COMPATIBLE NUMBER REPRESENTATIONS

Roy A. Keir
University of Utah
Salt Lake City, Utah 84112

A compatible number system for mixed fixed-point
and floating-point arithmetic is described in terms
of number formats and opcode sequences (for hardwired
or microcoded ccntrol). This inexpensive system can
be as fast as fixed-point arithmetic on integers, is
faster than normalized arithmetic in floating point,
gets answers identical to those of normalized arith-
metic, and automatically satisfies the Algol-60 mixed-
mode rules. The central concept is the avoidance of
meaningless “normalization” following arithmetic oper-
ations. Adoption of this system could lead to simpler
compilers.

Key Ideas

The purposes of this paper are to dispel some 1in-
gering myths about normalization and to bring to a
wider audience certain interesting characteristics of
some ancient work (circa 1959) which apparently will
be novel to some present-day computer architects and
Tanguage designers. This paper is explicitly based on
the Bendix G-20 development. The Burroughs B-5000 (a
contemporary of the G-20) exploited the same concepts.

Opcodes for Arithmetic

The central idea is simply to make fixed-point and
floating-point number representations totally compat-
ible {by using tags, by using descriptors, or simply
by dispensing with a fixed-point format), then trim
the opcode 1ist to include only desired functions,
Jetting the hardware automatically handle the arith-
metic formats. For example, the entire 1ist of arith-
metic opcodes might consist of only the following:

Store the content of the (selected)
) accumulator.
Store the integer portion of the con-
tent of the accumulator.*
Clear and add
Clear and subtract

Add (rounded in an unbiased manner)

Subtract (ditto)

Multiply (ditto)

Divide (ditto)

Find the integer quotient

Find the residue

Various compare or branch opcodes, in-
cluding a "branch on loss of
digits" (see below).

Note the absence of FIXED-ADD, FLOATING ADD pairs,
etc. Note the absence of a FLOAT command and the
union of the IFIX function with the STORE opcode.

The proposed arithmetic system automatically does
precisely what the algol 60 mixed-mode rules require,
with 1ittle attention to types needed except during
compilation of assignments (store commands). Compre-

hensibility of compiled code should also be simplified.

These objectives were discussed long ago {CACM) in an
article by A.A. Grau concerning a related proposal.
In effect, all arithmetic is done in floating point,
with the exponent appropriate to integers specified
by tag, descriptor, or an exponent field when an in-
teger operand is fetched from storage.

*Separate STORE opcodes for round, chop, and entier
may be desirable for various applications.

82

tiving Without Fixed-Point Arithmetic. Since we
propose to do away with fixed-point arithmetic, we must
respond to those needs now served by fixed-point com-
puter instructions, namely speed and exactness., Nor-
malized floating point arithmetic has historically been
much slower (in smaller machines) than fixed-point
arithmetic -- the proposed system uses a carefully-
selected form of unnormalized arithmetic and can oper-
ate at fixed-point speeds. Non-trivial uses of fixed-
point arithmetic require defenses or warning (prefer-
ably both) against loss of non-zero digits on either
end of any operand -- the system to be described pro-
vides warning of inexact results and can easily be im-
plemented so as to provide either retention or recovery
of the "excess" digits.

Contrasts With Other Unnormalized Systems. This
number system must be distinguished from several other
systems which have been called "unnormalized". This
is not Metropolis's method of sacrificing result digits
to maintain an estimate of significance -- it gets
answers which are indistinguishable in value from
those of normalized arithmetic. It is not the practice
of supplying unnormalized operands to an arithmetic
unit designed for normalized operands and then Tooking
to see if the answers can be useful -- the sequence
shown in the Appendix for multiplication shows that
real changes are required to make a coherent design.
It isn't even the automatic pre-normalization of
operands that is demolished in Sterbenz's fine book.®
It is a system which avoids normalization wherever it
can do so without loss of accuracy.

Some Challenges and Responses

If unnecessary normalization is avoided, it is of
course necessary that add-subtract be designed to allow
vscale left" during exponent equalization, and similar
measures are needed in multiplication and division.
Fundamental designs for some of this arithmetic are
given in Appendix I so that the reader may verify the
answers given below to some of the obvious challenges.

Isn't Normalization Essential to Achieving Maximum
Accuracy?

No. If all you can save of an answer is 0079.3,
writing it as 79.300 does not affect the accuracy one
whit. It has long been known (see Sweeney 1965 for a
concise demonstration) that at most one Teft shift is
needed after differencing to keep all the answer you
can ever keep, and if cancellation has occured, addi-
tional shifts can only supply a "stuffing" of zeros
without improving the accuracy of the result. It's
hard to accept, but those otherwise excellent arti-
cles which say things like "maximum accuracy is
attained by use of normalized numbers" (Yohe 1973)
are speaking of a sufficiency condition, not an
always-necessary condition. Check those flowcharts
in the appendix again. And check the next article
you read on floating point error analysis to be sure
that the author has allowed for the "stuffing" in his
expression for the uncertainty in the values of input
operands.

The proposed system is entirely compatible with
{and was built with) one-digit post-operation "normal-
ization" and unbiased (or "drift-free") rounding (see
Knuth 1975, Keir 1975, Piper 1961), the best that has
yet been implemented in hardware. The more generalized
variants for precise numerical work (see Yohe, 1973)

‘? can also be implemented quite easily.

i When the proposed system and the normalized Sys-
¢ tem (with identical roundoff rules) both get answers,
. those answers are identical. The proposed system

®. gets meaningful answers in a very few cases where a

. strictly normalized system underflows, a phenomenon

I believe has been called "gradual underflow."

Won't it be Slow to do Fixed-Point Arithmetic in a
Floating-Point Uni%?

] No. If integers have been initially stored with
L a standard exponent, the proposed system does arith-
L metic on intégers at fixed-point $peed. The virtual
radix point of each number stored using the STORE

. INTEGER opcode is adjusted to’the right end of the
£ register. The opcode sequences shown in the appen--
| dixes preserve this alignment Wherever possible for
. integer results, so that integer operands for addi-
tion, subtraction, and STORE opcodes will have their
radix points already properly aligned at the start of
. each operation.

Won't Floating Point Arithmetic be Slow in This Sys-
tem?

i Curiously, the proposad system is slightly faster
. than conventional normalized arithmetic in terms of

- the number of shifts to be performed. Consider a re-
. sult in which heavy cancellation has occurred: in

. normalized arithmetic this operand has some probabil-
¢ ity (almost .5 according to Sweeny) of having the

I smaller exponent in a subsequent add-subtract and

~ therefore being subject to one or more right shifts
during exponent equalization. These right shifts are
therefore only undoing some of the preceding left
shifts, which are thus shown to be not only unneces-
sary but time-wasting. In the proposed system, these
i shifts are postponed (in the diagrams, from states N2
i & N3 to A5.3) or entirely avoided. The magnitude of
. the speedup is under study, but good estimates remain
I elusive.

One elementary result which may be new to at

= least some of you is that if all possible pairs of

. signed p-bit binary integers are added in a binary p-

i bit normalized accumulator the number of bits shifted

. (for large p) averages two and one half, of which one
and one third are for exponent equalization and the

remainder (1+1/6) are for post-operation normaliza-

tion. In the compatible representation, no shifts

at all are required for exponent equalization and

only one fourth of a bit (right) shift for normaliza-

tion.

Whatever speed is gained by fewer shifts is in
addition to the reduction in calls on FIX and FLOAT
procedures. The FLOAT operation is never needed and
the FIX operation is a (perhaps microcoded) hardware
sequence, usually automatically evoked within the
STORE INTEGER command.

The speed effects are 10t all one-sided. For ex-
ample, all numeric comparisons require exponent e-
qualization, whereas in some normalized forms a fixed
point comparison gets the correct answer faster.
Another example is the operand with leading zeroes
which happens to be the larger summand in each of
several later additions and subtractions -- scaling

this number all the way left once might be more ef-
ficient.

Doesn't the Proposed Systen Require a lot More Hard-
ware?

83

Only a Tittle more in most implementatjons. The
extras show up as extra left-shift paths for exponent
equalization, more complex predicates for microcode or
sequencer and more lines of microcode or states in the
sequence. At any given level of implementation, the
percentage hardware system cost increase is miniscule,
I argue that this cost is overwhelmed by hardware re-
ductions resulting from drastic pruning of the opcode
Tist and by software system cost reduction.

Isn't it Possible to Lose Digits Without Warning in
Calculations That Should be Exact?

This is a hazard that must be prevented. The sy-
stem described in the appendixes provides for a "di-
gits were lost" condition bit which is automatically
reset (to FALSE) on any accumulator-clearing operation
and set to TRUE if any non-zero digits are subsequent-
ly shifted off the right end of the arithmetic reg-
ister and not recovered by a post-operation "normal-
ization" left shift. This condition bit can be ac-
cessed as a predicate prior to a STORE operation to
give warning of fishy results (e.g., from an integer
multiply, which some tricky programmer expected to be
reduced modulo some fixed-point register size).

However, if an "improper fraction" can be exactly
represented in the accumulator, the above condition
bit will not necessarily be set by the operation which
created this result., One-must somehow have either
this or another condition bit respond to a loss of
non-zero digits during either a separate FIX opcode or
during the FIX phase of a STORE INTEGER opcode. The
implementation in the G-20.did not signal loss-of-
digits (- a regrettable omission), but-under the ori-
ginal design criteria there probably would have been
a separate NON-INTEGER condition bit activated by the
STORE INTEGER command(s), and the original content of
the accumulator would have been retained, both as an
aid to recovery and because it makes sense in terms
of the semantics which should have been associated
with assignments to integer and "real" variables.

Can Mixed-Length Operands be Handled Conveniently?

Yes, indeed. The original implementation had
three arithmetic store commands, STORE SINGLE-LENGTH
INTEGER, STORE SINGLE-LENGTH FLOATING, and STORE
DOUBLE-LENGTH FLOATING. A primitive tag informed the
control Togic of the length of a number being fetched
as an arithmetic operand, and the second word of a
double-Tength operand was fetched automatically. Al]
arithmetic (yes, even index arithmetic) was done in
double length floating point. Address values were
automatically shifted by hardware to the standard in-
teger location before being sent to an address regis-
ter.

In retrospect, I favor a tagged representation
{App. I1I) with four species of numbers (single-length,
double-Tlength)x(explicit-exponent, implicit-integer-
exponent). The factor part of each accumulator (or
stack Tocation, of course) would be at least long e-
nough to hold a Tong integer, tie extra digits serv-
ing as guard digits during garden-variety floating
point work. For reasons not relevant here, this plan
was not possible to us at the time of the original
design.

The use of the word factor instead of fraction or
mantissa above was not accidental. It comes from the
natural practice in compatible number representations
of using an exponent value of zero when dealing with
right-justified integers. Another choice may be
better. The candidates and my (admittedly biased)

summary of the supporting arguments for each are:

1) (radix point at the Teft) e (fraction)es
(/f/ < 1). I believe the arguments for
this choice all died of old age when float-
ing point hardware came into widespread use.

2) (radix point to the right of the left-most
digit) e (/f/ < B). The strongest
arithmetic analyst of my acquaintance ar-
gues for this ("If x is representable, 1.0/x
shoulld be representable for as many x's as
possible...”) (W. Kahan, private communi-
cation).

3) (radix point at the right) e (integer) «»
(/f/ < BP for a p-digit number). Besides
being "natural" for hand-coding, this
choice causes the implicit exponent of an in-
teger to be machine-independent (i.2., zero
instead of p) and number-length-independent
(0 and 0 instead of p and 2p). There is
also a (usually negligible) cost advantage
in generating and testing zeros in most
hardware, but portability is the main reason
that I favor this selection.

CONCLUSION

Formats and opcode definitions have been pre-
sented for a number system which, by allowing integers
and floating-point numbers to be freely and safely in-
termixed, can considerably reduce the work-factor
of a compiler in generating arithmetic code. Want to

mix modes? Just do it. Want to base indexing on a
real variable? Hardware can take care of it auto-
matically. Want to write a procedure to work on

any numeric operand, with (integer, real) binding
deferred until activation time? Perfectly natural.
Want to code a library function to accept any mix of
stngle-Tength and double-length actual parameters?
Autamatic. Supersensitive calculation? Generate
code to make heavy use of the "digits were lost"
predicate.

The system is as fast as conventional fixed-point
when handling integers, faster than normalized arith-
metic on floating-point operands, and exactly as
accurate as normalized arithmetic. The arithmetic
opcode 1ist is much shorter than that of a conven-
tional computer geared to handle single and double-
Tength integers and floating-point numbers.

How can you stand the clumsy old-fashioned system

you're now Tiving with when it would be so easy to
microcode this modern 1959 model?

ACKNOWLEDGEMENTS:

Professor Harry Huskey provided the initial im-
petus to the development of the compatible number
representations. Jim Buell, Bob Monroe, and Jesse

Quatse all worked with me on the arithmetic of the G-20,

Charles Piper provided many penetrating insights and
fruitful discussions.

(1)
(2)

(3)

ApPP.

APP,

REFERENCES :

C. A. Piper, G-20 Reference Manual, Bendix (1962).

D. W. Sweeney, An Analysis of Floating-Point
Addition, IBM Systems Journal, vol. 4 no. 1
(1964).

J. F. Reiser and D. E. Knuth, Evading the Drift
in Floating-Point Addition, Information Pro-
cessing Letters, vol. 3 no. 3 (January 1975)
84-87.

R. A. Keir, Should the Stable Rounding Rule Be
Radix-Dependent?, accepted for publication,
Information Processing Letters (1975),

J. M. Yohe, Roundings in Floating-Point Arith-
metic, IEEE Transactions on Computers C-22
(1972) 577-586,

C. A. Piper, Roundoff (letter to the Editor),
CACM vol. 4 no. 1 (March 1961) A13.

R. A. Keir, Program-controllable Roundoff and

the selection of a Stable Roundoff Rule, Pro-

ceedings of the Third IEEE Computer Arithmetic
Symposium, 1975,

P. H. Sterbenz, Floating-Point Computation,
Prentice-Hall, Inc. 1974.

APPENDIXES:

I: Fundamental algorithms for the compatible
number system, Many steps shown for
clarity as sequential should in practice
be performed concurrently,

IT: A possible set of formats for an imple-
mentation of a compatible number system,

APPERDIX 1.

compatible number system,

(a) Addition.

Y

Al. Unpack.
0

LOST

r=
N

A2. Assume e, e

v

A3. Set e,

y

Gx. Test (e, - ev)} > e

Some basic algorithms for a

e =e

else I _.l.‘_v_

75.1 Test f, 1ero
b else normalized

A5.3 Scale fu A6. Add
left 1 digit L \
—]

/

A5.2 Scale f, rignt
1 digit. If necessary,
ancrerment LOST,

N7. Pack

!

wf
[Y
- to "normalize”
L (b) "Normalization"
N1, Test f too large —
_ N4, Scale right 1 digit
=0 else If necessary, bump LOST
(2,1 Test quard digitsy A
=0 #0
y
(2.2 1s £ normalized 7)
no yes y
Y »
[#3. Scale left 1 digit |
(13.2 Guard digits = 0)
Y no yes
4]
< 5. Round
Ye :: ; :> (rounding
) 6. Check e -J/ Y oveflow)

attempt recovery
from overflow or
underfliow

85

(c)

¢

Multiplication

P =
LOST

Unpack M and I

0
=0

o)

M=20

yes

? ~—Pp= to "normalize"

no

P =

P + Mos]

Scale

M right

v
(1571 n

ormalized ?:)

no

;Lvyes

A: Sca
left

le I B: Scale P
right., Bump

LOST, if
necessary

|

(d)
4

Division

Unpack N and D
Q :=0

o

r

3

D n

(is

——, Y¢
ormalized ?

yno
yes
b) >-;~;\L‘~

no

.Y

Scale D left
] digit

ves
Qs Q normalized 7;’—»—
*ha T

[Set "DIGITS
WERE LOST"

Find quotient digit q.
Scale (Qg) left.

N oi=N-q-D

Scale N left

L ¥

!

—(Compare W :

D/2

N> D/2

N =D/2

b,
N< %

to Q

Apply "50% rule"

lRound Q upl

-

Pack Q

(e) Standardizing an irteger

!

Unpack
LOST :=10
(f Compare e to e(Int) e = e(Int)
e elInt) | e>» e(Int)

}

Scale f left
1 digit

Scale f right
1 digit

If(fo #0 L.OR,

LOST # 0) bump
LOST

L Y

“»

Chop or
round

Pack

!

APPENDIX II. Some possible formats for a
compatible number system.

(a) Using tags for length and exponent,

[ns] e] F N

Short floating

T2}S 1

Short integer

[13]s] €] F-tere Jrafs] F-right |

Long floating

f15[s] I-left J16]5] I-right |

Long integer

EN) A]

Standard form in arithmetic unit

1. (Each E has k digits; each F or F-left has
p digits; each F-right, I, I-left, or
I-right has (k + p) digits; and A has
(2k+2p) digits)

2. (T4 and T6 can be combined, or T3 and T5)

(b) Using a "forbidden" exponent as a
length tag, no special form for integers.

CLEel F

Short number

|_SI 0] F-left [€ | Forigne

Long number

1. (The address of the long number must of
course be that of the left half)

2. (F, F-left, and F-right each has p digits)

86

