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1. Introduction

We are concerned in this paper with the represen-
tation of an integer in a (multiple-modulus) residue
number system and, in particular, with an algorithm for
changing the base vector of the residue number system.
Szabo” and Tanaka [1, p.47] describe such an algorithm
when each modulus of the second base vector is rela-
tively prime to each modulus of the first base vector.
However, we show that a much simpler algorithm exists
if we allow the moduli of the second base vector to
have factors in common with the moduli of the first
base vector (even though the moduli of the second base
vector are pairwise relatively prime among themselves).

Since the algorithm involves the use of "associ-
ated" residue and mixed-radix representations for inte-
gers, Section 2 contains an elementary survey of the
terminology, notation, and theory behind these two
types of representation. Section 3 contains the proofs
of the basic theorems upon which our algorithm for
residue base conversion is based along with a descrip-
tion of the algorithm. It also contains illustrative
examples which demonstrate the power of the algorithm.

In this paper we lay the foundation for a sub-
sequent paper in which we propose procedures for ex-
tending single-precision residue arithmetic to multi-
ple-precision residue arithmetic.

2. Associated Residue and Mixed-radix Number Systems

Complete Systems of Residues

Let R denote the set of real numbers and T the
set of integers. For every x ¢ R we use |x] to denote
the largest integer smaller than or equal to x, and for
all a,b ¢ I we use (a,b) to denote the greatest common
divisor of a and b.

It is well known that each integer is congruent
modulo* m to exactly one of the integers in the set

{0,1,2,...,m-1}, and this fact provides ¥ with exact-
ly m disjoint subsets 30’51""’$m-1 called the resi-
due classes with respect to the modulus m. These resi-
due classes have the following properties:

m-1

{1) I=U$J-

j=0
and
(ii) a,b € Sj implies a = b (mod m) for j = 0,1,...,m-1.

By selecting exactly one integer r. from each
residue class, $., we have a set of m different inte-

gers {r ’rm-l}’ called a complete system of

SEREE
residues modulo m.

Each rj "represents" its residue
class, and the individual r's are called residues
modulo m. I

There are infinitely many complete systems of
residues for a given modulus m. However, we shall dis-

cuss only the two that are most widely used. Suppose
r,s e I and r = s (mod m). If
0<r<m, (2.1)
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then we use the notation**

rels| (2.2)

and call |s|m the residue of s modulo m in the complete

system of residues, {0,1,2,...,m-1}. We call this sys-
tem the standard complete system of residues modulo m.

If, on the other hand, r lies in the range

-2 <r<|7)

then we use the notation

(2.3)

r=/s/ (2.4)

and call /s/m the residue of s modulo m in the complete
system of residues, {ro,rl,..

(2.3) for all i. When m is odd, these residues are
symmetric with respect to the origin, but when m is
even, perfect symmetry is lost. For this reason, we
shall restrict our use of (2.3) and (2.4) to the case
where m is odd. A complete system of residues, based
on the inequality (2.3) with m odd, is called balanced.
(Szabo” and Tanaka [1, p.113] use the term symmetric
but allow m to be both odd and even.)

For the most part we shall discuss standard com-
nlete systems of residues in this paper. However,
balanced complete systems of residues are also dis-
cussed in the Titerature and so we shall include re-
marks pertaining to balanced systems as it seems appro-
priate.

.,rm_l}, with risat1sfy1ng

Residue Number Systems

We call
them relatively prime if (ml,mz) = 1 and redundant if
(ml,mz) > 2. Consider the ordered n-tuple

g = [ml,mz,...,mn] s

whose components are the n (distinct) moduli
MysMysevs s . Assume that the moduli are pairwise rel-

atively prime, that is, that
1

Suppose we: have two moduli m, and My

(2.5)

(m,,m.)

M (2.6)

i#].

If 8 in (2.5) satisfies (2.6), we call it a base vector
for the residue number systems we are about to describe.
Let MB be the product of the moduli in the base

vector B, that is, let

n

LU

i=1

(2.7)

MB = i

*
We assume m > 1 throughout the paper.

*%*
Our notation will generally follow the notation
in [1].




For each integer s we call the (unique) n-tuple of

residues

sl - [|s| lsl e 1] ]
B m my ™

the standard residue representation of s with respect
to the base vector . The individual residues, ]s|m ,
.i

(2.8)

are the residue digits of s with respect to 8.

_ THEOREM (2.9)+ [1, p.13]. Two integers s and t have
the same standard residue representation with respect
to B, that is, ,S’B = |t|6q if and only if

t

s = (mod M

B)'
COROLLARY (2.10)T The integers |s|M and s have the
g
same standard residue representation with respect to g,
that is, if
t=|sl, ,
Mg

then ]t]8 = |slB.

This means, then, that there is a one-to-one cor-
respondence between integers in the range

0<s < MB

(2.11)
and their standard residue representations with respect
to the base vector B. The standard residue number sys-
tem for the base vector g i5 the MB—member set of stan-
dard residue representations

I, - {|s|8; ssr}.

Obviously, this is a finite number system.
In the residue number system L, every integer s

(2.12)

is represented by a unique n-tuple |s|B and the corres-

pondence is one-to-one for those nonnegative integers
Tess than MB' This set of integers, {O,l,Z,...,MB—l},

is called the range of IB and is identical to the stan-
dard complete system of residues modulo M_.

B
REMARK. If B = [ml,mQ,...,mn] contains only

odd moduli, we can use {2.3) and (2.4) to define
the balanced residue number system for B in a
simiTar manner. In this case we represent s

by the balanced residue representation

/s =[/s/ AT ey IS/ ] (2.13)
8 M M2 M
and define the balanced residue number sys-
tem to be the set of balanced residue repre-
sentations
BB= {}S/B s e #}. (2.14)
In BB every integer s is represented by a
unique n-tuple of the form (2.13) and the
correspondence is one-to-one for those in-
tegers in the range
M M
_.8 B (2.15)
2 <7

Since I8 and BB » along with their ranges (2.11)

and (2.15) respectively, are all MB-member sets we have
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a one-to-one correspondence between these two residue
number systems. Note that for any s e X, conversion

fron the standard representation |s|B to the balancec
representation /s/B is affected by

. m.
sty if0<|s|, <_i,
i i 2
= 2.16)
/S/"‘i ( )
Isl, - m; otherwise,
i
for i = 1,2,...,n, and the reverse conversion is simi-

larly evident.

The Associated Mixed-radix Number System

We now introduce a mixed-radix number representa-
tion* Consider the set of positive integers
P1oPps---sP, called radices. Let P = Py Py «-- Py

It is well known [1, p.41] that any integer s in the
range 0 < s < P can be expressed uniquely in the form

= dg dpy *dopypy t e A gpyPy e Py
(2.17)
whera dO’dl""’dn-l are the standard mixed-radix digits
satisfying
0 f.di < Piyg i=0,1,...,n-1. (2.18)

The digit sequence for s in this mixed-radix represen-
tation is denoted by

s N =Ldn,dy,...,d .
<~ /[pl,pz,...,pn] <0 1 n-1>[p1,p2,...,pn]
(2.19)

We dafine the standard mixed-radix number system for
the (ordered) radices P1sPgse- 5P, to be the set of

digil sequences for s, in the range 0 < s <P, of the
form (2.19).

A special case occurs if PL=Pp = --s =P the

familiar fixed-radix number system for which the radix
ten provides the traditional example. Another special

case occurs if Pj = My for i = 1,2,...,n, where the

smare the (ordered) moduli of the

base vector 8 in (2.5). In this case we have the stan-
dard mixed-radix number system associated with IS

integers ml,mz,...

We call these two number systems associated number sys-
tems with respect to B.
REMARK. If we happen to be working with BB
(rather than with IB

associated mixed-radix system a balanced mixed-
radix number system. The only change necessary

) we can introduce as its

+The product of the moduli, MB’ should be replaced

in this theorem and its corollary, by the least common
multiple of the moduli. However, we have assumed that
the moduli in g are pairwise relatively prime and so M

is automatically the least common multiple of the modu-
1i, in this case.

*See, for example, [2, pp.25-27]




to accomplish this is to change the range
for the mixed-radix digits to

M4l _d. M+, i=0,1,...,n-1 (2.20)
T 1
In this balanced system it is easily shown
that there exists a unique representation
for each integer s in the range
_ T§_< s < !ﬁ_ (2.21)
2 2

Thus, the ranges for the standard mixed-radix num-
ber system and the balanced mixed-radix number system,
for the same base vector 8, both contain the same number
of integers.

By including in the definition of a base vector B
the stipulation that the moduli ml,mz,...,mn must be

pairwise relatively prime, we guarantee that M_ is the

least common multiple of the maoduli. This fortunate
circumstance causes the ranges of the two residue number
systems to be 0 < s < MB and —ME/Z <5 < MB/Z’ respec-

tively. Consequently, in each case the range of the
residue number system and the range of its associated
mixed-radix number system coincide. (This would not
be the case if MB were not the Teast common multiple

of the moduli.) This is extremely important when we
wish to change from one system to the other.

The Order of the Moduli

We have assumed throughout our discussion so far
that the moduli My sMysenesm of the base vector B have

been kept rigidly ordered when forming the associated
mixed-radix number systems. Suppose, on the other hand,
we allow permutations of the moduli. Two obvious
choices would be the orderings

(2.22)

and

.- (2.23)

In these two examples we use the names ascending asso-
ciated mixed-radix number system and descending associ-
ated mixed-radix number system, respectively. Other
permutations are also possible, of course, and each
permutation of the moduli in B produces its own asso-
ciated mixed-radix number system. It is important to
note that a permutation of the elements of the base
vector B causes simply the same permutation of the res-
idue digits in |S|B' However, the mixed-radix digits

in <s>8 can be altered drastically by a permutation

of the moduli in B. This apparent anomaly can be uti-
Tized to our advantage for certain computations, as we
shall show in the next section.

Motivation

One of the motivations for our interest in pairs
of associated residue and mixed-radix number systems
stems from the fact that addition, subtraction, and
multiplication of integers (and even division, under
certain circumstances) are extremely simple to perform
in a residue number system. On the other hand, the
residue representation |s|, does not lend itself to
simple algorithms for B

(1)

magnitude ccmparison of s with t
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(i1)
(1)

sign detection of s
recovery of the ordinary decimal (or binary)
representation of s from [s[B (called resi-
due-to-radix conversion).

Simple algorithms are available, however, for these
three operations if we have the corresponding mixed-
radix representation.

Digit Sets
Consider the standard mixed-radix number system

and its associated standard residue number system for
the base vector B8 = [ml,mz,...,mn]. If

s = d0 + dlm1 + d2m2 + ...+ dn-lmlmZ"'mn-l

(2.24)

has the (Bnique) digit sequence )
<:s>B =<\do,d1,...,dn_1>6 in the former, and if s has

the representation

sl =[ls|m1, g !slmn]

in the latter, we see from (2.1) and (2.18) that both

the residue digits |s{m , and the mixed-radix digits,
i

lie in the same closed interval [0, mi—l], for

(2.25)

41>
i=1,2,...,n.
Similarly, if

s =b,+ bm

0 1™ + b,mm, + ...

2MM, o

Do1M Mo« Mg

(2.26)
has the (unique) digit
L5 = Logibysenasb,
number system relative to 8 (assume all odd moduli) and

if
/s/, = [/s/ s I8/ sy /S/
B mi m2 mnj]

in the associated balanced residue number system, we

see from (2.3) and (2.18) that both s/ and by 4,
i

s, 1ie in the same interval

sequence
1:>8 in the balanced mixed-radix

(2.27)

for i = 1,2,...
[-mi/Z, mi/2].

The integers in the intervals [0, mi-l] for

1l &1 s narecalled the digit sets for the standard
mixed-radix number system for B. Simi]ar]y,.the inte-
gers in [—m1/2, m1/2], 1 ¢ 1 g nare the digit sets

for the balanced mixed-radix system for 8. It is no
coincidence that the complete systems of residues and
their digit sets for the associated standard (respec-
tively balanced) systems are identical. These associ-
ated systems were specifically chosen for further in-
vestigation with this property in mind. There are ad-
vantages with these choices (both esthetic and practi-
cal) but it should be pointed out that other choices
could have been made. From the point of view of com-
puter architecture it should not go unnoticed that the
set of residue digits and the set of associated mixed-
radix digits require identical storage and register
capacity.

Conversion Between Associated Residue and Mixed-radix
Number Systems

Suppose we are given the residue representation ;
|s|B in IE and we wish to find(s)B in the associated




mixed-radix number system.

In other words, suppose we
are given the residue digits |s|

m and we wish to find
.i

the mixed-radix digits d. for i = 1,2,...,n.

1
To do this we set t, =

]_
173 and observe that

= 'do +m(d) +dom, + L.+ 1Moz me o))

It 1+ 4 )
= ’do Mt m,
= dy (2.28)
We also observe that [t1|ml = |s[m1m Thus,
B = sl (2.29)

and so the first mixed-radix digit of s is equal to the
first residue digit of s and no computation is neces-
sary.

We continue by writing

|t2|m2 = ’dl tmy(dy + dgmg + Ll 4 dpoqMgge--m_q) m,
= |d, + m,t
' 1 273in,
= dl' {2.30)
In generai, then, t) =5, dj = Is|{ , and
t, - d.
. i-1
L T m, -
i=1,2,...,n-1 (2.31)
g = }t. }
i i+l m.

i+l
We should point out that the computations neces-
sary for computing di in (2.31) can be carried out

using residue arithmetic. (See Szabo” and Tanaka 1,
p.44] for details.)
Suppose, on the other hand, we are g1'ven<s>8

and we wish to determine lSlS. In this case we use the
relations

[s] =d

my 0
|S!m1 = 'do gt dinlmlmE"'mi-l n,
i=2,3,...,n (2.32)
where |s|m is computed from the relations
.i
P, = ld. l
1 i-1]
i
Py= |di , lei_ll (2.33)
m,
i
P. = id +P.om
i 0 i-171 m.

1
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= P.,

with |s|mi i

These computations can also be done using residue

arithmetic so that converting between residue and mixed-

radix systems can be done using residue arithmetic in
both directions.

3. Residue Base Conversion

Suppose we are given the base vector 8 and, for s
in the range 0 < s < ME’ the standard residue represen-

tation |S[B’ and we wish to find the standard residue
representation

.= P s e . 3.1
sl [|s|m1 5l 'S'mk] (3.1)
for some other base vector

B~ =[@i, mé, Ces mé]. (3.2)

We call the process by which this is accomplished resi-
due base conversion.

Carrying out residue base conversion involves the
determination of the new residue digits |s|m, for

1

i=1,2,...,k, from the old residue digits. Since we
shall compute the new residue digits one at a time all
we need is an efficient algorithm for determining the
residue !slU for an arbitrary target modulus p > 2.

For the case where u is relatively prime to MB an ef-

ficient algorithm is already known. It involves the
conversion of [s[S to{s)B » Tollowed by the evaluation

of

[s] =|d, +d

" 0 1™ + d,mm, + ... +d

2™ M n-lmlmZ"’mn-l'u'

(3.3)

This algorithm is widely used [1, p.47] if the new
base vector B° = [ml,mz,.‘.,mn, u] is merely an exten-

sion of the old base vector B. (In base extension, u
must be relatively prime to MB') However, our concern

in this paper is not with base extension but with the
general problem of residue base conversion and, in
particular, with the case where each modulus in 8° is
not relatively prime to MB even though the moduli in B~

are pairwise relatively prime among themselves. It is
now shown that this leads to a considerable simplifi-

cation of the base conversion algorithm mentioned above.

Some Preliminaries

Given the base vector g = [ml,mz,...,mn] and the

target modulus u 2 2, we define a set of g-reduced
moduli “1(8)’ for i = 0,1,...,n-1, as folTows:

U()(Bw' =u

. U P
w (B = i=1,2,..
i (S mom, L m17

Siace the modulj MysMy,...,m are pairwise rela-




tively prime, “1(8) can also be written®

Mo =

i (“’m1)(“’m2)"'(“’mi)

Thus, we have the relation

Wy = u1+1(u m1+1) i=20,1,...,n-2

The following lemma makes use of the B-reduced
moduli,

LEMMA (3.7). Let the base vector B = [ml,mz,...,mn],

the target modulus u » 2, and the R-reduced moduli

HgoHps« - ool g be given. Then, for any integer k,

(i) m {m,

fl, ¥l |
i+l Hj i+1'y ’u1+1

Hy

Proof: For part (i) we use (3.6) and recall that
= alb)m Then, for i = 0,1,...,n-2,

= |m, k|
U.i i+l U1'+1(U’m~i+1)

Mis1

(o) [

By (0mi4)

~

= (u,m

i+1) Tm 7 k

+ .
: Hiv1

Mis1

Tl

~—

k]

= (u,m;
i+l Hitl

i+l

m|+1

1+

= (u m. 1|

1+1

i+l

Hi+l My (miyg)

mn
(u T_'jij;"f Ikl
Hiag(0myag) L

K]

= ||m
i Mt

1+1|u :
Hj

2 . (3.5)

(3.6)

121

Similarly, for part (ii), using u = M (u, mlmZ"'mi)’
|m1 LS mik]u
mm m
(u RN (ﬂjﬁ_ﬁr______f
e us (u,m.m m. )
IS AL U AL
MM

;H_Y k}

Yy

n

For part (iii), note that applying (ii), with k =
yields

m, |

|mm,...m
12 THi

iamly |m1m2...mi_1[u| y

and applying this result iteratively, for decreasing i,
yields

[mm,...m )
172 Ty

1, - l|m1|u0;mz;ul...{mi_l|ui_2|m u

//

+ dlm1 + d2 1My

1> can be simplified in the sense

The mixed-radix expression s = d0
oo d gmmo..m
that the results of Lemma (3.7) can be used to reduce
the magnitude of both the mixed-radix digits

dO’dl""’dn-l’ and the radices MysMyseensm g during

the evaluation of [s{u

The Basic Theorem

THEOREM (3.8) (Target Modulus Reduction Theorem). For
the base vector § and the target modulus u 2 2, with
B-reduced moduli His for i = 0,1,...,n-1, Tet s have
the standard mixed-radix form
= d0 + dlm1 + dzmlm2 + ...+ dn~1m1m2"'mn—1’
(3.9)
and Tet
d, = |d,|
i TRy
i=0,1,...,n-1. (3.10)
M+~ Im1+11u1

*
We write My instead of “1(8) when the dependence

on R is evident.




Islu = ‘do + dlml + dzmlm2 + o+ dn-1m1m2"’mn-1 0
(3.11)
Proof: From results (ii) and (iii) of Lemma (3.7),
[dimlmZ"'miiu = :1m1m2"'mi‘uldi|uﬁ‘u
= | fmy | Imy| ... |m, ] ld;]
‘ e R TS R R
= |m1m2...m1di|u.
Hence,
]s{u = i]d0|u + |d1m1;u + 1d2m1m2|u
oot ‘dn-lmlmE"'mn-l|u{U

+ dn—lmlmZ“‘mn—l}u'

/l/

}do + dlml + dzmlm2 + ...

If we are given the base vector 8 and a target
modulus p > 2 along with the B8-reduced moduli H; from

(3.4), we can use (3.10) to introduce the two terms
u-reduced vector

B = [my,my,...om ], (3.12)
and U -reduced digit secuence for s
- - =N

<s>i§ . <d0,d1,...,dn_1/é . (3.13)

REMARK. It should be noted that é does not neces-
sarily_satisfy the definition of a "base vector"
since my = 0 or my = 1 might occur for some §.

Also, note that the expression

+ dzmlm2 + ...

n- 1m1m2 . .mn_l

dO + dlm1 +d
is not necessarily a standard mixed-radix_expres-

sion since we cannot guarantee that di < Mg

In (2.32) and (2.33) we demonstrated a recursive
procedure for evaluating expressions such as (3.11)
However, the following corollary will enable us to re-
duce the effort in the evaluation, considerably, by
using the B-reduced modili instead of y.

COROLLARY (3.14). Under the hypotheses of the Target
Modulus Reduction Theorem,

Islu = Qn (3.15)
where
Q, =d_
1 "n-l (3.16)
L A PN S1 PRI S
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Froof: We can write
s = dO + dlm1 + d2m1m2 oot dn—1m1m2"'mn—l

recursively as

Q1 : dn-l

Q= dy s+ QM sy 3= 2.3,..0.m

where s = Q Then, from (3.10),

n
Q| = ld |
1 Mool n-1 Poo1
- dn—l,
and, for j = 2,3,...,n, using Lemma (3.7) part (i) and
(3.10),
L L R [ I
VR =3 "My J-1"n-j+1 Hn-j b
J
< (&g * Im sl 0
n A Mn-j
Hn-j
=ld .+m [Q: 4] .
n-j n-j+1'7j-1 “n—j+1 “n-j
If we set
0, = 10,
t t M-t
for t = 1,2,...,n, then
Ql - dn-l
Qj = dn_j + Qj—lmn-j+1 J=2,3,...,n

n-j
and (3.16) is satisfied. Since s = Qn and Hg = M
she 18],
= Qn

and the proof is complete.
//

The Effect of Permuting the Modulj

It should be noted that the amount of efficiency
achieved by using the smaller B-reduced moduli His

rather than u, in the process of target modulus con-
version depends on the ordering of the {mi} in the base

vector B = [ml,mz,...,mn]. Let the base vector 7 be

obtained from B by a permutation of the moduli. Fur-
thermore, let the moduli in
TEofmy o, Mmoo, s, ML ]
1T Tn
= [Pl,Dza---aPn] (3.]7)




be so ordered that

(wopy) 2 Guspy) J=23,...,n. (3.18)
Then certainly
N
= 3.
ul (Usplj ( 19)

is minimized over all such permuted orderings.

The effect of permuting the moduli in 8 to produce
m is simply to change the residue representation of an
integer s from

sl = [|s|ml, |s|m2, ]s|mn], (3.20)
for the base vector@ , to
Is|_ =[}s|p1, LI |s|pn] (3.21)

for the base vector m. In other words, the residue
digits in |s|B are permuted to produce [s|TT in exactly

the same way that the moduli in B are permuted to pro-
duce 7.

Obviously, it is desirable for efficient target
modulus conversion first to permute the moduli in the
base vector 8 (producing the base vector m) so that the
resulting mw-reduced modulij ui(ﬂ) will be as small as

possible. The following theorem shows that a simple
ordering procedure for the moduli in a base vector ex-
ists which affects a uniformly optimal reduction in the
size of L ERRRE P

THEOREM (3.22). Given the base vector 7 = [plpz...pn]
and the target modulus u > 2, where 7 is so ordered
that -

(U,Pl) > (Uspz) 2 el > (Ua\pn‘)a (3-23)

let the base vector y = {pt s Py » ---» Py ] have the
1 Z n

same moduli as 7 but permuted in the order (t,t,...t ).

1727 ™
then
uj(W) _iﬂj(Y) Jj=0,1,...,n-1 (3.24)
Proof: Suppose the target modulus u is redundant

(not refatively prime) with exactly k of moduli P of
m. Since the {pi} are pairwise relatively prime and
ordered to satisfy (3.23), then

(uspy)d > (napp) > o > (up ) > 1
and
(U,Pk+1) = (Uapk+2) = 8 (Uspn) = 1.
Now uo(w) == uo(y), and for j = 1,2,...,n-1, con-
sider the J integers (u.py ), (1apy )s oons (ipy ).
1 2 t.

J
The largest of these is no greater than (p,pl), and,

in general, the r-th largest of these j numbers is no
larger than (u,p ) for r = 1,2,...,j. Hence

Gespy JGspy )oec(uape ) < (e ) (0ps) o (isp ),
p DL1 u ptz i th < Gupyd(u,p, 1Py
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so that
- u
R TRy

- ]
B (U9p1)(Uap2) .. (Uapj)

=T i % ( )
— N 5P o WP

U
(vsp, Py oupy )
t°t Pt

.sn-1.
/7

For a set of pairwise relatively prime positive
integers [ml,mz,...,mn} and u > 2, a redundancy order-
ing with .1 of {m.m,,..
(mi ML sy ) such that

1 2 n

,mn} is an ordering

(o, ) > (3.25)

) (U9m.i )_:’_ e 2 (U,m' )-

2 - Tn

The base vector m = [pl,p?,...,pn] is u-redundancy-
ordered if (pl,pz,...

u of the moduli {pi}.

,pn) is a redundancy ordering with

For the purposes of efficient target modulus con-
version to modulus u it is evident from Theorem (3.8),
Corollary (3.14), and Theorem (3.22) that the base vec-
tor of a residue number system should first be
u-redundancy-ordered. The following examples illus-
trate target modulus conversion utilizing both a
u-redundancy-ordered base vector 7 and the subsequent
m-reduced moduli u.(m) to simplify the computational
effort. !

Target Modulus Conversion Examples

Let 6 = [39,41,43,77,80] be the base vector of a
standard residue number system, where MB = 423,543,120.

Also, Tet u = 315 be the target modulus. We observe
that 315 is redundant with 77, 80, and 39 and that

(315,77) = 7
(315,80) = 5 (3.26)
(315,39) = 3.

Thus the permuted base vector m = [77,80,39,41,43] is
p-redundancy-ordered (for p = 315) for the residue num-
ber system under consideration. The m-reduced moduli

u; are
- . 315

Fo T 319 ERRNIOION
- 315 _ -

Hy = g s 45 g = 3 (3.27)

__ 315 g
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and the p-reduced vector* 7 = [51,52,ﬁ3,54,55] has com- Q = |19+ (0)(35)] 45 = 19

ponents -
. _77 Qg = |15 + (19)(77)| 3¢ = 218
Py = 17735 =
P, = |80] = 35
- 45 and so [s|4 5 = 218. //
Py =139y =3 (3.28)
_ A still more dramatic reduction is possible if the
Py = '41f3 =2 target modulus u happens to divide MB' In the example
Pe = |43 =1 above if we change u from 315 to the value 105 {which
Ps 3 divides 423,543,120) we obtain the results
We recall that our objective, in all of this, is My = 105 51 =77 dg = 15
the efficient evaluation of |s|315. For s in the range u = 15 52 -5 d1 -
0<s <Mg=M (3.29) My = 3 Py =0 82 =0

the values of HosHps+- -k and 51,52,...,55 are fixed, My =1 F_‘4 =0 d3 =0

Therefore, in a practical application, these values can u, =1 P. =0 d, =0

be entered permanently in the computer hardware, micro- 4 5 4

code, or software implementation of target modulus con-

version. The digit reduction procedure indicated in Hence,

Theorem (3.8) must be carried out, of course, as a par- _ ; 7

ticular integer s is being converted. Isli05 = 115 + 4( ) ios

For example, s = 228,306,863 has the mixed-radix
representation = 8, (3.34)
s = 15 + 64(77) + 12(77)(80) REMARK. Although the theory and examples for
. target modulus conversion have been derived
+ 7(77)(80)(39) + 23(77)(80)(39)(41) (3.30) herein for standard residue number systems, the
modifications necessary to establish the same

in the standard mixed-radix number system associated results for balanced residue number systems are

with the standard residue number system for straightforward. For reference, the balanced

m = [77,80,39,41,43] under consideration. Then residue system versions of Lemma (3.7), Theorem

(3.8), and Corollary (3.14) are given without
<:S:>Tr = <:15,64,12,7,2%;>n. (3.31) proof since the proofs follow by simply paral-
Teling the previous proofs in an obvious manner.

i igi f . - u-reduced digi .

(Fory J1915 sequence for 5. The u-reduced digits LEMMA (3.35).  Let the base vector & = [mj,m,,....m ],
_ with all odd moduli, the target modulus u > 2, and the
dO = ‘15|315 = 15 B-reduced moduli uo,ul,...,un_l be given. "Then for
- any integer k,
dy = |64],, =19
d, = . (1) /m., K/ =//m. /1,11,

?2 ‘12]9 3 (3.32) i+l Ui i+1 My e b,
d, = |7 =1
_3 l l3 i=0,1,...,n-2
d4 = |23|3 = 2.
‘ (i1) /mlmZ"'mik/u =//;m1m2...mi/u/k/“.//
From Theorem (3.8), it follows that Wy

i=1,2,...,n-1

(i11) /m1m2"'mi/u =//;ml/u0/m2/ul"'/mi/u~ 1/{

1=

15,315 = |15 + 19(77) + 3(77)(35)
+ 17)(35)(3) + 2077)(35)(3)(2) o1,
(333) is= 1,2,...,n-‘1

THEOREM (3.36) (Target Modulus Reduction Theorem).

hich i id . £ . Ki .
wni 1S a considerable s1mp]1 ication over wor ing with For the base vector 8, with all odd moduli, and the

the full mixed-radix form (3.30). If we use Corollary

(3.14), we can evaluate (3.33) as follows: target modulus p > 2, with g-reduced moduti i for
i=0,1,....,n-1, let s have the balanced mixed-radix
61 = form

- S =by+bm +bmm, + ... +b -mm ...m
= = 0 171 27172 n-171"2""""n-1°
Q=11+ (2)(3);=2

‘3 + (2)(3)'9 =0

O
w
"

*
See (3.12).
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and let

A
n
S~

_‘U’
™~

1,
. i
Miv1 = /m1'+1/u1.

Then

/s/u =[by+ bymy + bomym, + L+ bn_lmlmz...mn_y/i.

COROLLARY (3.37). Under the hypotheses of the Target
Modulus Reduction Theorem,

/s/u =Q,

0 =/bn_j + QJ’-lmn-J'*‘l/un..j i=2,3,...,n
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