variety of conditions. A host of
computer manufacturers and user groups as well as in-
dividual companies and government laboratories have
built large and small mathematical libraries with the
above-mentioned inadequacies and have all too often
repeated each other's shortcomings.

Costs have been high. For example, it has been
estimated that the Boeing subroutine library costs

$14 .58 per source card.” A set of eigenvalue programs

called EISPACK48 costs about $20 per source card; this
does not include the original developmental costs of
the ALGOL programs which served as a starting point
for these FORTRAN routines. Program libraries that
have met with some initial success have often become
outmoded cr suffered from numerical accuracy problems
because of conversion difficulties as new machines are |
introduced,

One of the lessons to be learned from this dismal §
situation is obvious: Techniques must be developed
for the construction and effective testing of math
software with known accuracy requirements and limita-
tions as well as high reliability over an extensive
spectrum of computer arithmetics.

The properties of floating-point arithmetic re-
presentations and their intricate relationships with
numerical algorithms complicate the task of assessing
a mathematical routine's accuracy. Some of the basic
difficulties are discussed in the next section.




3. Computer Arithmetic Influences

Most high-level languages permit input of numbers
in base 10 scientific notation. A conversion is usual-
ly performed to an internal representation in some
other number base. Most machines use base 16 (e.g.,
IBM Systems/360 and 370), base 8 (e.g., Burroughs 5500)
or base 2 (e.g., CDC 6000-7000 Series). These differ-
ences contribute to numerical inaccuracy problems ex-
clusive of any error induced by the arithmetic in the
program,

Floating-point numbers which can be represented
exactly in base 10 do not necessarily have an exact
representation in the number base and format of a com-
puter's internal representation. Furthermore, the
amount of conversion error is dependent on the internal
number base as well as on the tradeoff between the
number of bits assigned tc the characteristic and
mantissa. Thus, base 10 floating-point data accepted
by a high-level language program might exhibit a sub-
stantial variation in internal accuracy when the rou-
tine is executed on several computers which use dif~
ferent number bases, word lengths, cr a variety of
lengths for characteristic and mantissa representa-
tions. These inaccuracies occur both when inputting

and cutputting data. A formal analysis of such conver-

sion problems has appeared in the 1iterature.35’36

Another accuracy problem arises in connection with
the use of normalization, rounding, and truncation op-
erations. In the basic arithmetic operations, the op-
erands are usually normalized before the operation is
executed and the resultant is also normalized. Since
the resultant is often computed to more digits than can
be stored in the internal floating-point representa-
tion, a rounding or truncation of the answer must be
performed along with normalization. If the rounding or
chopping precedes the normalization process (as it does
on some computers such as the CDC 3300), then there can
exist some floating-point numbers x such that x multi-
plied by 1 does not equal x; thus, on such machines
there is ne multiplicative identity for all represen-

table numbers.8 Most of the time the user does not
have the choice between rounded and truncated arithme-
tic. The standard default is usually truncated arithme-
tic which tends to increase inaccuracy. The shifting
of mantissa digits such as is done in floating-point
addition can result in situations where x + y = x for

y < < x, assuming x and y are nonzero floating-point

numbers.24

. To complicate matters further, the associative,
closure, and distributive laws of the real line do not

necessarily hold for all cases invclving computer arith-

metic.?l The computer number representations are not
uniformly distributed over the real line, thus prevent-
ing several resultants of the same type of arithmetic
operation from being represented with the same accu=
racy. Also some computers (such as the IBM System/360)
use "'guard" digits to assist in slcwing down accuracy
degradation; such a facility can introduce additional
arithmetic peculiarities.

The influences described above are interrelated
in a very complicated manner which is not completely
understood in theory and which is difficult to monitor
by isolating one or more effects. There have been a
few attempts to formally analyze computer arithmetic3d,

37,51,57 but often times the theoretical assumptions do
not hold in practice or are not easily verified. Some
empirical studies (a few of a statistical nature) have
been performed to observe the effect of one or two spe-

cific influencesz"lo’27»34 but have not attempted to
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generalize their findings nor to include all the influ-
ences discussed above.

A computer arithmetic simulation package can
assist in observing the interactive effects of all the
aforementioned features on algorithmic implementations,
Such a system should provide as input a description of
the floating-point internal format (number base, cha-
racteristic size and biases, mantissa size) as well as
indications of when pre- and post-normalization of op-
erands and resultants for each arithmetic operation
occur and when rounding or truncation is performed,

The presence of guard digits must alsc be noted along
with rules for shifting mantissa digits during arithme-
tic operations. Any other specialized actions which
occur during arithmetic operations must be clearly de-
fined,

4, Attempts to Measure Numerical Accuracy

There are several different approaches reported in
the literature for monitoring of error propagation in
scientific computaticns., The existing methods can be
divided up into two categories: error-bounding tech-
niques and multiple precision packages., We shall
briefly indicate the shortcomings in both areas,

Most error-bounding methods can be applied only to
relatively restrictive classes of problems and often
involve extensive computational overhead., It is diffi-
cult for such schemes to accurately assess all computer
arithmetic influences and their effect on computing the
actual error bounds, The results are often unreliable
or very conservative and usually require extensive exe~
cution time for non-trivial computations. One of the
most well-know approaches in this category is interval

analysisz’44 and its variations. Unfortunately, it
suffers from many of the above-mentioned weaknesses;
also its computer Iimplementations are not widely dis-
tributed and many existing versions are somewhat depen-
dent on the machine architecture for which they are
designed. Further details and references concerning
error-bounding methods and their features are reported

in the literature.1’2’5’18’20’44 Most of the suggested
approaches in their present forms do not look too pro-
mising for efficiently studying the numerical reliabil-
ity of a wide range of math software; it should, how-
ever, be pointed out that scattered throughout the
literature are some interesting ideas which warrant
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further investigation.5’6’24’4“’47

The second category of available methods offers
many different approaches for developing an extended
precision arithmetic capability. The main premise of
these efforts is that increasing the precision under
which a mathematical routine is executed can lead to
extremely accurate results which, in turn, can be used
to judge the accuracy of a program's single and double

precision performance.23 Most multiple precision pack-

ages are very slow. It has been est:imated14 that exe-
cution time increases linearly with precision for addi-
tion and quadratically for multiplication; time increa-
ses are far worse for extended precision functions

evaluations.lA Several of the existing implementations
are dependent on the assembly language or the arithme-
tic unit design of a particular machine, are restricted
to programs written in a single language, or have re-

quired the use of precompilers; examples of such pack-
3,11,12,13,21,22,
ages are described in several papers.”?
23,25,26,27,29,30,39,43,45,46,50,55,56 Thus much of
the work which has been dome is slow in execution as
well as compiler-language - and/or machine-dependent.




These systems have not usually been designed to promote
portability for an extensive collection of computers,

There have been two attempts38’56 known to us to
produce portable FORTRAN extended precision systems

and one attempt23 is currently under way to create an

ALGOL facility. The package constructed by Wyatt56
and colleagues is the most extensively developed of
these. It uses a precompiler to scan certain super
precision data types. The system includes a FORTRAN
extended precision library of standard functions and
permits multiple precision calculations in bases 2 to
16. It does not permit multiple precision operations
on non-FORTRAN programs nor does it permit complete
user flexibility in the areas of floating—point repre-
sentation and arithmetic activities. For exanple, the
package would not easily allow the user to define his
own (nonstandard) rules for rounding or chopping (and
where they are to be performed) nor would it permit
dynamic changes of precision throughout the program
(although it does permit mixed mode operations involv-
ing extended precision quantities). These are not
serious drawbacks for the intended purpose of this
package - to provide a portable extended precision
capability for scientific computations. These restric-
tions are, however, somewhat irksome for persons want-
ing to have more flexible control of floating-point
representations and computer arithmetic behavior in
order to better observe algorithmic implementation aber-
rations.

5. System Design Objectives

Our primary goal is to construct a floating-point
arithmetic simulation facility which has the potential
capability of inputting test programs written in one or
more high-level languages and permits users to define
their own floating-point representations and the de-
tails of all arithmetic operations or to use defaults
to certain options and formats. Such a system would
permit accuracy testing of new and old algorithmic im-
plementations over an extensive range of existing or
propcsed computer arithmetic designs. We look upon
this package as a research tool for the study of arith-
metic influences on computerized numerical algorithms;
it will also minimize restrictions on user specifi-
caticn of floating-point representations and associated
operations.

A secondary objective is to use the system to
offer extended precision arithmetic In one or more
high-level languages. In this connection, we hope
to benefit from some of the multiple precision schemes
referred to in Section 4 and, if possible, to reduce
execution times., Such a reduction may be realized by
invoking specialized, efficient routines for low and/or
often used precisions (e.g. double and triple preci-
sion) rather than applying the generalized routines

which are employed for higher precisions or for simu-—

lation of nonstandard arithmetics.z3

We want to minimize necessary program modifica-
tions for the routines to be tested. We therefore
avoid use of new data types (which would require the
creation of a rrecompiler) and explicit function
calls to s*mulator routines in the source program.
Instead, the user would insert a few control state-
ments into his high-level source program along with
descriptions of how to execute the basic arithmetic
operations (initially, in the form of subroutines to
be used by the system, later, in a special language
developed for this purpose).

The user should be
any floating-point form

able to work with almost
and arithmetic that he can
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explicitly define, regardless of how nonstandard or
unconventional his design may be. In this connection,
one of our long-range goals is to develop a genera-
1lized, "canonical’ floating-point model (internal to
package) in terms of certain "primitives" which de-
fine the floating-point arithmetic to be used in a
simulation and into which the user-defined specifi-
cations would be translated; much research is yet to
be done on developing such a viable model. It would
also be advisable to use the aforementioned "primi-
tives: to create a library of standard support rou-
tines.

0Of course, as our system is created it should
undergo testing with regard to efficiency, accuracy,
and portability conmsiderations. Simulations of
arithmetic associated with existing machines can be
compared with actual results run on those computers.
The simulator can be used on several machines to deter-
mine the extent of portability and to suggest design
changes tc increase the possible class of host ma-
chines. FPerformance studies and analysis should be
devised to assess efficiency and accuracy of simulated
results, In addition, a collection of experiments
should be developed to thoroughly test the arithmetic
behavior of algorithmic implementations inputted to our
system.

6. System Design Overview

The gystem is to be written as a compiler in ANSI
standard FORTRAN and is composed of the following com-
ponents:

Compiler "front end"
Compiler "back end"
Conversion Package
Simulation Routines

The Compiler "front end" is a lexical and syntac-
tic scanner for the language being compiled. Separate
"front ends" can be supplied for different languages in

a manner which has been used successfully in several

systems.l‘)’m’52 The purpose of the "front end” is to

convert the high-level input language into a 'virtual

machine” language or UNCOL.49

UNCOL (UNiversal Computer-Oriented Language) 1s an
intermediate level language between assembly and pro-
cedure-oriented languages; it preserves the relative
machine independence of high-level languages such as
FORTRAN or ALGOL while reducing language dependency by
more explicit specification of the control structure
and other characteristics which are unique to a given
language. For example, a sequence of FORTRAN state-
ments and a comparable sequence of ALGOL statements
may have slightly different effects. When expressed
in UNCOL, such differences are made more explicit. Al-
though the UNCOL statements are assembly - like, they
contain no explicit machine dependencies. The "virtual
machine' whose language is UNCOL is one which repre-
sents all machines. Its programs may be translated for
any given machine via a suitable "assembler".

UNCOL systems have had less success than origi-
nally hoped for, due to such factors as the difficulty
of generating efficient code while retaining machine
independeqce; however, compilers based on modifica~
tionsls’lb’52 of this concept have successfully man-
aged to generate correct code for a variety of langua-
ges and machines. Since languages of interest to this
project are procedure oriented, scientific ones as
opposed to general purpose data processing languages,
it is reasonable to expect that a set of UNCOL state-
ments could be developed which would handle this class




with acceptable efficiency. It may be necessary to

limit which non-numeric features are used in certain
general-purpose languages, but this is mainly in the
interest of practicality rather than feasibility.

The Compiler '"back end" will convert the interme-
diate UNCOL form into truz machine language., This in-
volves three phases:

Phase I: Storage Allocator and Information
Collector
Phase IT1: (optional) Code Optimizer
Phase IITI: Code Generator
Only Phase III will be highly machine dependent.

This conversion to machine language has the fol-
lowing differences from a normal compilation:

i) The amount of space allocated for data (varia-
bles, constants, arrays) will be a function of
the kind of arithmetic being performed. Thus,
if REAL were to mean 50 digit interval arith-
metic, each datum of type REAL would be allo-
cated sufficient storage to handle the two
interval endpoints with this much accuracy.

Conversion of constants to internal form will
be handled according to the type of arithmetic
under investigaticn; thus the compiler will
call the Conversicn Package for constant con-
version,

ii)

Run-time code will call the Simulation Routines
for all floating-point arithmetic and the Con-
version Package for I/0 conversion.

iii)

The Conversion Package will have the task of con-
verting data between external forms and the internal
form necessary to simulate the kind of arithmetic under
consideration. It will be called from the Compiler
"back end" as well as from the run-time simulation and
1/0 routines.

The set of Simulation Routines is, of course, the
most important component of our system. Simulation
will be required for all primitive operations (e.g.
add, multiply, divide, negate, absolute value, exponen-
tiation, etc.). Higher level routines such as library
support functions (e.g. sin, cos, etc.) will be written
in the UNCOL language of the compiler, in which the
only floating-point arithmetic is that represented by
the primitive operations. Essentially, the virtual
machine's floating-point ":ommands" are to be simulated
according to the type of arithmetic under examination.
All non-primitive arithmetic routines are to be written
in terms of these "commands", hopefully in such a way
that the details of the format, type of arithmetic,
etc. can remain unspecified.

We envision two phases for the development of the
set of Simulation Routines. In the first phase, pri-
marily intended to get the system "on the air", the
primitive operations will be written separately for
each type of arithmetic of interest. In the second
phase, a more general set will be developed using a
process in which an arithmetic format is described as
input and the primitive routines are produced as out-
put with the intermediate form involving the floating-
point canonical representation mentioned in Section 5.
This phase requires much additional investigation.

We shall attempt to take into account portability
considerations in our system design, i.e. we want our
system to be easily modifiable so as to run on several
computers. This is our reason for writing almost
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everything in our system in ANSI standard FORTRAN; how-
ever, since the output of our compiler will be machine
(or perhaps, assembly) language, it is not possible to
change machines without some program modification. The
goal is to keep machine dependencies isolated to Phase
IIT of the "back end" so as to limit the amount of
necessary reprogramming. To make the conversion and
simulation components portable, they will be written

in FORTRAN or, if necessary, in the same UNCOL language
generated by the compiler "front end", except that
conversion routines and run-time support will probably
be prone to dependence on the object machine and the
type of arithmetic being considered.

Our approach differs from those employed by most
existing multiple precision systems referred to in Sec-
tion 4 in that our proposed package uses a compiler
rather than a pre-compller or a hand-coded "front end";
most existing systems require either that a superset of
FORTRAN or ALGOL or else that hand-coded modifications
(subroutine calls or special statements) be written.
With our system, commonly used programs can be tested
to see how well they will work under different arith-
metic conditions without any internal modifications or
insertion of special statements, except at the begin-
ning (or via "job control language"). As an option,
we will permit the use of some 'nonstandard' state-
ments; for example, optional directives would be al-
lowed which indicate that extra precision should be
used in certain portions of the program. In either
case, our proposed simulator will use as input high-
level language programs which do not require the exten-
sive revisions demanded by present systems.

Thus, our system will accept existing programs (or
slight modifications of the original), "compile" them,
and execute them using a simulated version of an arith-
metic under investigation. To study a new type, it
will sometimes only be necessary to supply a new set of
simulation subroutines (or later, a description of a
new type of arithmetic). TFor an arithmetic which is
substantially different from those previously studied,
viz, requiring a different internal representation of
floating-point numbers, a "recompilation" would also
be required. In no case, however, would program modi-
fication be necessary. Our approach will therefore
minimize restrictions on user-defined innovative or
unconventional floating-point representations and their
associated arithmetic. Thus, numerical behavior of
mathematical software could be observed over a broad
spectrum of existing or proposed computational environ-
ments .,

Other advantages of our compiler approach include
the following points:

more control over code generation and optimiza-
tion, thus potentially higher efficiency in
object code

wide flexibility in translation (we would not
be restricted to the use of subroutine and
function calls to handle features not found in
the original language)

"natural” expression of constants and expres-
sions, since we control the translation.

7. Experiments for Arithmetic Behavior

The types of tests we discuss here are independent
of our system's internal design; they only assume the
existence of a floating~point arithmetic facility (sim-
ulated or real). We could simply run a set of high-
level language programs with our simulator and observe
the numerical results; however, to provide more




comprehensive and systematic testing as well as to
check basic arithmetic properties, we are advocating
additional checks. The experiments can be categorized
into the following areas: program data variation;
computer arithmetic properties; variable precision
tradeoffs; automated checks.

A naive approach to testing the effects of data
variation is to use a large collection of random
numbers as data. Unfortunately, this is not a fool-
proof scheme for spotting algorithmic or program weak-

nessesg’al; often times, arguments which result in

substantial inaccuracy are very dependent on a compu-
ter's arithmetic unit, or its floating-point pclicies.
Although some poor results may be discovered by using
extremely large sets of random data, this approach
seems to be somewhat inefficient since no assurance
can be given that most or all computer hardware and
software numerical anomalies will make their presence
known. Instead, what is needed is a workable set of
data which thoroughly exercises the entire range of
applicability of a mathematical routine. Selected
bit configurations which may cause difficulty should
be used along with random data that is uniformly or
exponentially distributed over the entire range of

the simulated floating-point representation.g’Jl

Several theorems are given by Sterbenle to define
properties of computer arithmetic. These can serve as
a starting point for checking out simulated floating-
point behavior. Some of the conclusions of these the-
orems may not hold for a specific, implemented compu-
ter arithmetic because hardware and/or software influ-
ences may have violated one or more of their hypothe-
ses. The theorems and proofs suggest ways to deter-
mine specific representations which may cause zrouble.

Additional tests24 used to check out existing computers
would also be helpful, especially if we are studying

a simulated arithmetic which resembles that of a spe-
cific computer.

Experiments can be devised to observe the accu-
racy tradeoffs introduced by multiple precision compu-
tations for the simulated arithmetics. For example,
calculations can be performed in single, double, tri-
ple, and quadruple precision to determine the accuracy
variation as the precision is changed for a given sim-
ulated arithmetic applied to a specific algorithmic
implementation. The effects of subtractive cancella-
tion can be observed across several different preci-
sions for the user-defined arithmetic. Tests involv-
ing precision variation can also be performed in con-
nection with algorithmic modifications. Multiple pre-
cision resultants can further be utilized to assist in
assessing the accuracy cbtained from other numerical
experiments.

There are a few promising techniques for automa-
tic verification of accuracy and stability properties
of computerized numerical methods. An automatic a pos-—
teriori roundoff error bounding scheme has been pro-
posed by Richman.*’ An automatic a priori roundoff
analysis a la Wilkinson is currently being devel-

oped.40:41742 Such approaches could greatly assist us
in evaluating results from our simulator.

As our project progresses, additional experiments
will be devised to determine computer arithmetic beha-

vior on algorithmic implementations.

8. Potential Applications

OQur primary motivation is to provide a flexible
and practical tool to assist in the investigation of

floating-point computer arithmetic influences on sci-
entific computations. Such a facility is useful in
academic and industrial environments. In both areas,
users can develop an intuitive feel as to how various
programming techniques and modifications affect the ac-
curacy of a numerical method executed under a given
arithmetic. In an academic setting, students and
researchers could test out existing or newly-proposed
arithmetic procedures and observe the resulting numer-
ical effects on various mathematical routines. In
industrial situations, the simulation capability could
be used to emulate the arithmetic behavior of a new
computer system or of a machine which is not readily
accessible,

Another important application area for our pac-
kage is the development and documentation of portable
mathematical software. During the past few years a
few groups have attempted to produce high quality math
software:

NAG - Numerical Algorithms Group (in England);

NATS - National Activity to Test Software (in U.S.);
IMSL - International Mathematical and Statistical Li-
braries (private U.S. company). Comprehensive numeri-
cal testing methods are needed by these groups as well
as any cthers who want to develop or evaluate general
purpose mathematical software. Our proposed simulator
could assist in numerical behavior profiles for as-
sessing accuracy variation over a myriad of arithmetic
environments. Some possible testing strategies have
been outlined in Section 7.

The removable '"front end" structure for our system
(see Section 6) facilitates the evaluation of programs
written in several languages; this is particularly
helpful in judging a large collection of available rou-
tines since the Europeans prefer to write in ALGOL and
the Americans in FORTRAN. Such flexibility also allows
us to compare the numerical behavior of algorithmic
implementations in different languages.

Another important use for our package is its ex-
tended precision capability. There are several prac-

tical applications:23’53’54’56 to test the accuracy of
math routines as well as to improve the quality of
these programs; to precisely accumulate scalar products
and to accurately compute the residuals in iterative
refinement; to measure, trace, and control round-off
error effects; to improve computation of multiple roots
associated with nonlinear equations; to improve the
solution of ill-conditioned polynomial equations; to
retard the effect of subtractive cancellation; to ob-
serve effects on program behavior caused by perturba-
tion of data; to alleviate any other poor numerical
situations rather than resorting to specialized tricks.

9. Open Questions and Future Plans

There are several design alternatives which must
be given careful consideration as we proceed with our
project. A decision has to be made concerning the
manner of implementation for library support functions.
Many of the multiple precision packages referenced in
Section 4 have very few, 1f any, such facilities; an

exception is the National Bureau of Standards' system56
which contains a substantial set of extended precision
library routines. It is not generally feasible when
simulating the arithmetic behavior of an existing com-
puter on another machine to use the subroutine library
of the simulated machine because such libraries are
usually written in assembly or machine language and/or
are not portable; furthermore, even hand-coding of

such routines into a high-level language version may

be very tedious or time-consuming and may not be easily
accomplished 1f the code and/or algorithms are too




severely machine dependent. On the other hand, using
a library other than the one used on the simulated ma-
chine may produce significantly different results than
would have heen produced by the actual machine (possi-
bly because different algorithms are used to implement
the same function in rhe two libraries). We plan to
check out some such possible variations by comparison
of our simulation results with output from the actual
machines being simulated. Despite this situation, it
seems reasonable to use one standard, comprehensive
set of library routines for all simulations. We pre-
fer to write such a library in the "virtual machine'
language of our system (mentioned in Section 6) in
order to promote flexibility and portability; with
such a design, floating-point arithmetic 1is represen-
ted exclusively by primitive functions. We are plan-
ning to investigate the possibility of modifying in
this manner the National Bureau of Standards' library.

Another design problem is the input specification
of floating-point representations and behavior. A

very restrictive approach may be easy to implement but,

at the same time, severely limit the user's possible
range of formats and arithmetic descriptions. At
first we will adopt a restrictive approach but later
on we hope to develop a very general "canonical
floating-point format and description model into which
the user specification is converted; this model would
be expressed in terms of certain "primitives". Exten-
sive experimentation must be conducted to determine
viable candidates for such a model and to indicate
what limitations they invoke on user specifications.

We plan to eventually implement FORTRAN and ALGOL
removable "front ends" for our system. With a facil-
ity to input programs in both languages, we would be
able to use our simulator with most of the mathemati-
cal software produced in the U.S. and Europe.

The extended precision capability involves a
tradeoff between efficiency and portability. We plan
to conduct comparison tests among existing multiple
precision packages to gain better insight into this
problem area and to search for the best algorithms our
system should employ when used strictly for extended
precision computations.

Additional future activities include extensive
testing of the developing system on a variety of math
software routines. We also intend to expand and re-
fine the types of floating~point behavior experiments
suggested in Section 7.

10. Summary and Conclusions

The production of a large quantity of low quality
and somewhat unreliable mathematical software has pre-
cipitated the need to davelop comprehensive software
evaluation techniques. This need is especially impor-
tant for the production of widely distributed portable
routines and for the assessment of the floating-point
arithmetic behavior influences on the numerical accu-
racy of various algorithmic implementations.

We are advocating the development of a high-level
language floating-point simulator to assist in produ-
cing accuracy profiles of an algorithm's behavior when
executed under diverse arithmetic specifications de~
fined by the user. Such a tool can and in determining
the numerical effects of existing and proposed float-
ing-point formats and arithmetic policies and also
provide a multiple precision capability. Our proposed
system will attempt to permit a wide range of user-
defined formats and arithmetic specifications and to
offer a facility for evaluating programs written in
either FORTRAN or ALGOL (and eventually, other langua-
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ges). The potential uses of such a package include
support of reliability testing and documentation for
mathematical software, floating-point arithmetic ex-
perimentation or simulation, and variable precision
approaches to cope with such difficulties as ill-con-
ditioning, subtracrive cancellation, etec.

Somewhat independently of our internal system
design, we are also proposing the development of tests
for observing computer arithmetic behavior. Some such
tests have already been discussed in Section 7; addi-
tional experiments should be deviged.

Hopefully, our package can become a valuable,
practical tool for assessing the numerical reliability
of mathematical routines across a diverse spectrum of
computational environments.
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