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Abstract: In this paper the definition of comparison sets and a discussion of their usefulness are presented
based on the research work reported in (14). In addition some new resulus concerning the distribution of
floating point (FLP) operand pairs over comparison sets are given.

INTRODUCTION indicate the exponent difference €G-eH: e =¢€G-¢eH.
o Two predicates are required.
The comparison sets are defined according to G>H=cG>eH v (e6=cH & wyG > wyH)
properties of the ideal FLP operation algorithms. - -
However, comparison sets can be used to predict G <H=¢G<eH v (eG=cH & wyG < wyH)
important aspects of normalization and truncatior in The addition of two FLP numbers G and H is de-

most FLP operations.
Consequently these sets simplify the comparison

fined as follows.

y e . -
of FLP operations greatly, rence the name comparison oG,eG, A(YG+yH*t ~)) ; G>H,0G = oH
set. In (1&)'they are u§ed to compare thg rounding (Gu G A(wG—wH*b_e)) ; C>H,0G # oH
methods used in the FLP instruction algorithms on the G®H= e -
PDP10, CDC6000-Cyber 70, CIC3000, Univac 1100, SM3, (oH,eH A (YH+HPG*D™ )) 5 G<H,0G = oH
SML and IBM 360—3YQ computer series. , (oH,eH, X(WH—wG*be }) , G<H oG + off
The actual distributicn of FLP operand pairs i L R
over these comparison sets for several large calcula- From this definition can be seen that FLP add is
tions are reported. completely symmetric in G and H ; G & H=H & G,
Note
BASIC CONCEPTS . . . -
- The preshift of H or G indicated above by YH*b €
Precise defiaitions of FLP numbers, sets and and YG*b® required to equalize exponents, can be done
mappings are given in (14 & 16). before the add operation. This means that equal expo-

nents can be assumed in the add operation:
o Assuming G > H this can for instance be done as
A FLP number is defined as a triplet contalning follows: G & 7 H.
sign, exponent and fractional part. The sign and e
exponent are integers, while the fractional part is a
particular type of radix polynomial called limited (0G,eG,A(YC+YH)); oG = oH
G®&®H= {

Floating point numbers

The add operation then simplifies to:

igit radix (LDR) polynomial defined in (14 & 16)
e Since in LDRppo{ynomial always has a positive (0G,eG,A(YG-yH)); oG # OH
value with positive coefficients the FLP fraction The subtraction of two FLP numbers G and H *s
represented is in signed magnitude. ' ) defined in terms of adcéition:

he base in a FLP number or radix polynomial 1s
calledTb, where b is an integer greater sr unal to 2. G8H=G® (-1-0H,eH,H)

The length of the fraction in the FLP numbers The remarks made above about preshifting, applies
is p, where p is an integer greater or equal tc 3. to subtraction also.

FLF zero is written . L ) NP
The multiplication and division of two FLP

Sets of FLP numbers numbers G and H are straight forward.

The set of all FLP numbers defined as above with C®&H = (0G-0H,eG+eH, A(PG*PH) )
base b is §

=b’ ) And assuming H # @
The set of all normalized FLP numbers with
0 G0 H = (0GeoH,cG-eH,A(YG/YH))
fraction length is 8.7 . L.
rac gvh ® ~b ) The definitions of &, 8, & and @ show that
Mappings on FLP numbers and fractions these operations map as follows:
Given a FLP number F: ) . N .
EEREE
oF 1is the sign of F.
eF 1s the exponent of F. CAFRY-CANCEL
YF 1s the fraction cf F. Normalization, truncation and rounding in a
WiF is the value of the fraction of F. floating point ogeration.depend on the size of the
) fraction in the intermediate result before normaliza-
g F scales F, by increasing the exponent with ' ticn. This fraction's value may be greater or equal
= . > 1 . . . .
k and "multiplying" the fraction with b to 1. It will then be said that the intermediate re-—
A maps any radix polynomial with positive sult has carry. The irtermediate result fraction can

have a value less than 1 or greater or equal to 1/b.
A The intermediate result has cancel when its fraction
Operations on FLP numbers has a value less than 1/b.

value irto a LDR polynomial

FLP numbers are added and subtracted according Carry predicate:
to the following cefirnitions ]
& FE€S &F =0, wF > 1
Assume GE€S,  and JEE v B
b b Cancel predicate:

In the rest of this paper & will be used to
' bap - FES,&TF g, wF < 1/b
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COMPARISON SETS

There are three categories of FLP instruction
algorithms; add includirg subtraction, multiply and
divide algorithms.

For each of the tiree categories of FLP instruc-
tion algorithms there is a collection of comparison
sets partitioning the space of FLP operand pairs

E%? X§;). Witkin each collection <he sets are mutually

exclusive.

However most algorithms within a category can be
analysed with the aid of the same collection of compa-
rison sets.

Comparison sets for addition algor:ithms

~ 'The carry/cancel predicates applied to the inter-
mediate result G & ceH in the ideal FLP add algorithm

are used to partition §bpx St?.

These predicates will be abbreviated as follows:
wP(G @ceH) is written w'. Then the predicates used
are:

w+ > means G 9 geH has carry
m+ <1 means G P ;eH has no carry
wt > 1/b means G B ceH has no cancel
wt < 1/b means G 9 geH has cancel

The union of the comparison sets defined below,
covers only those operand pairs where G>H since the
FLP add instruction algorithms stuéied are symmetric
in G and H.

s=sF

Set
€ b

1Y
X
§b
Then define
>
8 {(¢,H) ; (G,H)€s & C

In all the set definitions
assumed that:

(c,n)es”

> H}

given below it is

The comparison sets for addition are:
go = {(G,H) ; G = ¢}
8, = {{G,H) ; G %# 0 & oG=cH & e =¢H}
85, ((G,H) 5 G # ¢ & oG=cH & 1<eG-cH<p &w¥<1)
§2b= {(G,H) ; G+ ¢ & 0G=0H & €G- eH>p+1}
8 = {{(G,H) ; G+ 0 & oG=0H & 1<eG-¢cH & w+37}
8, ={(G,H) ; G+ & & oG+gH & G =¢H}
§5a— {(G,H) 5 G*+ 0 & cG+0i & 1<eG-eH<p &u)+z1./b}
8= ((C,H) 5 G # 0 & 0G+0H & eG-cHxpt1 &0 >1/b)
8, = {(C,H) 5 G+ 0 & 6G+0H & eGeH = 1 ¢uw'<i/)
EY ={(G,H) ; C+#0 & oG +0H & 2<eG-¢H &w+<1/b}

. >
The union of these sets covers §

Theorem 5.4 in {1L) shows thkat when G and H are
such that €G - €H > p they cannot e a member of §3.

It shows in addition that since €G - ¢H > 2 in §

il

+ . . .
w > 1/v? indicating a cancel of only one position.

Comparison sets for multiplication

The only predicates required <o characterize
these subsets are the two predicates testing G @ H, for
cancel or noncancel. These predicates will be abbrevi-
ated as follows:

wp (G @ H) is written w*.
are:

Then tne predicates used

w* > 1/b means G & H has ro cancel
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w* < 1/b means G ® H has cancel

The comparison sets for multiplication are
g = {(GH) 5 (6,8) €88 x8F wuwr> 1/b)

b
- . p D
§9 = {(G,H) ; {(G,H) €587 x 8, &w*< 1/b}

Lemma 3,7 in 14 shows that the fraction in G & H
will have a leading coefficient index of 1 or 2. This

means that G 8 H will never have carry. §8 U §9 will

therefore cover §bp xgﬁf . Leading roefficient index

not lower than 2 also means that only single cancel
will occur. In other words, assuming (G,H) €S = w*
Z 1/b2. —9

Comparison sets for divisior.

The only predicates requirec to characterize these
subsets are the two predicates wiG > wyH and wyG < wH.
The comparison sets for division are

8,47 16,15 (o,1) €57 x5 % & wyo > wyn)
8,,= {(6,1); (6,1) e~s_tp x5, 7 & wiG < wyi}

Lemma 3,9 in (14) shows that “he predicates
WYG > wpH and wG <wPH picks the same operand pairs as
the predicates testing for carry and nocarry in G @ H.

Tt is clear that 5, US . = _s_bp x5 P and that

only carry and nocarry can cccur in G @ H.

THE USE OF COMPAKISON SETS

FLP algorithms that differ from the ideal
algorithms will in most cases have an intermediate
result before normalization different from G & L H.
For each algorithm investigated in (1k) it is shown
that carry and cancel either ocecurs when it occurs in
G & ¢ _H or that the final result is independent of
whether carry and cancel is detected in G & geH or in
the algorithm's intermediate result.,

The FLP algorithms investigated in (1h) were the
FLP instruction algorithms for add/subtract, multiply
and divide on the following computer series: CDC6000-
Cyber 70, CDC3000, Univac 1100, SM3, SM4 and IBM 360-
370.

All of the algorithms investigated were gene-
ralized to accept any positive integer base greater
or equal to 2, and any fraction length greater or
equal tc 3.

Any FLP operand pair can be placed uniquely in
a comparison set. This makes it possible to predict
the most important aspects of the normalization and
truncation required when applying any of the FLP opera-
tions abtove to this FLP operand pair. The aspects of
normalization and truncation that can be predicted are
those that determine the rounding and accuracy of FLP
operations. The predictions can be made without
taking into account any of the peculiar aspects of each
algorithm.

The actual distribution of FLP operand pairs
over these comparison sets has been investigated for
several large calculations. This is of interest since
the major rounding errors in a FLP operation only
occur for operands from a few of the comparison sets.

When the operand pairs that actually occur in
large calculations seldom are from these critical
comparison sets the rounding errors incurred cannot
affect the calculations noticeably. When however the
operand pairs largely come from the critical compari-
son sets the roundirg errors incurred may cause signi-
ficant errors in the results of the calculation.

Finally a FLP operation that behaves badly for
operand pairs from a critical comparison set can be
found acceptable if operand palrs from this critical




comparison set are
culation where the
The investigations
and operand traces

very infrequent in the types of cal-
FLP operation will be used.

are based on complete instruction

of the following 5 programs:

A) Bairstow's method for polynomial roots; No 30 (19).

L3 (19).

B) Crout's method for linear equations; No

¢) Hivie's method for definite integrals; No 257 (19).
D) Aitken's method for polynomial interpolation.

E) Secant method for simultaneous linear equations.

The traces of these and many other programs were made
by Dr. A. Lunde for his thesis work (17).

Most of the programs were run several times with diffe-
rent input in the trace. In addition traces of several
versions in different programming languages were made
for programs A, B and C. There were insignificant
differences between the distributions obtained with
different versions of the same program.

The trace of the 5 programs give 750 000 instruc-
tions of which 46 000 were FLP addition and subtrac-—
tion, k43 000 were FLP multiplication and 11 000 FLP
division.

The results of this investigation was compared
with D. Sweeney's analysis of FLP additiors (18) and
found to correlate well with his results.

The new comparison set

s = {{(G,H); H = &}
oa

ob and SSb

rand pairs where the large exponentdifference was
caused by one operand being zero.
Thus SO contains FLP operand pairs where both are zero

was introduced to eliminate from S the ope-

and Soa "LP operand palrs where one of the operands
are zero.

The tables below give for each problem the per-
centage of FLP operand pairs in each comparison set.

Addition, subtraction

Problem A B C D E Total

Percentage

of FLPadd/

subtract in- 10.6 5.2 15.1 5.6 5.3 6.1

structions
5, 0.4 1.0 0 1.6 2.2 1.4
s 23.8  27.7 1.7 12.1 0 10.5
oa
8, L.g 5.2 30,9 12.2 2.3 1h.h
o 22.6  L1.9  33.9 26.7 1L.7 27.6
Sop 0.5 0.9 0 0.6 0 0.5
83 6.8 5.5 3.3 9.2 3.7 7.2
5, 10 3.0 0.9 8.6 57.6 15,2
s5a 15.6 .7 2.0 15.4 6.0 11.5
S . . .2
bSb 0.1 0 0 0.3 0 0
8¢ 10.8 2.7 0.6 9.3 12.0 .3
87 b7 1.4 1.7 4.0 1.5 3.2
T 100 100 100 100 100 100
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Multiplicetion

Problem A B [ D E Total
Percentage 10.4 2.2 3.2 6.9 3.0 S.T
of FLP
multiply
iastructions
8q 38.6  49.3  38.9  51.1  39.7 k9.1
SO . 61.4 0.7 £1.1 48.9 £0.3 50.9
z 100 100 100 100 100 100
Division
Problem A B c D E Total
Percentage
of FLP 2.0 b1 5.9 1.4 1.2 1.5
divide
instructions
S10 55.2  59.5 $£8.0 sSh.hL s58.2  57.7
811 Ly, 8 30.5 32.0 45.6 41.8 42,3
b3 100 100 100 100 100 100
CONCLUSION

Important aspects of normalization and truncation
in FLP instructions in most of todays computers can be
predicted with the aid of comparison sets. This
warrants the belief, that comparison sets can be used
to investigate and compare many present and future
FLP operations. This will make comparison sets an
increasingly important tool for the study of FLP ope-
rations.

Information on tae statistical distribution of
FLP operand palrs over comparison sets is of intrinsic
value especially when tied to normalization and
truncation properties in FLP operations.

The distribution of FLP operand pairs over
comparison sets were found to be very problem depen—
dent. It does not seem possible to find a general
distribution that will be useful when studying spesi-
fic calculations.

It is hoped that comparison
those who design, investigate or
and that it trings the theory of
forward.

sets will be used by
use FLP arithmetic,
FLP arithmetic a step
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