DESIGN OF AN ARTTHMETIC ELEMENT FOR SERIAL
PROCESSING IN AN ITERATIVE STRUCTURE

Lakshmi N. Goyal
Department of Computer Science
University of Illinois
Urbans, Illinois 61801

Abstract

This paper describes the aritlunetic and logic
design of the digit processing logic of an arithmetic
element., The arithmetic element is used in an
iterative structure and arithmetic processing takes
place serially on a digit by digit basis with the most
significant digit first. Starting from the arithmetic
specification of the digit processing logic, the
arithmetic design (namely, the chcice of number system,
number representation and the digit algorithm) is
developed. Algebraic and logic designs of the logic
necessary to execute the digit algorithm and its
implication for LSI implementation are discussed.

1. Introduction

The advent of large-scale integration (LSI)
technology for the manufacturing of logic circuits has
posed a new challenge to the designers of digital
systems. Efficient use cf LSI capabilities require
that the digital systems be modular, that these modules
consist of as few different types as possible and that
the interconnection structure betwesen the modules be
uniform. On the module level, the module itself should
have a high gate to pin ratio and a regular and repeti-
tive internal logical structure. Further, the module
should be as locally autcnomous ag possible, &tommuni-
cating with only a few of its neighboring modules for
information, This avoids the high pin count and the
necessity of large on-chip drive caoability and con-
sequent high power dissipation.

In this paper, we ccnsider scme aspects of the
design of a basic arithmetic processor and its impli-
cations for ISI technology implementation. A basic
arithmetic processor executes four arithmetic
instructions of addition/subtraction, multiplication
and division of two operands. The basic arithmetic
micro-instruction of an arithmetic unit which performs
multiplication and division by alternately doing one
addition/subtraction and shifting can be characterized
by the transfer function

A=A+ (m*o) (1)

where A', A and ¢ are consistently represented numbers
and m is the multiplier or quotient digit.

Atrubin [1], Goyal (2], and Pisterzi [3] describe
algorithms to process a sequence of such micro-
instructions in a modular, iteratively structured
network of identical finite state machines. This
structure very eminently meets the constraints of LSI
technology. In such a structure, the results are
obtained on a digit by digit basis. In Atrubin's
method, the processing begins with the least signifi-
cant digits of the operands first and correspondingly
the least significant digits of the result are
aveilable first. On the other hand, in Pisterzi's
model, the processing takes place beginning with the
most significant digits of the operands first and
most significant digits of the result are obtained

first. The most-significant-digit-first (MSDF)
approach has the advantages of early overflow detec-
tion, normalization concurrent with processing and
early termination of processing as soon as enough

significant digits in the result have been obtained.
Moreover, the quotient generation and operand normal-
ization processes inherently require the examination of
most significant digits first. Finally, the MSDF
algorithm in an iteretive structure has the potential,
under suitable environment, of meshing (pipelining) of
successive instructions.

This paper presents the results of a study into
the arithmetic and logic design of the digit processing
logic of the finite state machine. The radix chosen
for use in the digit processing logic is a design
parameter, The main considerations of the design were
its suitability for LSI implementation.

To put things in perspective, a brief description
of the organization and operation of the iterative
structure is given in section 2. Section 3 presents
the major content of this paper. It describes the
arithmetic design of the digit processing logic of the
finite state machine in terms of number system, number
representation and the digit algorithm. The algebraic
design of the logic necessary to implement the digit
algorithm is explained next. We further give a brief
description of the logic design of the digit processing
logic and its implications on the pin requirements
for various valuesof radix. Finally alternatives are
suggested for reducing the number of pins.

2. Arithmetic Unit Organization

The arithmetic unit organization considered in
this paper was first proposed by Pisterzi [3].
Structurally, it congists of a linear cascade of
identical arithmetic elements called Digit Processing
Modules (DEM) and a Global Control Unit (GCU). The
GCU receives an arithmetic instruction (e.g., ADD,
MULTIPLY, etc.) from an external source and converts
them into a sequence of elementary microinstructions to
be executed by the linear cascade of DPMs. However,
the GCU comunicates only with the most significant
DM and the microinstructions flow serially (in a pipe-
lined manner) from the most significant DPM (closest to
the GCU) to the least significant DPM, instead of being
broadecast to all modules simultaneously. Figure 1
shows the schematic organization of such an arithmetic
unit., Each DPM retains the values of one digit of each
of the active operands in its registers and collectively,
the DPMs contain the mantissas of all active
operands and do the processing on them., The DPMs have
the capability of performing microinstructions which
will (when performed by all DPMs) form sums, perform
shifts, and do inter-register transfers, etc. Because
the quotient generation and operand normalization
processes require the examination of the most signifi-
cant digits, the operands are placed in the DRMs so
that the digits of each of the operands are available
to the microinstructions in order of decreasing signifi-
cance, Thus the most significant digits of the operands
are placed in the DM which communicates with the GCU.

Each DPM performs the same sequence of micro-
instructions., A given microinstruction is not executed
by all DPMs in synchronization, but rather must bve
executed by them in sequence (i.e., first by DH&L
DRV, .). As soon as all the DPMs, which contain
information required by DRM; to perform microinstruction

then
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j+1 (referred to as u. ), have exerubed . and have significance of the digits retained by the
J+l DBM. That is, Q. should be the same for
sent the required information to DPM,, Mypq mBY be each DPM. J

performed by DPM.. The microinstructions must have
1 b) The value of &, should be as small as possible
regular data requirements so that as each additional

DPM executes u,, one more DPM may execute p. .. because the execution rate of a given micro-
3’ J+l instruction is inversely proportional to .,
Clearly, the DM registers do not contain entire J
operands as long as any of the DPMs are actively exe- In a conventional weighted number system, carry or
cuting microinstructions, Each DPM contains the digits borrow into any digital position is a function of sll
from the results of the last microinstruction executed. the digits to the right of it. The value of &, there-
A more formal and detailed explanation of the operation . X L J
of a DPM is given in the appendix, fore, is clearly a function of significance of the
digit itself. Hence conventional number system is

All the microinstructions executed by the DPMs are unsuitable. The redundant mmber system which gives
so designed that the processing begins with the most a bounded value of aj is essential.
significant digit of the operands and proceed to those . ! X
with decreasing significance. For example, consider 3.1.2 Choice of Number Representation and Redundancy
the multiplication algorithm which is right directed. . . . X
It is implemented as a repeated sequence of shift-left The.mAJor factors 1nflu?n01ng the choice of
multiplier, multiply and add, and shift-left-sccumilator redundant nymber representation and the amount'of
microinstructions in that order. During the multipli- redundancy in the number system are the following:
cation process, the cascade network of DIMs behave as . i
what Dadde and Ferrari (4] call a “column-wise" a) the ease of conversion from conventional
operating multiplier: the product digits of a column number repr?sentatlon to redundant number
of product-matrix are generated within different DPMs representation,
and summed along the cascade network with other digits . L . .
of the same column and with carries (transfers) of the b) its campatibility with the widely employed
preceding colums. conventional binary number system,

For a detailed description of the implementation c) normalization of operands to radix-2
of various arithmetic algorithms and a complete limits, and
deseription of the different elementary microinstruc- .
tions executed by the DPMs, see Goyal [5]. d) LSI technology constraints, namely

3. Design of the Digit Processing Module i) minimization of the number of types of
cells (in the aritimetic and lﬁgic sense)

From the description of a typical DPM, it is required for higher redix (r-2%)
evident that the operations must be campletely inde- implementation of the digit processing
pendent of the significance of the digits retained by logic, and
a DPM. All DPMs may then be identical. A DM is a . .. . .
finite state, complex logic module with control logic ii) mlnlmlza?lon of the number of input and
and combinational digit processing logic. output pins,

To achieve a compramise between the serial pro- In this study, signed digit (SD) representation and
cessing and the desired arithmetic speed, an arithmetic maximal redundancy is chgsen becaus? 1tkmeets most of
step is carried out in higher radix, r = Ek, such that the requirements. That is, for radix 2 , the digit
k-bits of the result are cbtained at any step, k is ran - k i
chosen as the design parameter. The major considera- set ((27-1), ..., 1, 0 L .., (2'-1)]'1§ used. The
tion in the aritimetic and. logic design has been the overpar is used to @es1gnate negative digit values,
desirability of its implementation in LSI technology. Lmplications of maximal redundancy, "pseudo normal"

forms, and the use of "pack-add" algorithm are dis-
3.1 Arithmetic Design cussed in Avizienis [6] and Goyal [5].

The basic digit level arithmetical function per- Two modes of representation for the signed digit

formed by a DPM can be specified as are used, depending on the area of application:
al = a, +m. 6. (2) a) Redundant Binary Mode - Each digit, radix
i i- i /

Lk, is represented by k redundant binary
where a/, a, and ¢, are consistently represented digits digits. Each redundant binary digit is
in the active registers of the DPM and ms is a multi- chosen from the digit set (1,0,1}.
blier or quotient digit such that b) Sign-Magnitude (SMr) Mode - Each digit,

IHLI < r-1, r being the radix. radix 2K, is represented by a single sign
AL

bit and a magnitude represented by k bits.
3.1.1 Choice of Number System

3.1.3 Digit Algorithm

Let &; denote the number of DPMg from which a given

DRM requirés information in order to execute the micro- Eigure 2 ShoWs the functional rep?esentgtion of
instruction p,. Because of the iterative structure, it the digit processing logic of a DPM. Essentially, it
consists of a digit multiplier and an adder. Efficient
is evident that for efficisnt operation of the unit, use of LST technology in the implementetion of radix-2kK
aj should satisfy two constraints: digit processing logic dictates that :t should be made
up of identical logical cells, One approach that
a) The microinstructions should have regular achieves this goal is to design the logic as a one

data requirements independent of the
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dimensional linear cascade of k-stages of radix-2
arithmetic processing structures.

Since the aritimetical design of the adder is
influenced by the arithmetical and logical organization
of the multiplier, the design cf the digit multiplier
is discussed next followed by that of the adder.

3.1.3.1 Design of the Digit Multiplier

The digit multipiier forms the product of the
multiplicand and multiplier digit. In order to illus-
trate the algorithm, ‘et the two digits to be multiplied
be denoted by X and Y. In the most general way, they
can be represented as

K-1 i —
X = 'Zo X, 2 %5 ¥; € {(L,0,1)
i=
X,y V. € [i)ol l}
17 Y1
K-1 .
Y= % vy, 2d
320

The product X*Y is achieved by a KX K square array of
redundant binary product cells. Each cell forms the

product of two redundant binary digits % and yJ. and

its output product digit Pij iz in the digit set
{1,0,1}.

generator forms the product of two radix-2k
digits encoded in §M_ mode, )

(In actual practice, the product-matrix

signed

The product may be viewed in terms of the sums of
the pij terms of the same weight in the product-matrix.

2K-2 i ;
X¥*Y = Z (% X, y._l,)E
i=0  £=0 1=
oK-2 i :
= 2 (% p,., g2
=0 g=0 ‘77t

where X, Vg = O for i < 0 and i > K-1.

Defining
i
5, = Z p, .,
1 )0 £ydi-f
2K-2 5
¥*{ = © 8, 2 (3)
1
i=0

where Si is the sum of the enteries in the ith column

of the product-matrix, The numter of product-matrix

elements in the i‘th column is given by

(i+1 0<i<K-1
N, =
1

L-i+(2K-1) K <1i < 2K-2

The number of product elements, pij’ is maximum in

column of weight 2K'—L and is =gual to K. The product

elements in the other columns decrease uniformly by
one on either side of this column as shown in Figure 3.
Equation (3) shows that a linear cascade of 2K-3
multi-input redundant binary adders (MIRBA) correspond-
ing to each column of the product matrix are needed to

generate the radix—QK digit product., Note that the
number of inputs to each stage of the linear cascade
of adders is different and is given by Ni'

The columns of waight 27 (K < i < 2K-2) of the
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product matrix can be considered as forming a carry
or Collective Product Transfer (CPT) to the next more
significant radix-25 digital position (see Figure L),

These CPT columns have weights 21_K with respect to the
higher significant digital position. When these CFT
columns are added in the appropriate (of the same
weight) MIRBA of the higher significant digital posi-
tion, all the stages of the linear cascade of MIRBAs
become identical, each stage having K inputs. This is
showr. in Figure 4.

Equation (2) shows that it is necessary to add one
::‘eaui.ix:-2K digit a, to the output of digit multiplier.
So, a MIRBA capai)le of adding (K+1) redundant binary
{1,0,1} inputs is required.

3.1.3.2 Design of Multi-input Redundant Binary Adder
(MIRBA

A MIRBA is a limited carry-borrow propogation
adder which accepts several redundant binary inputs

(digit set {1,0,1)) and produces one redundant binary
output (with appropriate adder "Transfers" for more
significant adjacent adder stages).

Let us define a new parameter otb. The redundant
binary output of any MIRBA is dependent on the
"Transfers" (the composite term for carry/borrow)
input to that MIRBA. In redundant number system, the
"Trensfers” are functions of "primary" inputs (other
than Transfer inputs) to only limited number of

adjacent less significant MIRBAs. otb denotes the
number of such adjacent MIRBAs whose 'primary" inputs
determine the output of a given MIRBA.

The rza.clix-ZK digit processing logic in say DPM:.L

consists of a K-stage linear cascade of (K+1) input
MIRBAs. Except for the most significant MIRBA in
K-stage cascade, the inputs to the MIRBAs in DIMi are

functions of rad.‘i.x-EK

DPM,  ; (accumulator digits a;s multiplier digit m, and
multiplicand digits o5 ®i+l)' (See Figure 9.) Thus

Olj is related to & by equation (k).

b
o -1
czj = [-——K W + 1 (l‘)

Three different approaches for the arithmetic
(algebraic) design of a MIRBA were considered.

operand digits in DFMi and

3.1.3.2.1 Rohatsch's Technique [7]

This technigue is an explicit transformation
technique which converts a given input digit set into
the reguired output digit set by a series of Simple
Transformations. Using this approach, we find that for
a (K+1) input MIRBA, a four level (3 stages of Simple
Transformations) redundant binary structure is
necessary for K > 2. Tt can be shown [5] that a four
level (in the arithmetic sense) redundant binary
structure can be designed to accept as many as 51
redundant binary inputs and produce one redundant
binary ocutput by higher order Simple Transformations.

However, the logic design of the bottom (nearest
to input digit set) two levels is highly complicated
for K > 5 that is radix 32, if they are to be imple-
mented in two or three logic levels. 1In practice, the
technique is to break down the bottom level structure
into eguivalent simpler structures frequently at the

cost of increasing the number of levels, Moreover,




such a structure is not suitable feor LSI implementation
because no elementary logic cell, cther than the
primitive NANDS, NORS can be repetitively used in a
uniformly interconnected pattern for the implementation
of (K+1) input MIRBA.

Table 1 shows the values of ¢° and &, for various
values of K for a (K+1) input MIRBA.

3.1.3.2.2 Yg-sum Tree Technique

A conceptually simple approach is to realize the
(K+1) input MIRBA by a ly-sum tree structure of two
input redundant binary adders (RBA-2), The logic
design of such RBA-2 was studied in detail by
Borovec [8] and we shall interchangeably use the term

Borovec Unit (BU) for RBA-2 in the following discussion.

Figure 5 shows one such 3U consisting of a cascade
combination of a symmetric subtractor [ 9] (SS) and a
symmetric adder [ 9] (SA) and a D-elesment. The
D-element decomposes a recundant binary input into

positive (0,1) and negative (0,1) binary outputs.

For a (K+1) input MIEBA, the fr=e structure has t

levels such that N

t o g, (K+1)]

and the number of BUs required is K. Figure 6 shows
the by-sum tree structure for a six input MIRBA.

In this configuration,

Q® - ot = 2y, (K+1)] and

—_— + 1,

G, = X

[2{%92(K+1)] -1

d

The value of &. for various values of K is tabulated in
Table 1, From the table we find that for K=2 and K=k,

that is, radices 4 and 16, the value of aﬁ=3,and a.=2
for all other values of K. Since minimum value of aj

is desirable, a different arrangement, of BUs as
described in third approach given next can be used
to achieve aj:2,

3.1.3.2.3 Tree-structure using RBA-3s and RBA-2s

In this configuration, 3-input redundant binary
adders (RBA-3) and RBA-2s are conneched in a tree
structure.

An RBA-3 consists of two BUs, a D-element and a
C-element arranged as shown in Figure 7. The C-element

composes two binary inputs (0,1; 0,1) into one redun-

dant binary [T,O,l) output. The lower BU in combina-
tion with C-element and D-element acts as a redundant
binary (3,2) counter. The upper BU forms the sum of
the sum-output of the lower BU and the "Transfer"
output of the lower BU of adjacent less significant
RBA-3.

For a design of (K+1) input MIRBA, RBA-3s are
used whenever it can be fully utilized, that is, three
inputs are available for addition; and RBA-2s are
used when only 2-inputs are to be added at any level
of the tree structure. (An exception occurs for K=3
where ly~sum tree technique is necessary.) Figure 8
shows a 6 input MIRBA using this configuretion.

The number of BUs required in this technique is K
for a (K+l)-input MIRBA. The number of BU levels is
also 2(%@2(K+l)]. Table 1 shows the values of aP and

aj for various of X.
of K except K=3.

It shows that QJ:E'for all values

The tree structure configurations described in
3.1.3.2.2 and 3.1.3.2.3 have the following advantages
compared to Rohatsch's technique:

a) It is more general and has tae same con-
Tiguration for any value of X.

b) It makes use of only one kind of cell,
that is, Borovec Unit for the implementation
of MIRBA.

¢) The various BUs are uniformly and regularly
interconnected,

Because of b) and c) above, this implementation
meets the LSI constraints of structure regularity and
minimm pert number type.

3.2 Logic Design
The major consideration in the logic design is the

choice of an encoding for the radix-EK Signed Digit.
The encoding of the digit has implications on the logic
complexity of the digit processing logic and also on
the pin complexity (total number of pins) of the DPM.

As suggested in section 3.1.2, two modes of

representation for a radix-EK Signed Digit are used:
a) Sign-Magnitude (SMr) mode
b) Redundant Binary mode

In SMr mode, a radix-2K Signed Digit is encoded as a

(X+1)-tuple binary logic vector. This requires (K+1)
binary storage elements, Conversion of an input
operand in conventional number system (binary and
sign-magnitude) to the Signed Digit form necessary for
the DEMs is trivial. It is carried out by just
attaching the sign of the conventional number to each
group of K bits. For these reasonms, SMr mode encoding

for the radix-EK Signed Digit is used for internal
storage of the operand and result digits and for trans-
fer of these digits between DPMs.

Redundant binary mode is used for the arithmetic
processing specially for the multi-input redundant
binary adders in the DPM, Each redundant binary digit
requires 2 bits for representation and thus a radix-2
Signed Digit is represented by a logic vector of length
2K. Borovec [8] studied in detail the lgoc design
of two input redundant binary adders (RBA-2) for all
the nine distinet ways, under permutation and negation,

of assigning three values (1,0,1) tc four states of two
binary variables,

Out of these nine distinet formats, the sign-
magnitude format (referred as SMb) is found to be the
most suitable. 1In this format, if a redundant binary
digit ﬂ? {i}o,l) is represented by two binary variables
Ki and fiic,l], the SMb encoding is given by

j? = (-1) * ﬁi' Although Borovec's study shows that

this format does not give minimal logic complexity for
a BU, this still seems to be the best compromise for
the following reasons:

i) Conversion from SMr mode to SMb format is
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trivial and involves appending the single
sign bit to each of the K-magnitude bits.

ii) DNegation of a radix-ZK digit for subtraction
requires only complementation of each of the
sign bits.

iii) Design of a one-dimensional iterative
encoder to convert the redundant binary
output of the MIRBAs to SMr mode is the

simplest for the SMb format encoding,

iv) In the product-matrix generator, the logic
for the generation of each product digit
of the matrix consists of a single AND-gate

and an Exclusive-OR gate., (In practice,
however, both the multiplier and multiplicand

radix- 2 digits are in sw format and the
product-matrix logic cans1st< of K? AND~gates
and only one Exclusive-OR gate for the sign.
Let £¥(n.,7,) and m¥(u,,m, ) denote the redundant
iY77 17101
binary inputs and d§(5j,di) denote the output of a BU.

Let t. ¥ t and tl 17 ti-l be the input and output

”Transfers. The internal logic of a BU is given by
the set of Boolean equations (5).

A M. O, ~

% = (_ 1 (- 1 - (a 1.
fﬁ{~(l) gi, my (-1) m, and d¥ (~1) ~d.

1

i, = 4. 6m, &t ®t]
1 1 1 1

i

g, = t; > (5)
By T By vy l
by = U @m) E MR R E:‘ :’

If, however, the inputs and outputs are encoded in
Transfer Format (ﬂi = - Ay etc. ), then a BU can be

implemented by a cascade of two ordinary binary full
adders--each acting as a (3,2) counter [5]. This leads
to a simpler logic cell for the LSI implementation of
MIRBA at the cost of larger logic delay in the genera-
tion of MIRBA output.

3.2.1 Pin Complexity
Figure 9 shows the schematic diagram of the

radix—EK digit processing logic in a DPM. It consists
of one product-matrix generator, K of (K+l)-input
redundant binary adders (MIRBA) and an encoder which
converts the redundant binary result ocutput of the
MIRBAS to*SMr format for storage or inter DPM

ATy (AT o)

"Transfers” into (out of ) the least significant (most
significant) MIRRA of Dﬂwi from (into) the most

communication, represent the adder

significant \Least significant) VIRBA of adjacent

I ~ ~ Yo a 1 .
DPMi+l(DH\ i) LPTi(bPT 1) is the collective product

transfer” from (inteo) the product matrix generator of
X o N
the adjacent DH\’Ii+l(DR/Ii_l) into (from) DR, .
The number of pins required for the digit pro-
cessing logic is the sum of the rnumber of pins required
for ATi’ ATi—l’ CPI CPTl 1 for one multiplier digit
and for the SMr encoded output of the MIRBAs., The tree

structure configuration of (K+1)-input MIRBA uses K BUs

and each BU requires two pins for the Transfers

{0,1; 0,1}.
I

CPT, (CPT, ;)

(assuming that both the multiplier and multiplicand
digits are SM_ encoded) and (K-1) + (K-2) + ... + 1 =

—Lﬁ—ll pins for magnitude information., Therefore, the

Thus 2K pins are needed for ATi or ATi_l.

require one pin for the sign information

total number of pins required by the digit processing
logic, excluding control is given by

Total # of pins required = P = Pym *Piq *Popp ¥
i i-1 i
Forr, |, Fier Temo

= 2K + 2K + K(%;l> + 1+ K(%;ll + 1

+ (K+1) + (K+1)

e 5K + b
where
PATj = # of pins required for ATi, etec,
ler = # of pins required for multiplier digit
PEAO # of pins required for %M encoded

output of MIRBASs.

Table 2 shows the values of P for various values
of K. The value of P for K > 5 are impractical.

However, the number of pins required for ATi(ATi—l>

can be reduced if tne K "positive transfers” (0,1) and

the K 'negative transfers" (0,1) of the (K+1)-input
MIRBA are encoded. They can be each encoded as
(%92(K+1)] outputs. The "Transfer encoder” can be

implemented using < K conventional binary full adders in
[%QSK] + [%gEK] - 2 levels [10]. The corresponding

"Transfer decoder' in the adjacent DM is simply a
fan-out network. In this network, the encoded Transfer
of weight W is fannad-out to W "Transfer" inputs (of
the same sign as the encoded Transfer) of the least
significant MIRBA of the adjacent DPM. Similarly, the
number of pins required for CPT (cpT - l> can also be

reduced from (J—l2 + 1) %o only (K+1) if CPI, is

generated in DPMi instead of in DPMj+l. Note that

CPT, is a function of the multiplicand digit in DIM, 4

and the multiplier digit, the latter being the same

in both DPM and LPM. e Thus DPM.l needs to know only
the multipllcand digit in DPMi*]
This requires only (K+1) pins. Let us call this method
of transmitting CPTi to DPMi as "Indirect Generation'
Let PTEIG denote the
total number of pins required when the Transfer Encoder
(TE) and Indirect Generation (IG) of CPT, methods are
used. Then

2 T
Prgpg = 2lbep (K41 ]2 i

to generate CPTi.

(IG) for lack of a better term.

(K+1)W+(K+l)+(K+l)+(K+l)+(K+l)

= Llwog, (K1) ]+ (K1)

The value of P is tabulated in Table 2 for various

TEIG
values of K. The table shows quite a reduction in the
pin complexity although it is achieved at the expense
of introducing an additional type of cell (full adders)
in the LSI implementation of the DRM.
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The number of pins can be still fur<sher reduced
if the multiplier digit has & redundancy ratio p such
that p < 2/3. Such a multiplier digit can be recoded
in Nonadjacent Format (that is, the recoded digit has
only nonadjacent nonzero redundant 2inary digits).
This reduces the maximum number of aonzero redundant
binary inputs to a MIRBA from (K+1) to [%1 + 1, The
number of Borovee Units required in the realization of

MIRBA are correspondingly reduced to [K] + 1. Hence

2
the number of pins when multiplier digit redundancy is
reduced to p < 2/3 is given by

Prprg = ”[%92((§]+1>1 + L(K+1)
02/3

This is tabulated in Table 2 and saows that only a
minor reduction occurs.

Table 2 shows the pins required for only the
combinational part of the digit processing logic of
the arithmetic element or DPM. In order to perform
the arithmetic algorithm serially on a digit by digit
basis, some amount of local sequensial control is
necessary, although such control is very simple. The
local control complexity is independent of the radix.
Choice of the radix for implementation of a DPM on a
single LSI chip would depend on maximum allowable pads
(pins) on the chip. A trade off must also be made
between the cost of combinational part (arithmetic cost)
and cost of sequential control both in terms of their
logic complexity and pin complexity when choosing a
radix or value of K. Detalls about the local control
required for a DPM can be found in Goyal [5].

Although the design presented in the present paper
was specifically developed for serial processing in an
iterative structure, the same arithmetic element can
also be used in a purely combinational, parallel two-
dimensional array arrangenent for aritimetic processing.
It can also be used in a bus structured and associative
processor configuration with proper sequential local
control,

L,  Summary

The design of an aritlmetic element for use in a
linear, iteratively structured aritlmetic unit, in
which arithmetic processing takes place serially, on a
digit by digit basis and with most-significant digit
first, is presented. The main considerations in the
design were the desirability of the arithmetic
element 's implementation (as a single module) in LSI
technology. The design of the digit processing logic
is described at two levels. Startirng from the
arithmetic specification of the digit processing logic,
the aritlmetic design (namely, the choice of number
gystem, mumber representation and the digit algoritim)
is developed, with radix as the design parameter.

Then a brief description of the logic design of the
digit processing logic which implements the digit
algorithm is given., The implications of the logic
design on the LSI implementation, namely on the logical
complexity, part number type and pin requirements are
discussed,
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Appendix

Operation of a DPM

The following description has been adopted from
Pisterzi [3] with slight modifications.

The processing performed by the DPMs can be
described by the following:

X, - X., ¥ 3 A1
= VG X T ) (£.1)
. .

= { .2
jEi @j\j_lxi,jFi_l) and (A.2)

g =
i’k Fj(ij~l’j—le’j—le+l’""j-lxkﬁlj) (2.3)

where

X 1s the operand information contained in the

Ji
ith DPM immediately following the execution

th
of uj. It consists of the i digit of




each of the active operands.

Table 2
v, is the function employed to obtain the new Pin Complexity V_ Radix
d operand set and is dependent on the micro-
. . E ¥
instruction to be performed. radix K P PTEIG’pzl Prere? S 2/3
5Ty is a "modifier" walue which DEM, transmits " 2 18 20 16
to DBfli+J with the microinstruction to be 8 3 28 o4 2k
performec. next. 16 L Lo 32 28
&, ig the fuaction which each DM performs to 32 5 54 6 3
J determine ij. 6l 6 20 Lo 6
o, is the numover of DPMs which must cooperate 128 7 33 LY Lk
J with the right neighbtor of DM performing P e 48
. 256 8 108
i, in order to generate the necessary .G. ..
J JUi+l
.G, is the valae which DI’Mk transmits to the
7k

DPM executing u.. * s s
J o is the redundancy ratio for multiplier digit

T. is the function DPM,

ij.

, employs to determine

The operation of a typical DM, DPM_.L say, 1s as

follows. It begins in a state in which it is receptive
to information defining the next microinstruction to be
performed. DRVIi recelves this information and the

value of jFi— from its left neighbor DPMi_ Then

10
The function Fj can be imple-~

1

DPM. determines .G, ..
1 ji-1

mented either totally in parallel in DPMi from inputs

. . . N
of active operand digits in DPA.i 1 through DPMiJ«OLj or

it can be realized in a time secuential fashion. The
former approach takes many more pins. A detailed
description of the two approaches can be found in [5].
DPMi also determines 'jFi by performing equation (A.3) and

transmits this value and the identity of uj to Dmi+l'

Sometime later, D]E’Mi receives a signal from DPMi_

indicating that DPM:.L _

1
1 has executed }.Lj. DPMi then
executes u_i (the necessary jG'

SPRERERY’ jGi*Otj being ready

by now). DEM, trensmits a signal at this time to

DPM, which indicates that DPI,
i+1 i+1

When DPMi receives an acknowledgment fronm DPM_.+

mgy execute uj.
1 it
goes into a state where it is receptive to information
concerning “j+l' The sequence above then repeats,

Table 1
Values of a® and aj for Various (K+l) Input MIRBA Configurations
RBA-3, RUA-D Tree

Rohatsch's Techniquel}im-sum Tree Structure
r K o® a. o a, o a.
J i o
b 2 3 2 4 3 3 2
8 2 L 2 4 2 5 3
16 [ L 2 5 3 ) 2
32 g iy 2 5 2 5 2
6h 6 5 2 5 2 6 2
128 7 S 2 5 2 6 2
256 & 5 2 3 2 & 2
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