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Abstract -
show under certain assumptions two basic theorems

In ordered sets it is possible to

concerning the cycle length of sequences of iterates
generated by monotone operators. These results are
applied to different iterative methods, where the
conclusions are valid for the sequences of iterates
produced by the numerical computations only,if the
used computer arithmetic is properly implemented.

Index terms - Rounding invariant structures,
cycle, weakly cyclic vector function, floating-point

arithmetic.

1. Introduction and Summary

Because of the technical conditions the set R of
the numbers representable in a computer is finite.
If we execute an algorithm of the form Xnpl = Fxn,
n=o0,1,2,..., beginning with any element

Xy & R, it is cear, that the sequence {xn} of
the iterates has only a finite number of different
elements. Moreover, from an element Xy the values
of the m preceding iterates Xeem* Xkeme1? 2 X1
return in the same order, i.e. the algorithm is
ending in a cycle of the length m . After receiving
a cycle it is useless to continue the iteration be-
cause we cannot cbtain any further information. There-
fore we can regard the end of the first cycle as the
end of the numerical computation which easily can be

recognized,if the cycle length is known.

For the studies of cycles it is usefull to know the
mathematical structure of the arithmetic in R . Those
algebraic and order properties, which should hold

for any floating-point system, namely the usual ru-
0,1 and the minus

sign as well as compatibility properties between the
algebraic and the order structure well-known from the

les for the neutral elements

real number field R , have been summarized to the
concept of the completely linearly ordered divi-
ston ringoid {R,N,+,+,/,<> ([ 3]). In[57] it
could be shown that R with a properly implemented
floating-point arithmetic represents such a struc-
ture. In a similar way it is possible to describe
computations with vectors xEEVnR and n>=n matri-
ces As MnR as well as the matrix vector multipli-
: MnR xvnR - vnR by the structure of

the ordered vectoid over an ordered division ringoid

cation
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([61). The intent of this paper is to show the
possibility of determining or estimating the length
of cycles of iterative methods only by means of the
algebraic and order properties of the above struc-
tures.

The following results are essentially based on two
simple theorems for monotone operators in an ordered
set. {M, <} : an isotone operator always generates
a sequence of iterates with the cycle length 1, if
two elements

X XigHl of the sequence are comparab-

le with respect to $ and an antitone operator pro-
duces at most cycles of length 2, if three consecu-

tive iterates are comparable.

It will be shown that for all non-negative resp.
non-positive elements AssMnR and for all be VnR
T VnQ —> VnR with Tx := Ax + b is
an isotone resp. antitone operator. Therefore we can
apply these theorems to T immediately. Without the
A>0 A < 0,1t is nevertheless
possible to get results for special matrices, which

the operator

assumption resp.
follow from general studies of weakly cyclic vector
functions in VnR (121). So, for example we are
able to determine the cycle length of iteration
sequences produced analogeusly to the Jacobi resp.
Gauss-Seidel method , if A
trix ([ 71) or a generalization of it, All results

is a weakly cyclic ma-

are illustrated by numerical examples.

2. PRounding Invariant Structures

In recent investigations it was shown that the al-
gebraic and order properties of the mathematical
space given on a computer allow to be described

by the structure of the completely linearly ordered
division ringoid ([ 371). We shortly repeat this de-
fin‘tion:

Def-nition 1: A non empty ordered set {R, <} with
is called an "ordered
ringoid” {R,+,-,c}, if the properties (D1) to (D6)
and (0D1) to (OD3) hold:

//\\ a+b=>Db+a.

two binary operations +,-

(D1)
a,beR
(D2) //\\ a+o0=a.
o=R a=R
(D3) \v/ //\\a ce=¢e+a=a.,
eeR aeR
(D4) //\\ a*0=0¢+*a-=o0.,
a =R

(D5) There exists a uniquely defined element « te




of R such that with -a := x « a hold :
(a) x «x=¢e,
(b) “(a+b) =(-a)eb=a-(-b),
a,besR
(¢) -(a + b) = (-a) + (-b)
a,be R
(0D1) /\ (a§b=>a+cgb+c)
a,b,c =R N
2) /\ (a<b=> b -a)
a,b=R N
(0D3) (ccascbAnc20=> ascc<hec A
a,b,cerR =~ ° - -
ccagceb).
The elements -e,o0,e=R are called the special ele-
ments of {R,+,-,§} . An ordered ringoid {Ry+,0,5)
with a further inner operation / ¢ RxR\N = R

with is called an "ordered division rin-
goid" {R,N,+,+,/,5} , if the properties (D6) to (D8)
and (0D4) are fulfilled:

(D6) //\\ a/e=a.

0= NcR

asR
(D7) o/ a=o90.
a R\
(D8)/A\ /ﬂ\ -(a/b) = (-a)/b =a/(-b) .
a=R  ba RN
(0D4) /\ (o< a<bnrcso= 0 <alc < bl/c
a,b,ceR A o< c/b < c/a)
An ordered ringoid {R,+5+,5} (resp. an ordered divi-

sion ringoid {RyN,+,+,/,<}) is called a "completely

ordered ringoid" (resp. a "completely ordered divi-

sion ringoid"),if {R, <} is a complete lattice.

An ordered ringoid {R,+,,<} (resp. ordered divi-

sion ringoid {R,{o},+,+,/,2}) is called linearly

ordered,if {R, <} s a linearly ordered set (resp.
and
(0D5) /”\ a/a=e
a=R\{o}
holds). 0

Let MnR be the set of n>n - matrices with ele-
. With the
usual addition and multiplication for matrices

A = (aij)’ B = (b,.) = MnR

iJ
A+ B := (aij + bij)

ments of the ordered ringoid {R,+,-,<}

1)

The relation < is defined by
a<b: <& (a<bnatith)
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A+ B :=( ; a.,; « b, ) 2)
’ je1 ij jk
and the order relation
A<B:& (aij < bij for i,j = 1(1)n) ,

(MnR,+,-,§} is an ordered ringoid with the special
elements
-e 0 0

-E = -€

-e 0

Let further VnR be the set of n-tuples over an

ordered ringoid {R,+,-,§} with the usual inner

operation +
(ai + bi)’ a = (ai} and b = (bi),1=1(l)n
and the order relation

agb <= (a1

a+ b=

< b.
=7

Additionally we can define an outer operation « :
MRV R => v R by

(a'ij)’ b = (bJ) >

1,3=1{1)n .
To be able to describe the properties of these ope-
rations we need the following

Definition 2: Let {R,+,-,2} be an ordered ringoid
with the special elements {-e,o0,e) {v, <}

ordered set with a commutative binary operation +

and an

and the neutral element o . V is called an "ordered
vectoid over R " (or an "ordered R-vectoid"), if
DRV =V is
defined so that the following properties hold:

won, /N /\ G- o -

additionally an outer operation -

OAD s a=og).
asR aes V
(VD2) //\\ € s a=qa.
ae V
03) /N /N\(-e)-(a - a) = ((-¢) 2) - a -
aeR aeV
=a-((-e)+a) .
(VD4) (-e) < (a+b)=(-e)ea+(-e)+b
a,be y
(ovi) (agb=>a+ccb+q)
a,b,ceV
2) e define o a4 .- ‘ ,
e define I a, := (...((a1 +a,) + a3)..) ta,
i=1

and determine the multiplication to be carried
out before the addition. Furthermore we shall use
ab

a+band equivalently.




S R =S _—
(0V2) //\\ (a sb=> (-e)+b < (-e)ra).
a,beV N
(0V3)/\ /\ (o<canmnoc<a <b=»a-ac<a-b).
aeR a,b=V - - .

Theorem 1: With =he above defined order relation <
and the described operations, VnR is an ordered
MnR-vectoid {VnR,MnR, <} and therefore also a R-

vectoid.

Proof: Obviously VnR fulfills the assumptions
with the element o = (Oi)" 0, =0 i=1(1)n.
properties (VD1) and (VD2) follow immediately from
the definition of the outer operation and from (D3),

(D4). Let now be A = (aij) = MnR, a = (ai), b =(b1)

for The

and ¢ = (cy) =V R . Then we get:
(VD3): (<E) * (A + a) = )
N~ N
e o | 55 ) O Eeyey
0 n n
-e jzl anj-aJ (-e)-jzlanj-aJ
n N n
(1) Cortagyrey) [ (erag )
(D;c) : (ng) ' :
n . n _
PAGDNCRER) AL
¢ [] 3
&y ey
T = ((-6)A)ea = A+((-E) - @)
(D5b)
n
szl anj'(('e)'aj),
(VD4): (-E)=(a + b) = ((-e) « (a; + b)) =
(D5c)
= ((-e)va; + (-e)eb;) = (~E)ea + (<E)+b
(0V1): a < b = a, <b, =
: i=l()n ' 7 7 (o01)
1:1(1)na1 tcy s bi tc; =a+cbte
(0V2): a< b=> | a; $hy =
- i=l()n ' 7 T(od2)
(-e)+b; 2 (-e)ra; = (-E)*b g (-E) +a
i=1(1)n -
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(0V3):

A
isY

A
o

A0 < a.< by) => //\\ ;50 S, b, =
3= 9%003) 1,j=1(1)n I I 3 Jon1)
n n
= \ £ a,.ta. < I a,.b.,) =
i=l(l)n g=1 I Ty N
=>AcacA-b. 0O
In an ordered set {M, <} an isotone (resp. antitone)
operator T : M —=> M 1is defined by the property-
(a gb = Tag Th)
a,be M
(resp. //\\ (a <b = Ta >Tb) . As an immediate
a,beM

consequence of Theorem 1 and the property

/\ (agbAnc>o0o=arcibrcAcragcb),
a,b,c=PR - .
which holds for linearly ordered ringoids (see [31]),

we get the

Corollary: Let {VnR,MnR, <} be the ordered MR-
vectoid over the linearly ordered ringoid {R,+,+,s}
and the operator T: V R —> V R defined by

Tx := A+x+ b, A e MnR’ be VnR ,

with A >0 (resp. A< 0). Then T 1is an isotone

(resp. antitone) operator. O

Furthermore,for isotone (resp. antitone) matrix ope-
rators we next show the following

Theorem 2: Let {R,+,+,<} be a linearly ordered
ringoid with the special elements {-e,o,e} . Then,
an element Ae MR with A VnR - VnR is iso-

tone (resp. antitone),iff A > 0 (resp. A < 0).

Proof: The first part of Theorem 2 is the statement
of the above Corollary, if we choose b =0. Conver-
sely, we assume, that A = (ajj) is not non-negative.
Then there exists at least one negative entry a7

and b = (b.)

of A . Now we choose the vectors a =o¢ i

with by =e and b, =0 for if1
Aca=0, (A- b)k =apce =g, <o, ie.
A+cafA-b with a < b, Therefore A
tone,which completes the proof. 0O

and obtain

ist not iso-




3. Cycles in ordered sets

The numerical computaticn of an iterative method pro-
duces a sequence,in which beginning with a certain in-
dex a finite number of different elements repeat
periodically. We precise this fact in the following

Definition 3: Let M be a non empty set. A sequence

{xn} in M is called "cyclically ending", if the
property (Z) holds:
(2) (nzng =>x = x)

umoew neiN

The number m := min{u=IN| (Z)} s called the
length of the cycle" and the set {x, ,xno+1,...,

0
xno+m—1} is called "cycle of length m" (see [11]).
An iterative method

(IT) Xppl = ¢(xn) s Xy = My, n=o0,1,2,... ,
M—> M

“cyclically ending in the cycle Z(x,), if the se-
{xn} is cyclically ending. o

generated by an operator ¢ : is called

quence

In ordered sets we get for a sequence produced by
an iterative method the following for the further
investigations fundamental result:

Theorem 3: Let {M,<} be an ordered set and
$ : M—-> M an isotone operator. The sequence {xn}
of jterates produced by ¢ be cyclically ending in

a cycle of length m . Then,

(xj 2 x5 = m'!i-jl) .
i,jeN

Proof: Let {21,22,...,15} be the cycle produced

by (IT). First we show,that all cycle elements are
incomparable:
Since ¢ is isotone,

Assume 2, < Zp4 with d >o .
sd
< ¢z, =12

= d 2d
we have Zpyq = W92, <0 z, <

<z,

r®

i.e. z a contradiction.

r

If the sequence {xn} ends cyclically, there exists

a relN with ¢"(x;), ¢r(xj) =Z(x,) . The assump-
tion X; £ xj leads to ¢rx1 < ¢”xj and therefore
to ¢rx1 = ¢rxj . Moreover, we get with 1 := j-1

1 (x;) = 81 (o) = ¢z,

Z = 07y = 07(xpy) = i

which completes the proof. o

The assumption of Theorem 3 the sequence of iterates
being cyclically ending means no restriction for our
purposes, since the set of numkters representable on
a computer is finite.

Concerning Theorem 3 we still give two
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Remarks: 1. If two consecutive iterates are comparab-

le, we get a cycle of length 1. Especially, in linear-

ly ordered sets we always obtain this result.
2. /\(x; sy £x; = 2y) = 2x,)) -
yEM

For antitone operators we derive from Theorem 3

the following

Corollary: Let {M, <}
¢ : M => M an antitone operator. The sequence

{xn} of iterates produced by ¢ be cyclically
Then we have

be an ordered set and

ending in a cycle of length m .

=

((xing/\2||i-i|) = n| [i-4l) .

i,jeN
The assumption of comparability of iterates with even-
numbered difference of :indices & fulfilled especially
for generalized alternating sequences, i.e. for
sequences with the property

/NG 8y ) € %y 2 MaX (X3 2%1.4q)
ieiN S
resp.

Min(Xisgo*isad) € % T MaX(Xi,q0%542q)

ielN
with de IN .

4. Applications to iterative methods

First we consider iterative methods, where Theorem 3
and the corresponding corollary lead immediately to
results concerning cycles. So, let be {R,+,,<} a

Tinearly ordered ringoid with the special elements

{-e,0,e} . We express the element A = (aij) = MR
as the matrix sum A= L + D+ R with

0 ... 0 aj; .

a 0
L= _21 D= )

0

a1 an,n-l 0 3

° 4 1
R = = MnR

. n-1,n
0 veiiven .0

Now we can formulate the following well-known itera-
tive methods in
x(o), be VnR :

(a) x4 20 g,

VnR with arbitrary elements

total-step method




(b) x(k+1) = Lx(k+1) + {(D+ R)x(k) +b}, single-step
method
(o) ) 2R e = w)E + w(D + R) 1K) S

+

we+b)}, weR, k=0,1,2,... . successive
relaxation method
By reason of monotony properties of the operators
A,L,D,R,we are atle to verify the isotony resp. anti-
tony of the operators defined by (a), (b) and (c):

Theorem 4: Let {R,+,+,<} be a linearly ordered

ringoid with the special elements {-e,o,e}. Then,

1. If A: VnR - VnR is an isotone resp. antitone
matrix, then the operator defined by (a) is also
isotone resp. antitone.

2. If L is an isotone and D + R an isotone (resp.
antitone) matrix, then the operator defined by (b)
is isotone (resp. antitone).

3, If L is an isotone and D + R an isotone (resp.
antitone) matrix, then the operator defined by (c)
is isotone for o < w < e (resp. antitone for

w > e},

Proof: 1. This is the statement of the corollary of
Theorem 2.

2. With L and D + R qsotone follows for the ope-
rator Tx = L(Tx) + (D + R)x + b:

(#) x sy => (D + R)x+b< (D+R)y+ band there-
fore (Tx)1 < (Ty)

. . Now suppose

() /N (T0, < (Ty)y
i=1(1)k <n

Then follows from (%) and L isotone :
(L(TX))k+1 : (L(T!/))k+1

and with (%)

(Tx)k+1 < (Tg)k+1 , i.e. T 1is isotone.

The proof of the second assertion turns out ana-
logously.

3. In a linearly ordered ringoid we have the proper-

ty a-a=o0.
aeR

Hence, we get

o<wse= -~e<-ws0=> 0o=e-ese-wge,
(on2) (0D1) = =

Now it is clear, that wl , w(D + R), (e - w)E ,

(e - w)E+ w(D+ R) are isotone operators, if L
and D+ R are isotone, and therefore 3. is reduced
to 2.

Similarly, we verify the second assertion by applying

esw=> -ug-e =D e-wie-e=0. 0
(0D2) (0D1)

The operators considered in Theorem 4 fulfill the
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assumptions of monotony in Theorem 3 and the corres-
ponding corollary, i.e. we are able to determine the
cycle length of the iteration sequences generated by
the methods (a), (b) and (c), if comparable iterates
occur. Consequently, the problem consists in star-
ting the iteration with an element x(o), such that
comparable iterates are produced with indices as small
as possible. Because of this difficulty we will con-
sider the question, whether the assumption of the
comparability can be avoided for certain operators.
To this, we generalize the concept of the weakly
cyclic matrices of index k to vector functions by

Definition 4: Let {R,+,+,¢} be a linearly ordered
ringoid. A vector function F = (fi): B S.VnR -€>VnR
is called "weakly cyclic of index k" , if the set

N := {1,2,...,n} s partitgoned into k djsjoint
subsets Nl""’Nk with g,) Ni = N and the follow-

ing property is valid: i=1

/\ /\\ f'l = f](xN ) } with

i=1(1)k  1=N, P(4)

Xy = {x.]je Ni} , where P is a cyclicpermutation
of' {1,2,...,k} . If P is a permutation of
{1,2,...,k} partitioned into r cyclic permutations
of ki‘ i = 1(1)r, elements, the vector function F
is called ”(kl,kz,...,kr)-weak1y cyclic of index k"

Theorem 5: Let {R, <} be an ordered set, F = (fi):
VnR - VnR a weakly cyclic vector function of in-

dex k . Further IS and AN be disjoint subsets of
{1,...,k} with ISUAN = {1,...,k} and
\ f, isotone and ; f, antitone.
ie IS TeNi i=AN 1EN1.
Then, Fk: VnR - VnR is an isotone operator, if

#AN is even, and an antitone operator, if #AN s
odd.

Proof: By means of the definition of the weakly
cyclic vector function we get by k applications of
F to an element a eanR

k-1
Fa) = (1 (f

ERURANICI

Therefore, Fk is isotone, if #AN 1is even, and anti-
tone, if HAN s odd. O

In the next theorem we extend the results of Theorem

5 to (kl,...pkr)-weak1y cyclic vector functions of
index k .
Theorem 6: Let {R, ¢} be an ordered set, F = (f.):

i




VnR - VnR a (kl,...
tion of index k and p :=
Let further IS

skr)-weakly cyclic vector func-
’kr)‘
and AN be disjoint subsets of

2 es.c.m. (kqs-e-

{1,2,...,k} with ISUAN = {1,2,...,k} and
f] isotone and \ f] antitone.
ielsS 1EN1 jeAN 1EN1
Then, FPois an isotone operator.
Proof: We consider the partitioning of F into the

r weakly cyclic vector functions Fi of index ki’
i=1(1)r. Applying Theorem 5,the Zki-fo]d apptication
of Fs
(2k1,...,2kr)-fold application of F 1is isotone, which
yields immediately the statement. o

is isotone in any case. Therefore the s.c.m.

To give an idea of the magnitude of the number 1
in Theorem 6, we give an estimation in the following

Corollary: Let be given the assumptions of Theorem 6.

Then FP s isotone with

k
53 k =0 mod 3
% -1
p ¢ 2+g(k) and g(k)=<4+3 k =1 mod 3
k
[=]
2+3 3 k =2 mod 3

Proof: The first part of the statement follows from

Theorem 5 applied to the r weakly cyclic vector

functions F; of index ki, T = 1{1)r. It is
MMax S mix 2 'S‘C"m'(kl’kZ""’kr)
T K; =k, r<k
. 1 =
i=1
and hence,
r
m < 2 - max I ks » rsk
Max = r i=1 =
T oki o=k
iz

For the determination of that additive partitioning

kl,...,kr of k , for which the product T k;

becomes maximal, the following considerationsi=l are
possible.
let be k = k1 + k2, kyk

EIN . Then,

1°k7
Ky + ky <kpeky o 1f k23 and ky 3

Vv
[a%]

Hence, we get the estimation

5 k=t ky s kpeky = (kyy+kpp)k,

2 =

kiivky, ok

A
A

11 "2 "2

The product on the right side of this inequality in-
creases, if k 1is further partitioned in terms not-

Tess 2. So we get a sum of the numbers ? and 3.
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Since 2+2+2=6=3+3 and 2°< 3%, e get
the maximal product by a partition into the numbers
2 and 3, where the number 2 does not occur more

g(x)

than twice. Now expression follows immedia-

tely. o

For k = 5(1)12 the function assumes the

following values:

K " 5 | 6 l 7 | 8 | 9 | 10 l 11 ' 12

g(k)

g(k)"lz I 18 l 24 ’ 3 I 54 l 72 | 108 I 162

The results of Theorem 5 and Theorem 6 resp. of the
corresponding Corollary are now applied to matrices

Theorem 7: Let {R,+,*,<} be a linearly ordered rim-
goid and A=(a1j%EMnR a weakly cyclic matrix of in-

. With #AN = #{aij!aij < o} hold
1. If the iterative method defined by (a) is cycli-

dex n

cally ending, then the cycle length m divides

n resp. 2n for #AN even resp. H#AN odd.

2. If A is given in normal form and the iterative
method (b) is cyclically ending, then the cycle

has length 1 resp. 2 for #AN even resp. HAN
odd.
Proof: 1. From Theorem 5 follows, that T" with
Tx := Ax + b is an isotone operator for # AN even

odd, i.e. the
are isotone resp. antitone.

resp. an antitone opevator for #AN
component functions of T"
Therefore, the component sequences of the iterates
x(0) 4(n) ,(2n) resp.  x(0) x(21) y(4n)

monotone. The application of Theorem 3 gives the

are

desired result.

2. Itis
0 ) o a,
ay 0 0
L= a s D+ R =
2
0 . 0
an—l 0 0
and therefore,
anxn + b1
?l(anxn + bl) + b2
Tx = |. =
n_l(an_z(...al(anxn + bl) + b2)+ ) +bn




Analogously, we get

fx = (e (x)))s T

T"x =
(£, (th(x)))s. .« Since

3 k+1

x = (ti(ti(xn))),..., TR -

‘Ry+,+,<) is a lirearly

ordered ringoid, we have x gt x  resp. x 2 X
Hence, t, isotone yields
k-1 k k-1 k e
to Xy € tx, respe o Ty ;Ztnxn It 1;
antitone,we obtain from Xg € tnxn resp. X, 2 tnxn
. ) 2(k-1) 2k
the inequality tn X < tn X, resp.

tﬁ(k-l)xn > tﬁkxn . By Theorem 3 the sequence in each
component i, i=1(1)n, has the cycle length 1, if the
operator t, is isotone, and the cycle length 1 or 2,
if tn is antitone. By the definition of tn it is

clear, that for #AN even resp. odd tn is isotone

resp. antitone. O

Remark: Theorem & gives us the hint that the deter-
mination of cycles is not only possible for weakly
cyclic matrices. We consider a matrix A which has
only one entry not equal o in each row and in each
column. Then, by similar considerations the iterative
method

m|2 *s.c.m. (nly..

(2) generates a cycle of length m with
.nr), where n,, i = 1(1)r are the
numbers of elements in the r cyclic submatrices of
A . In the following table we give for some values

of n the greatest attainable cycle length m

Max °’
the corresponding partition of n and the estimation

me computed by g(n) {see Corollary of Theorem 6).

n Myax partition of n mg
2 2

3 3

4 4

5 12 2,3 12
6 12 6 18
7 24 3,4 24
8 30 3,5 36
9 40 4,5 54
10 60 2,3,5 72
11 60 1,2,3,5, 108
12 120 3,4,5 162

After we have proved results concerning cycles
produced by iterative methods for the solution of
systems of equations, we finally want to include

a theorem concerning iterative methods for the de-
termination of zeros of real functions.

Theorem 8: Let {R,N,+,+,/<}be a linearly ordered
division ringoid with the special elements {-e,o0,e}

and f,g: R = R mappings, where f 1is isotone
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(resp. antitone) and g is antitone (resp. isotone)
in JS R

more,assume that the operator defined by Tx :=

and g > o (resp. g <o) in J . Further-
x - f(x)/g(x), g{x)& N , generates a sequence

{x,} =9 , starting with x, € J . Then, if the
sequence {xn} is cyclically ending, the cycle
length may be 1 or 2 .

Proof:
sequence {x } with s > 2. Since {R, ¢} s

Let {zl,...,zs} be the cycle of the

linearly ordered, with a permutation P we can
write

Zp(1) < Fp(2y <t S PR(s)
From f isotone and g antitone and g > 0 we
obtain

f(zp(l)) < ftzP(Z)) <L < f(zp(s))
and > 0>

g(zp(l)) > Q(ZP(Z))

With the property

(asbnczo= a/c<b/c),
a,b,ceR N

which is an immediate consequence of (0D4), we get

Fzp(1))/0lzp(1)) < oo < Flzp(s))/alzp(e))-

With (0D1) and (0D2) we have
Zp(1yF(2p(1))/9(2p(1))>- - >2p(5))-F(2p 9/ 8(Zp )
and therefore ,

ya =

P(s) = T Zp(1)

Zp(1)y =T zp(1) °

i.e. {ZP(I)’ZP(s)} forms a cycle of length 2, in
contradiction to tne assumption. The other case is
proved analogously. 0




5. Numerical ex mples

Let = {xe R[[x| < s} be a bounded subset of

the real number field. Then, a finite symmetr1c sub-
set RM of IR with the property -s, s\—R is a
(see [ 41]).

{R forms a completely, linearly ordered ringoid

symmetr1c screen of ﬂR <} Furthermore,

by us1ng the real arithmetic. With a monotone, anti-
symmetric rounding
O:R=> R, ,

~

i.e. an isotone,idempotent mapping from R to IRM

with the property
-Da )

and the inner operations [ definad by

/\A al®@b :=O(a % b),

a,bElRM

‘*E{+"} s
@M forms a completely,linearly ordered ringoid
IRy, @ , 4, <} (see [31).
tions we obtain a completely,linearly ordered divi-
sion ringoid Ry, {0}, @, &1, I, g}

Thus, {IRM, E,0,
and {VIRM,MIR <}
theorems proved in the precedent sections.

By analogous considera-

sb resp. {Ry.{c}, &,
fulfill the assumptions of the

Now we replace ﬁM by the set R m.b of the norma-
lized floating-point numbers !Rm b

x=R|x = #0.dyd,...d_ 55, xsit,-} ,
dye{o,l,...,b-1}, i = I(1)m, dy # o,

Cnin £ € S €pays €€ Zh J{o} Awitzh mbe N, b > 2.
Then, the set R s given by R :=

{(x=R[|x| < o0.ddy...d -bemaX,di = b-1, i=1(1)m} .
Furthermore, we apply the frequently used monotone,

antisymmetric rounding

Vaifa<(Va+Aa)/2 ora = (Va+Aa)/2A

Da := aso
tAa if a>(Va+Aa)/2 ora = (Va+Aa)/2A

a>o

{rounding to the nearest number of Iﬁm b)’ where ¥/
E]

and A\ mean the uniquely defined monotone, directed

roundings, ([ 51).

The examples 2. and 4. has been performed on the
digital computer EL X8 of the Computer Center of
the University of Karlsruhe. Note, that the decimal
numbers of 'ﬁlz,lo used for the representation of

the operators and cycles have been generated by

conversion of binary numbers of I§40 2 We cannot
expect, that the described operators produce the
same cycles by computation in IR12 1o

L,
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Examples:

l. Let ber =2, b =10, m= 2. The operator
¢ -0.78 1.2
Tx = EXEE] ’
0.93 0 0.75

generates & Sequence {x(")} by x(n+1) 1=

(n) (0) & 0 : ;
T\ x VfRZ,lo' For different starting vectors

x(0) the sequence is ending in different cycles:

- ~

- ~ -

(0.26) fo.26) 0.43 0.43
Z]_:‘ s H s ’
1.2 | 0.99) |o0.99) [1.2
\ P
(0.34 (0.26 (0.34)  (0.43
ZZ=< ] ] L] 7
1.2 1.1 | 10.99) 1.1 J
(0.34]
Zy = 4
1.1

-

According to Theorem 7(1) wegetamaximal cycle length
4 and by Theorem 7 (2) the single-step method is

ending in a cycle of length 1 or 2:
I'd

J 0.26

bl
[ 0.99 1.2

0.43
23 and 24

Applying the monotone rounding towards zero we get

beginning with x(o) = (0.26,1.2)T the cycle
0.42" 0.35 0.35 0.42
ZS= s s )
1.1 1.1 l.0 l.o

and applying the monotone rounding away from zero we

get beginning with x<°) =(o.27,1.2)T the cycle

N\

)
0.26 0.34 0.42 0.34) L

and the cycle Z7 =

We illustrate the cycles Zy to 27 graphically:




X2 with a3y = -0.7551928744688 bl = 0.6305774756001
1.2 a, = 0.1032844094188 b2 = 0.5755482108107
ag = 0.6376119369179 b3 = 0.2650770197379
ay = 0.4747402850753 b4 = 0.11%90302626437
ag = 0.8622977826562 b5 = ~0,03283479505717
L1t With the elements
X] = 0.1459944151620 ¥y = 0.1459944151626
Xy = 0.5906271577596 ¥y = 0.5906271577587
X3 = 0.6416679457934 Y3 = 0.6416679457925
l.ot X4 = 0.07339623131165 ¥y = 0.07339623131184
0.99] Xg = -0.09612420257263 y = -0.09612420257272
:
- ; . —t > we can describe the generated cycle in the following
0.26 0.34 0.42 0.43 Xq way:

~ N 1 s 3 I3 - < >
X %] ) Y] Yl g || (X (e

2. Another example of Theorem 7 (1) is given by X

X % Yy y X X
the operator 2 2 2 2 2 2 2| [Y2 Pa)|re
X3:X3s}/3a)/3 ’Y3‘X33X,3 3X3’y3sy3 s
0 0 -0.6638554373967 | Xa| (Yai |Ya| [*a] Xa| Ya| Yal |%4] [*a] (Yo
Tx:= |-0.6686745454153 0 0 mxm s Us) Vsl V) Bs) ) Vsl s s X5
0 -0.6795139955248 0 )
4.235750979760 X5 x5
| -2.577679425907 VEIE X3
o.7134761463822j Y4 Xy
~ V's Vs
in V3R13’10, which produces e.g. the following cycle
’ ( References:

( N
1.996957891017 1.996957891017 1.99695789102 ; .
° oco [1] COLLATZ, L.: Funktionalanalysis und numerische

-3.9129943358971,|-3.912994335897(,/-3.912994335897 5 Mathematik, Springer Ver‘]ag’ Berlin 1964
L3.372410562035 L3.372410562031 | 3.372410562031 [2] KLATTE, R.: Zyklisches Enden bei Iterationsver-

fahren. Dr.-Dissertation, Universitdt Karlsruhe,

) < - 1975
(1.996957891020) { 1.996957891020] [ 1.996957891017 .
[3] KULISCH, U.: Rounding Invariant Structures.

-3.912994335900{ 3.9129943359001| [-3.9129943359%00 Mathematics Research Center, University of Wis-
[ 3.372410562031) | 3.372410562035] | 3.372410562035 | consin, Technical Summary Report # 1103,

September 1970, 1-47

3 [4] KULISCH, U.: An Axiomatic Approach to Rounded
1.996957891017 Computations. Numerische Mathematik 18, 1-17
-3.912994335897| ,... . (1971)
| 3.372410562035 [5] KULISCH, U.: Implementation and Formalization of

floating-point arithmetic. To appear in
Computing

3. Finally, we give an operator in V ﬁ , which [61 ULLRICH, Chr.: Rundungsinvariante Strukturen mit
. 5740,2 duBeren Verkniipfungen, Ur.-Dissertation , Uni-
generates according to the remark of Theorem 7 a versitat Karlsruhe™, 1972
cycle of maximum length 12: [71 VARGA, R.: Matrix Iterative Analysis, Prentice
Hall, Inc., Englewood C1iffs, New Jersey 1962
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