A Minicomputer Microprogrammable, Arithmetic Processor
T.H. Kehl and Kenneth Burkhardtl
Departments of Computer Science and Physiology/Biophysics
University of Washington
Seattle, Washington 98195

Except for a few notable examples, all computers
have been designed as "adder-central" architectures.
"Adder-central,' as used here, refers to an organiza-
tion which places the Arithmetic Logic Unit (ALU) at
that junction of the system through which all data must

flow -- thus creating a bottleneck. In the early days,

when adders were expensive, cost considerations pre-
cluded more than one ALU. Nowadays powerful ALU's are
available at very low cost and a designer, even of
minicomputers, can consider placing more than one ALU
in a system.

Historically, in the early '60's, Seymour Cray
and James Thornton(l) designed many data paths in the
CDC 6600. Some were in separate functional units
operating in parallel and others were in the periph-
eral processing units. The latter mainly handled I/0
and executive functions.

These multiple data paths provided a great deal
of parallelism and, as is now appreciated, improved
system performance. Later the CDC-Star(2), Illiac-4(3)
and TI ASC(4) all exploited multiple processors (ALU's)
and gave performances unmatched by other organizations.

Each of these systems is in the "'super-computer"
class. Even though hardware check-out may take years,
the end results can be achieved no other way. Such
is not the case with minicomputers. Minicomputers
have a rapid design turnover and systems have impact
for only a brief period of time.

Also, minicomputer

systems are mass-produced and cannot be specialized

v

for a specific kind of service.

1From a thesis submitted in partial fulfillment
of the Ph.D. Supported by RRO0374 from the National
Institutes of Health, Division of Research Resources,
Biotechnology Branch.

174

Even though one would wish to capitalize on the
mass production capabilities of computer manufacturing
companies, inevitably situations arise in which spe-
cialized systems are required. At the same time ad-
vances in modern science create a constant pressure
for greater arithmetic processing power. In partic-
ular, dedicated minicomputers would benefit from
increased arithmetic power. For example, in the bio-
medical research with which we are closely associated,
it is becoming quite common to use digital filters and
FFT's simply to locate or screen the data, For a
variety of reasons including experimental feedback,
measurement accuracy, cost, etc., the best solution
has been to use minicomputers connected on-line to the
experiment. Although the pipeline and array processor
techniques of the super computer class enhance pro-
cessing speed, both are, in our opinion, too rigid for
the class of problems we encounter, Rather, several

criteria must be simultaneously met:

1. High arithmetic processing speed

2. High algorithmic speed, i.e., FFT's, matrix
arithmetic, etc.

3. Algorithmic alterability -- microprogrammable

4. Low cost

5. Conventional, consistent design as part of a
computer system

6. Maintenance ease

This paper describes a microprogrammable arithmetic
processor constructed to simultaneously meet these
somewhat incompatable objectives. We call the device
FPLM (Floating Point Logic Machine)., It is a Logic
Machine (5,6,7,8) and, as such, consists of a micro-

programmable control processor, one or more

bidirectional buses, several functional units, and a
microprogram arranged to perform a digital algorithm.
Some of the FPLM's functional units are specialized

for arithmetic processing but others are of a general
nature, Because of the flexibility of microprogram
couple with general, but simple, functional units we
have been able to perform not only the usual scalar

and vector/array operations, but in addition, FFT's

and other "special' transformations.

FPLM Organisation

A block diagram of the FPLM's overall organization
is given in\Fig. 1. The control processor is strictly
vertically microprogrammed. The control processor's
control store consists of 8-bit words, 256 words/page
with 16 pages maximum. Any combination of RAM's or
ROM's may be used as long as access time is suffi-
ciently short to sustain the 100ns (single word) and
200ns (double word) microinstruction times. Anything
less than 80ns will do; we use Fairchild 93410 with
about 40ns access. A p-program counter (12 bits)
controls the control store addressing, unlike a hori-
zontally organized engine in which a field of the

microinstruction contains the address of the next

micro.

The FPLM has two bidirectional data buses:
1. A 16-bit bus handling the I1/0 and housekeeping
and, 2. a 32-bit bus handling the number-manipu-
lating functional units. The two buses are connected
via a 16-to-32-bit packing register. These buses are
completely separate; to the extent, that both can be
active simultaneously. Separate buses also facilitate
eventual use on a 32-bit computer.

To facilitate parallel operation two registers --
the instruction register and the extended program

counter, store the command and its location in memory.

175

Although not shown in the diagram, there is a path
from the host minicomputer to the control store.
Using this path microprograms can be transmitted from
the host computer to the FPLM.

Ten signals, controlled

by the host, perform the following functions:

Signal Action

SATENLM Set Attention Flag

CLRFLG Clear All Error Flags

ECNT Count FPLM uPC

EXTLD Load FPLM uPC

EXTRST Reset FPLM

EXTRUN Set FPLM to Run Mode

EXTWRT Write FPLM Control Store
SFORK Set Fork Operation Flipflop
SJOIN Set Join Operation Flipflop
WRTBT Write Branch Table

To send a microprogram from the host to the FPLM
the following procedure would be used:

1. Halt FPLM (micro RSTRUN)

2. Initialize PC to first address of micro

program (EXTLD)

3. Write micro into that location (EXTWRT)

4. Increment uPC (ECNT)

5. If not done go to Step 3, else

6. Alter branch table (WRTBT)

7. Set pPC to starting address and

8. Start FPLM (EXTRUN).
This procedure can occur at any time, and indeed, may
occur several times during the execution of a single
host program. That is to say, the FPLM is dynamically

microprogrammable.

Standard ROM and RAM Macroinstructions

The microinstructions allow quite independant
microprogram control of the fraction, exponent, scratch
pad, and ALU of the FPLM. Since some arithmetic oper-

ations are common to any computer, these have been

stored in a ROM portion of control store. The

operations, with timing (not including memory access)

are (in psec.):

16-bit 32-bit
FADD 3.0 SQRT 7.0 ADD .40 .40
FSUB 3.0 LN 10.0 SUB .40 .40
FMY 3.5 EXP 12.0 MPY 1.4 2.8
FDIV 4.0 DIV 1.6 3.2

Most of the algorithms are quite standard; multi-
ply shifts over strings of ones and zeros, divide is

S-R-T and square root uses the ""long hand' approach

(9). LN and EXP use an algorithm introduced by
Chen (10) which uses only adds, shifts, bit counting
and a ROM for implementation. Also included in the
standard set of scalar operations are FPMod,
FPCompare, FIX, FLOAT, GETARG, and PUTARG.

In addition, vector operations are included:
VADD, VSUB, VMPY, and VDIV. Overhead for the vector
operation requires 500 ns. of houskeeping (mosély
array addressing) for each element pair. Thus two
vectors, A and B, each of 100 elements, added to-
gether to produce C would require: 100(3.0 +.5) +
600(1.0) = 950 usec with a 970 ns memory. A PDP
11/45, in comparison, would require 2239 usec with a
970 ns memory. A CDC 6400 would perform the same
operation in 1090 usec -- of course, on 60-bit words
rather than 32-bit words.

Several less frequently used microroutines have
also been microprogrammed and these execute from a
RAM portion of control store. For example, min-max
searches, series summation, cross products are resi-
dent in a library and appear to the user as any other
mathematic subroutine. Although it is probably
unrealistic to expect a user to do his own micropro-
gramming, he could, if he chose, write special purpose
"functional evaluators' and add these to the library.

With the addition of a quarter-wave sine table --
in ROM -- an FFT macroinstruction was implemented.

The following table compares the FPLM to the identical

176

algorithm executed on the PDP 11/20:

PDP 11/20 FEPLM

Butterfly (innerloop) 247.85 16.5us

1024 spectral lines 1087 84.48ms

correcting 1024 array 21.1 3.59ms
for scale factor

sort 1024 spectral lines 205.27 5.52ms

to correct order (real
and imaginary)
Thus the FPLM is more than ten-fold faster than

this common computer.

Macroinstruction Format and Processing

As software has become the dominant cost factor

in any computer system, special attention was given to
making the macroinstruction format as simple and versa-
tile as possible. We particularly wished to avoid the
macro format of a particular computer as this would
tend to limit the FPLM to that computer. Pre-fix
Polish Notation meets these goals. Polish pre-fix
also is the form most compilers produce at some stage
of compilation.
The operation A + B - C would require 4 sequen-
tial words of memory :
"FADD"
Address of A
Address of B
Address of C
A conventional 16-bit %inicomputer requires at least 3
words of memory to perform this operation; of course,
the addressing space of such a 3 word section of code
is less than 65K. FPLM requires an additional word
but has a full 65K addressing space. Vector macros
use an additional word just after the instruction to
indicate the vector length,
A host computer requests FPLM service by raising
a flag "ATTN AUXILIARY." The FPLM is attached to the
host on a DMA (Direct Memory Access Channel) and the
host is halted by a request for DMA service.
Additionally, the FPLM reads the host's progran
counter to determine the location of the instruction

activating the FPLM, As long as the FPLM requests

DMA service the host computer will suspend all oper-
ations and FPLM has complete control of memory. In
this manner system control is transferred from host to
FPLM.

Depending on the microroutine the FPLM may either
capture the host's memory or steal memory cycles. In
either case the FPLM must alter the host computer's
program counter to point to the next legitimate host
instruction. A constant, located in the microroutine,
is added to the previously acquired program counter

value and the result is stored back into the host's

PC.

Discussion

We view the FPLM as a segmentation of computer
arithmetic outside the CPU. In general, one would
expect several ALU's, each tailored to a class of
tasks, to outperform a single, all-purpose adder-
central ALU. Now that integrated circuits are inex-
pensive, even minicomputers can be constructed with
multiple data processing facilities.

Beyond this rather self-evident statement is the
question of how to optimally tailor the ALU. Several
conflicting considerations must be kept in mind:

1. A centralised instruction stream should

coordinate all of the system's tasks.

2. This instruction stream should be tampered
with minimally because to do so may cause havoc
with the system software.

3. Ideally one would like to add arithmetic
hardware to a system with little or no disruption
of service, although, .

4. usually very loosely coupled hardware tends to
pay heavily in speed loss.

5. An arithmetic processor should be able to
evolve to include new, even highly specialized,

arithmetic functions, but

6. programmable hardware tends to be slow and

177

expensive

7. The arithmetic should be fast but

8. inexpensive. And, most important of all in
our view,

9. the processor device should be part of a larg-
er computer design strategy.

Most of these requirements have been met in the
FPLM. A host's instruction stream is minimally altered
with the Polish pre-fix form used. As the FPLM is a
Logic Machine, and hence composed of a system of func-
tional units, alterations and/or replacement of the
functional units with improved versions can occur with-
out disrupting gérvice. Since the microprogram control
for the FPLM is external to the host, in the worst
case a whole new FPLM can be attached with only
minutes' disruption. To a considerable extent new
arithmetic functions can be microprogrammed and added,
dynamically if the user wishes, to the FPLM repertory.
Although the FPLM is only modestly fast it is quite
inexpensive as compared with other special purpose
arithmetic processors. As parts of a larger design
strategy, several other Logic Machines have been built,

including a graphics display terminal (7), an infor-

mational retrieval system (11) and a mini-computer (12)

REFERENCES

(1) J.E. Thornton, Design of a Computer: The Control

Data 6600, Scott, Foresman and Co., 1970.

(2) R.G.Hine and D.P. Tate, "Control Data STAR-100
Processor Design," Proceedings of the IEEE
Computer Society Conference (September, 1972),

pp. 1-5.

(3) G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick,
and R. Stokes, '""The ILLIAC III Computer,'" IEEE
Transactions on Computers, Vol. 17, No. 8

(August, 1968) pp. 746-757.

(4) W.J. Watson, "The TI ASC -- A Highly Modular
and Flexible Super Computer Arcnitecture,"

Proceedings FJCC (1972) pp. 221-228.

(5) T.H. Kehl, "The Logic Machine: A Modular Design
System for Digital Hardware Experimentation,'
COMPCON_'75 (February 1975) p. 305.

(6) K.J. Burkhardt and T.H. Kehl, "A Logic Machine

p. 309.

(7

(8)

()

(10)

(11)

(12)

J.Q. Torode and T.H. Kehl, "A Graphics Display
Terminal Logic Machine,'" COMPCON '75 (February,
1975), p. 313.

J.Q. Torode and T.H. Kehl, "The Logic Machine:
A Modular Computer Design System,' IEEE Transac-
tions on Computers, Vol. (C-23, No. 11 (November,
1974).

D. Cowgill, "Logic Equations for a Built-In Square
Root Method,' IEEE Transactions on Electronic
Computers, Vol. 13, No. 2 (April, 1964), pp. 156-
157.

T.C. Chen, "Automatic Computation of Exponentials,
Logarithms, Ratios and Square Roots,'" IBM Journal
of Research and Development, Vol. 16, No. 4

(July, 1972}, pp. 380-388.

L.G. Berdahl, "A High Level Language Machine
Design," Master's Thesis, University of Washington
(July, 1974).

T.H. Kehl, C. Moss, and L. Dunkel, "LM2 -- A
Logic Machine Minicomputer," IEEE Computer,
in Press.

CONTROL PROCESSOR

E Control
' Store
5 ! Decoded to
' ‘ i iS_GInZ?fUSC':fnS DMA-10-FPLM | | FPLM-10-OMA| |FPLM-10-DMA
-pC &~ Instruction Data Data Adress
s Register = <i5 : 00> <15: 00> <15 : 00>

16 -BIT BIDIRECTIONAL BUS

Branch Table
16 Words x 12 Bits
<l:00>

Instruction
Register
<i5:00>

Multi- Purpose Register
<31:00>

Extended Program
Counter

<15 :00>

32~ BIT BIDIRECTIONAL BUS

Scrateh Pad
16 Words x 32 Bits
<3 : 00>

! 1
Exp. Fraction . :
. . Shift Counter
<31: 23> | <23:00> <05:00>
Integer
<16 : 00>
<32: 00>

FLOATING POINT ALU

178

