A UNIFIED NUMERIC DATA TYPE IN PASCAL

Peter Kornerup
Department of Computer Science*

University

of Aarhus

Denmark

Abstract

It is proposed to substitute the standard
data type real of a high level language, with
a unified data representation which can in-
clude a variety of interpretations as well
as formats, in order to allow experiments
with an environment containing a spectrum
of non-standard arithmetics, as well as stan-
dard.

The implementation of a system is des-
cribed where syntatic extensions to a language
are made to support a microprogrammed virtual
arithmetic unit which can treat variants such
as integers, normalized, and unnormalized
floating point numbers and intervals, within
a unified representation.*#

More specifically Pascal is chosen as the
base language, because it allows the user to
define new data types, and the extension then
mainly consists in substituting the simple
(unstructured) data type real with a skeletal
structured type (which will be called numer-
ic).

The system is intended to be implemented
on a microprogrammable processor (called
MATHILDA) with a 64 bit wide datapath. The
language Pascal has already been partially
implemented based on a stack machine specifi-
cally designed for that language, and realized
by interpretation in microcode. The present
compiler was constructed with the aid of a
parser-generator system, which will allow the
language extensions to be made with a moder-
ate effort.

Introduction: Number Representation
And Arithmetic Operators

The available number representations in
a computer, or rather the interpretations of
bit strings upon which arithmetic operations
are based, are usually restricted to integers
and normalized floating point numbers. The
latter may typically exist in single and
double precision representations. A few high
level language systems exist where this sel-
ection has been extended. Normally such
systems have been realized by preprocessing
and/or compiling extended high level 1lan-
guages into the fixed host machine language.
The interpretation of non-standard number
representations 1s then performed by opera-
tors as in-line code or subroutines. Such

*Currently at University of Southwestern Lou-
isiana.
**The work on the arithmetic unit is being
supported by NATO Grant 755.
#%**The construction of MATHILDA has been sup-
ported by the Danish Research Council,
Grant No. 1546-511.

40

systems have been characterized by the fact
that only a single new number representation
has been added (say interval arithmetic,
rational arithmetic or the like), the inter-
pretation of which could be implemented in a
straightforward way in machine language code
of the host machine. A few systems have been
reported where non-standard operand represen-
tations Qﬁve been realized in a host

machlne *“ other experimental systems have
been reported which rely on an extensive soft-
ware interpretation in standard machine lang-
uage which made their use in practical
applications prohibitive

An ideal system would provide the user
with capabilities of defining the number
representations as well as the operators, as
syntactic and semantic extensions to a suit-
able base language. But this total generality
as provided in extensible languages like Algol
68, can mostly on.y be cof an academic inter-
est. This is first of all due to the fact
that the extensions have to be expressed in
the base language and then compiled to or
interpreted in the host machine language.
Since realization of an arlthmetlc ,.which is
not readily implementable by means of number
representations or_operations. of the host
macthEZM?Lqulres a great deal of field
and manipulations, then such
re bound to be hopelessly

ifméTficient.

This paper presents a compromise to the
above mentioned complete generality. It is
based on a quite limited language extensibi-
lity (within a class of number representations
and interpretations) in combination with a
generalized arithmetic unit (realized in
microcode to achieve efficiency).

. The language Pascal’ has been chosen as
a base for the language extensions, because
of its facilities for type definitions, which
allows the user to define new data types out
of existing ones. The extension necessary
then mainly consists in providing a skeleton
of a new (structured) arithmetic data type.

It is the author's opinion that oper-
ators in a high lsvel language should be
polymorphic, and that implicit type conver-
sions should take place automatically
according to well defined rules. There is,
and will probably forever be, a standing
debate about these questions; presumably this
is a matter of taste. Personally, this opin-
ion is based on the achieved natural short-
hand notation, and the fact that it is
possible to control the numeric behavior of an
algorithm, by means of explicit conversions,
when necessary.

2. .
Language Extensions And
The Numeric Data Type

In this section proposals for extensions
to the language Pascal will be given, together
with a brief description of the supporting
arithmetic unit called UNRAU (Unified Numeric
Representation Arithmetic Unit). The emphasis
will be on the language point of view, and the
UNRAU will be describted in more detail in an-
other paper.

2.1
The Interpretation of the Proposed
Number Representation

The arithmetic unit operates on operands
represented as 5-tuples (t,a,e,f,r). The
(e,f,r} triple may be interpreted in four
different ways, which are described in the
table below:

Name of
representation
(qualifier)

Interpretation of (e,f,r) in
the representation

the value represented is f,
where the f-field is inter-
preted as a sign-magnitude

integer, the e and r fields
are not used.

ifixed:

normalized: the value represented is f *
2¢, where f and e fields are
interpreted as sign-magni-
tude integers. The f-field
is assumed to be normalized,
i.e., the most significant
bit of the f-magnitude fields
is a 1 if the field is non-
zero. The r-field is not
used.

unnormalized: the value represented is f *
2%, where the interpretation
is the same as for normalized
numerics. The f-field is not
normalized, and the least
significant bit of f is con-
sidered as being the last
""correct" bit. The r-field
is not used.

the "value" represented is
the interval [f-r, f+r] * Ze,
where e and f are sign-mag-
nitude integers, and r is the
magnitude of the unsigned
integer value of the r-field.
The f-field is not normal-

ized.

Within each of these four interpretations a
non-representable (augmented) form may be in-
troduced as the result of an arithmetic oper-
ation, or whenever a mapping into the finite
representation is impossible. The a-field
provides an escape bit for such augmented
forms. TIf the a-field has the value '"normal"
indicating a representable number, then the
interpretation of the (e,f,r) triple will be
as described above. But whenever the a-field
indicates that a non-representable value has
been introduced, the (e,f,r) triple will be
interpreted as one field '"nrv" which can
assume the following values:

41

negmax, negmin, posmin, posmax, undef

Within the four different representations
these values may be interpreted in the
following way:

qualifier | fixed normalized §
nrv unnormalized §
centered
negmax too large neg. |[too large neg.
value value(exp. over-.
flow)
negmin not applicable |too small neg.
value (exp. under
lflow)
posmin not applicable |too small pos.
value (exp. under
flow)
posmax too large pos. |too large pos.
value value (exp.over-
flow)
undef undefined value|undefined value

The first field in the 5-tuple (t,a,e,f,r) is
a tag-field which provides a pointer to a
descriptor containing information about the
representation:

qualifier data about (e,f,r)

descriptor
1

t a e f T

number representation tuple

The descriptor thus contains the qualifier
specifying which of the four interpretations
is to be used, and furthermore it contains
data about the positions and sizes of the e,f,
r-fields. This data will be referred to as
the "format information".

2.2

The Numeric Data Type

Definition Added To Pascal

The new data type is to be included in
the language Pascal in such a way that the
syntax of algorithms, and specially that of
expressions, can be kept as close as possible
to the usual. The main extensions will be to
the type definitions and variable declara-
tions. A new skeletal (structured) data type
called numeric will substitute the standard
(scalar) data type real. Furtherfore an
extension is made by including a type conver-
sion operator '"¥", and finally a syntax of
litterals (data constants) is added.

In the following type definitions and
variable declarations are described in terms
of Pascal itself. An implementation may not
follow exactly this description, since part
of the implementation will be realized by the
compiler (static information) and part of it
will be realized in the arithmetic unit (dyna-
mic information). A proposal for the handling

of descriptors with this separation will be
given in section3-

It is assumed that the following declar-
ations and type definitions are provided by
the system globally to form a foundation of
the data type definition facility:

A class-declaration:
descriptor:

class of
record
qual qualifier;
exs 0..N; (size of exponent field)
frs 0..M; (size of fraction field)
ras 0..K; (size of radius field)
end

where N, M and K are implementation dependent
non-negative constants, possibly N+M+K is
restricted by some upper bound W (by wordsize
and other fields). In the following it will
be assumed that the base of the arithmetic is
2, and that specification of field sizes will
be given as numbers of bits.

Furthermore the following three scalar
type definitions are provided system-globally:

type qualifier (fixed, normalized,
unnormalized, centered);

type non _representable values (negmax,

negmin, posmin, posmax,

undef);

(pos, neg);

type sign

A numeric data type may then be intro-
duced in a program with a type definition:

type<identifier>=numeric<list>of<qualifier>

where <qualifier> has to be substituted by a
constant of type qualifier and <list> by a
list of three integer constant which lie with-
in the ranges specified in the global class
descriptor.

The type definition:

<identifier>=numeric n,m,k of q

type:
is considered equivalent to the definition:
type:

record
tag:tdescriptor;

identifier

(comment:
er to'')
case a:(normal, augmented) of
normal: (e:record s: sign; val:
end;

sign; val:
end; k

val: 0..(27-1) end);
non_representable values);

"M means '"point-

0..2" 1
f:

record s: O..(Zm-1~1)

record

“(nrv:

T:
augmented:
end.

This type-definition is equivalent to a
recora-gefinition, which allows the user to
have access to the fields of the numeric.
Simultaneously the definition involves an
allocation of an element of the class descrip-
tor, and an initialization of the descriptor
according to the parameters of the type-
definition.

42

One difference is that the user can
only read the tag field and the descriptor
pointed to, but not to redefine these. This
is caused by the fact that the descriptor has
to be protected, and is "hidden'" in the firm-
ware.

Variables may now be declared in the
standard Pascal syntax. They are system
initialized at declaration time with the
non-representable value 'undef'".

Example 1

In this example we will show how a data
type may be defined, and how variables of the
data type may be declared. As the data type
has been chosen a standard floating point
representations, which will be identified by
the name real:

type real

The allocation and initialization of the
corresponding descriptor corresponds to the
execution of the following piece of code
(including the declaration of an anonymous
variable to hold the pointer to the descrip-
tor):

numeric 8, 32, 0 of normalized;

var real tag: t descriptor;
@lloc (real tag); (allocates a descriptor
- and assigns to real tag
a pointer to the descrip-

tor)
real tag t. qual:=normalized;
real tag t. exs:=8;
real tag +. frs:=32;
real tag +. ras:=0;

This initialization is of course performed
automatically. In this description it is
assumed that it takes place at run-time, but
it may be performed at compile-time (see sec-
tion 3.1).

Now the declaration of a variable can
take place, this is expressed as:

var X real;

The system will then allocate space for x (on
the run-time stack) and perform an initiali-
zation of x, corresponding to the execution
of the following code:

x.tag:=real tag; (initializes the tag-field

- with pointer to descrip-
tor)

(initializes the value of x

to be "undefined')

Since we have not yet introduced syntax and
semantics of expressions and litterals, we
will instead demonstrate some of the non-
standard access-facilities which has become
possible in a system like this.

x.a:=augmented;
x.nrv:=undef;

If the user wants to change the value
of x into abs(x) he may write this as:

X.t.s pos;

which, irrespective of its previous value,
sets the sign of the fraction to be positive.
Similarly the predicate:

X.e.s = neg

11 be true if the sign of the exponent is
pegative. Of course this has only a meaning
.f x has a representable value, which may be
ested by the predicate:

X.a = normal.

If this predicate has the value false
= x.a = augmented) then the predicate:
x.nrv in [negmax, posmax]

in [] means set membership) will tell
hether an overflow situaticn has occurred in
he algorithm leading to the value of x.

Finally since the tag-field provides a
ointer to the descriptor of x, it is pos-
ible to get access to information on the
ype of x. Thus:

x.tag +.qual
ill give the qualifier of x.

2.3
Explicit Type Conversions

To control the numeric behavior of an
algorithm it might be necessary to force
explicit conversions upon expressions. This
is achieved by the introduction of an addi-
tional operator "+'" which, combined with a
numeric data type, forces a conversion into
a value of the <type> specified:

<type> ¥ <expression>

irrespective of the numeric data type of
<expression> Furthermore <expression> is
allowed to be standard integers of Pascal,
and exponent, fraction and radius-fields of
. numeric data types. The operator '"4" is
assumed to have the highest priority among
operators. Unlike implicit conversions in
expressions (see section 2.5), the conversion
- which may be performed in connection with an
. assignment operator, is considered semantic-
- ally equivalent to an explicit conversion.
If, as in example 1, the variable x has been
declared to be of the type real, then the
assignment:

X := <expression>;
i1s equivalent to:

x = real v(<expression>};

.4
Bata Constants (litterals)

The usage of litterals in programming
systems for numerical algorithms, may often
require litterals to be expressed in the same
base as that of the internal representation,
to avoid base conversion errors. In the
system presented here this is not necessary
since assignments may be made (expressed as
litterals in base 10} to the individual
fields of a numeric variable. No conversion
error will be introduced because the fields
are interpreted as integers, but of course
representation errors may still occur.

If no special precautions have to be tak-
en, the above method of specifying data
constants is too clumsy, and a more natural
way of expressing a constant as a litteral is
needed.

Assuming that we express the syntax of
standard Pascal (and Algol 60) real's as:

idd.dddloidd

a similar notation is proposed for litterals
of the '"normalized" types.

This notation may then be extended to

litterals of the 'centered" type as:
idd.ddd[dd]loidd

where the integer value of the number in the
(square) brackets represents the radius, and
the remaining part of the litteral represents
the center. The position of unity in the
center when interpreting the radius, is
obtained by neglecting the decimal point.

In the case of "unnormalized'" numbers it
then seems natural to use a similar notation
(to indicate an uncertainty beyond the last
digit represented) in the following way:

+dd.ddd[}10rdd.
The empty brackets then only serves to indi-
cate the unnormalized representation of the
fraction, as opposed to the notation for
"normalized" litterals.

Finally, since a notation for the "fixed"
data type is needed which differs from that
of standard integers of Pascal, the notation:

ddddd[]
will be adopted for "fixed" litterals.

Notice that the brackets are then consis-
tently being used where @ver the fraction is
represented right-adjusted (unnormalized) in
the f-field.

The proposal syntax of litterals uniquely
determines the qualifier of the data constant
expressed, but contains no information about
the format of the internal representation.
Hence the data type of the litteral is not
uniquely determined by itself, and further
information is needed in places where a strict
type-matching is required (see section 2.7).
Explicit type conversions may then be used
to have the compiler represent the litteral
as the specified type.

If, on the other hand, the precise data
type of a litteral is of no concern the sys-
tem will provide four different global pre-
defined data types to be used by default, one
for each qualifier.

Example 2

The litteral 3.141529 will be interpreted
as a ''mormalized" constant, but its internal
representation will depend on the context in
which it is written in a program. Assuming
that the variables x and y has been declared
of the type real, as defined in Example 1,
then in the code of the statements

X = 3.141529 or in x := y*real + 3.141529

the litteral will be represented as being of
the data type real. But in the statement:

X 1= y* 3,141529

form is introduced).

normalized into unnormalized and center-
ed:

The e and f-fields are copied, the r-
field is set to zero.

From

unnormalized into fixed:

The nearest integer value is chosen
(if representable, otherwise an aug-
mented form is introduced.

From

From unnormalized into normalized:
By standard normalization.

From unnormalized into centered:

The new fractional part will be 2 * f if
possible, otherwise f; and the r-field
will be set to 1.

~ From centered into fixed or normalized:
- Gives the result of the center inter-
preted as an exact quantity.

From centered into unnormalized:

The f-field is shifted entier (log,r) +1
places to the right, the e-field“is
adjusted accordingly, and the r-field
is set to zero.

Example 4

Assume that we want to use the value of
» which has been declared real (like in
Ex. 1), as the value of the center of some
variable a which has been declared as type
nterval, this type being defined as:

type interval = numeric 8, 32, 16 of center-
ed. —

‘Furthermore we want to have the radius to
1 : 5 -6
reflect a relative accuracy in x of say 10 ~.
This can be accomplished by the following
code:
a:=x; (this assigns the value of x to the
center of a, and sets the radius to
zero, notice that this is an explicit
conversion) -6
a.r.val:=integer +(x.f. val * 10 ");

where integer is the standard integer type of
Pascal. The assignment of the center might
also be expressed as:

a.e.val:=x.e.val; a.e.s:=x.e.
a.f.val:=x.f.val; a.f.s:=x.f.

S5

S5

as the format of these fields conform, and
this copying is by definition the conversion
from "normalized'" to "centered'.

2.7
Parameter Passing and Type Checking

Pascal allows for parameters to pro-
cedures and functions to be passed as const

or as var, which corresponds to 'by vaTue"

and "by reference" respectively. Standard
Pascal requires a strict formal parameter-
actual parameter correspondence with respect
to type, the only exception is when an integer
expression is passed for a real formal const
parameter.

45

We will allow formal parameters to be spe-
cified as numeric, meaning that expressions of
any defined numeric type may be passed as the
actual parameter. The specifier numeric
may be used for those parameters for which no
further type specification is wanted,i.e. for
which the type is only restricted to be of a
numeric type, but otherwise it is equivalent
to the specification const (i.e. parameters
are passed 'by value™). But notice that any
expression passed as an actual parameter is
required to have a well defined type, and a
normal composite expression has no such type,
unless explicitly stated.

numeric data types may
‘const or as var, where
usual includes the pre-

Formal parameters of
also be specified as
the specification as

cise data type.
Example 5
Using the data types real and interval of
Ex. 1 and 4, a procedure heading might look
like:
procedure proc (numeric a; const b real;
var c interval);

meaning that for a any expression of type
real or interval may be passed, for b any
expression of type real, and for ¢ any
identifier of type interval.

Although required by the language defini-
tion, to the author's knowledge no Pascal
implementation does complete type checking,
as usual the run time check on actual pro-
cedure parameters is left out. This
proposed system can easily be implemented with
the static part of the type checking performed
by the compiler, and with the run time check
on parameters of numeric data types performed
by the arithmetic unit, since the data itself
carries type information.

The reason for allowing parameters to be
passed as numeric is that a too rigid type-
match requirement would restrict the user from
writing general purpose subroutines. If not
allowed "input' parameters would always be
restricted to specific data types. Unfor-
tunately the restriction still applies to
structures (e.g. arrays) with elements of
numeric types. The reason is that there is
no way of specifying in Pascal the structure
of a parameter, without having to specify the
type of the basic elements of structure. The
inclusion of this facility would hence require
major syntactic changes, and has therefore
been left out.

3 .
Implementation

The basic idea of this system is to
extend a given language with a few new con-
structions, whose implementation only requires
minor modifications to the compiler. This is
possible because normally the compiler does
not have to be concerned with the specific
data types within the class of numeric types.
The data itself carries type information, and
the underlying arithmetic unit deals with
the problems concerning conversions in expres-
sions.

i R B i 2

As usual, an implementation can take ad-
vantage of the possibilities of optimization
at compile time instead of run time. The
previous description of the handling of
descriptors assumed that everything took
place at run time (dynamically). 1n the
following a more realistic description will be
given assuming that a block oriented stack
machine is available, followed by a section
about an actual proposal for such an implemen-
tation.

3.1
Compile Time Handling of
Descriptors

Upon a type definition of a numeric type,
a descriptor 1s constructed using the infor-
mation from the definition. The descriptor
constructed can then be treated as a data-
constant, so that it is accessible on run
time. A tag-value then has to be associated,
and inserted in the symbol table in the entry
corresponding to the name of the type defined.
The tag-value is constructed as an offset to
a base for the procedure being compiled, in a
run time descriptor stack.

Furthermore, the tag-value is used to
construct the initial value, as a data-cons-
tant, to be used in initialization of vari-
ables later declared of that type. On
declaration of variables, space is allocated
and code for the initialization is generated.
When variables are referenced, an ordinary
(block number (bn), ordinal number (on))
addressing can be used in the load instruc-
tions. In storing, the compiler can supply
the tag-value, so that a read of the location
to get the tag will be superfluous. On exit
of a procedure a de-allocation of descriptors
has to be performed, just as the ordinary
de-allocation of local variables.

3.2
Run Time Handling

When a procedure is entered the actual
loading of descriptors onto the descriptor
stack is performed. This stack is maintained
as the ordinary run time stack, i.e. a display
may be used to provide pointers to visible
descriptor stack frames. On entry initial
values of variables are loaded into the run
time stack.

Part of load and store instructions will
be to use the bn from the (bn, on) address,
to form the (bn, tag) address for referen-
cing the descriptor.

The type conversion instruction has to
have the (bn, tag) as an argument.

3.3
A Microprogrammed Supporting
Stack Machine

The system is intended to be implemented
on a combination of two microprogrammable
procegssors, RIKKE with a 16-bit wide data
path® , and MATHILDA which has a 64-bit wide
data path® , together with a 64-bit wide
memory. A compiler for the language Pascal
has been implemented by means of a parser

46

generator system called BOBS7 , the compiler

produces code for a block structured stack
machine (called the P-code machine8). A
microprogrammed interpreter for P-code has
been written, which realizes the P-code
machine in RIKKE and the 64-bit wide store,
except for the real arithmetic of standard
Pascal. The UNRAU is then to be realized in
MATHILDA, together with the run time environ-
ment for descriptors (the descriptor stack).

RIKKE is then responsible for instruction
fetch and decoding of the P-code instructions.
Some instructions are executed in RIKKE, while
others (those concerning numeric data type
operands) are executed in MATHILDA. Further-
more, RIKKE controls the wide store which
contains the ordinary run time stack of the
P-code machine. The UNRAU and its immediate
environment (the descriptor environment) is
thus isolated as a self-contained functional
unit, operating as a stack machine.

4
Evaluation

A proposal for some language extensions to
support a non-standard arithmetic unit has
been described, which will allow an efficient
implementation intended for quite large scale
experimental numerical calculations. The
proposal is not intended to be a final answer
to "all the dreams of a numerical analyst',
but only to provide an experimental system
for a restricted set of non-standard arith-
metics, and to test a set of language fac-
ilities for the access of such arithmetics.

The language Pascal was chosen as a base
because its type definition facility provides
a tool for a certain amount of extensibility,
within a class of data representations. The
class chosen could have been quite different,
as well as other decisions about the repre-
sentations.

One of the implications of the choice of
Pascal has been that the representation of
data types (the formats) has to be known at
compile time because Pascal is a "static"
language in the sense that the storage
requirement of a procedure activation is fixed
and also that a variable never changes its
type during run time. The system proposed
could have looked quite different without
these implications from the language, in
fact because of this staticness tag fields
are unnecessary.

Another implication of Pascal concerns the
handling of augmented forms. The system
proposed leaves it up to the user at
critical points to test whether augmented
forms has been introduced. The UNRAU raises
a flag at the point where such a situation
occurs, but the language provides no fac-
ilities for dealing with such flags (no ON-
condition facility like in PL/1). Without
having to introduce such language constructs,
the only possibility left are (1) to abort
program execution, or (2) to continue oper-
ations on augmented forms. The latter
approach was chosen, in combination with the
possibility of testing for such forms,

the litteral will be represented in the de-
fault data type corresponding to the qualifier
"normalized".

2.5

The UNRAU Arithmetic Unit

Although the UNRAU is described else-
where , a brief description of it is nec-
essary to understand its interface to the
language.

The UNRAU is encapsulated in an environ-
ment where descriptor are being stored and
looked up before presentation. The UNRAU
is assumed to evaluate expressions presented
to it in reverse polish form (postfix nota-
tion), i.e., that the unit itself is a stack
machine with an internal storage in the form
of a stack. An advantage will be that inter-
mediate, results may be kept internally on
the stack in '"maximal accuracy', which means
that no format specifications are needed for
temporary results. If on the other hand the
user wishes to force such temporary results
into specific format restrictions, an ex-
plicit conversion capability will provide for
this possibility.

A few comments about the execution of
operations is given below to illustrate the
behavior of the UNRAU.

A) A load instruction decomposes the packed
number revnresentation, and then pushes
the individual fields (a,e,f,r) onto the
stack, along with a modified descriptor
containing only the qualifier. This
representation of operands will be called
the internal UNRAU representation.

B} Standard operators presented to the UNRAU
manipulate the top stack elements, pos-
sibly after initial implicit type
conversions (see section 2.6). The oper-
ators leave their results in the internal
UNRAU representation on the stack, and do
not use format information, but retains
"maximal accuracy'.

C) Conversion operators are presented along
with a complete descriptor of the data
type wanted, and converts the top element
of the stack into a representation of

the number in the data type. The result
will, although the format information is
being used during the conversion, be
delivered in the internal representation
on the stack.

D) A store instruction (for output from
unit) will push the (unpacked) top ele-
ment off the stack, perform an explicit
type conversion, pack it together, and
then finally deliver it as output from
the unit. The store instruction thus
needs a complete descriptor of the output
wanted.

Notice the difference in the treatment
of the implicit type conversions interior to
expressions, which need not be concerned with
format information, since conversion is from
internal to internal representation, and the
conversion performed in connection with

44

assignment. Notice also that the latter con-
version is dictated by the type of the
variable on the lefthand side.

Example 3

Assume that x, y, z, t, r has been
declared Tsal as in Exgﬂple 1, and that:
X y = 2 and z = 2°Y. Hence x, y and z
are representable (the maximal exponent is

127), and x * y is not representable in the

real data type, but x * y/z will be.
Hence:
t :=x *y 3t will get the "value'" posmax
r = t/z => 1 will get the 'value' undef
and,
r := real ¥+ (x * y)/z # r will get the

"value" undef

Now assuming that the internal UNRAU re-
presentation allows exponents beyond 200,
then:
120

T (x * yY/z = r will get the value 2 .
i

L 3
Rules of Conversions

Conversions in arithmetic expressions are
performed automatically so that both operands
of a dyatic operator have the same qualifier,
which also will be that of result. The con-
versions will follow a simply priority scheme
as expressed in the following table:

? b fixed norm. unnorm. [|centered

]a

r. . .

;flxed fixed jnorm. unnorm. [|centered
|

morm. norm. norm. unnorm. |centered

iunnorm. unnorm. {unnorm. jfunnorm. |centered

i

jcentered centeredcentered lcentered jcentered

Qualifier of the Converted Operands,
In Mixed

a and b, and the Result c,

Mode Operation, C « a op b

Conversion
irrespective of
result the form
Similarly if an
computation,
def".

of an augmented form will,
which one, always give as the
"undef' of the type wanted.
augmented form enters a

the result will always be "un-

The principles of conversions between
internal representations of representable
values are given below:

From fixed into all other representations:

‘ The f-field is copied, e and r are set
to zero. If the conversion is into
normalized, the f-field is left shifted
until it is normalized, and the e-field
is adjusted accordingly.

normalized into fixed:
The nearest integer value is chosen (if
representable, otherwise an augmented

From

cknowledgments

The author wants to express his grati-
ude towards the Danish Research Council
hich supported the development of the
MATHILDA Processor. The author further ex-
resses his gratitudes towards NATO, Division
f Scientific Affairs, Bruxelles, which has
upported the work on the arithmetic unit.
inally I am sincerely indebted to Bruce D.
hriver, my collaborator on the arithmetic
nit, whose comments to the presentation of
his paper have been invaluable.

References

Goldstein, M.: Significance Arithmetic
on a Digital Computer, CACM6,
p. 111-17.

Ashenhurst, R. L.: The Maniac III
Arithmetic System, SJCC21, p. 195-202.

Wirth, N.: The Programming Language
Pascal, Acta Informatica 1, 35-63.

Kornerup, P.; Shriver, B. D.: UNRAU- A
Unified Numeric Representation Arith-
metic Unit, this conference.

Staunstrup, J.: A Description of the
RIKKE1 System, DAIMI PE25, Dept. of
Computer Science, University of
Aarhus, Denmark.

Kornerup, P.; Shriver, B. D.,: An Over-
view of the MATHILDA System, SIGMICRO
Newsletter Jan. 75, Vol. 5, no. 4.

Kristensen, B. B. et al: A Pascal
Environment Machine (P-code), DAIMI
PB28, Dept. of Computer Science,
University of Aarhus, Denmark.

Kristensen, B. B. et al: A Short Des-
cription of a Translator Writing
System (The BOBS System), DAIMI PB47,
Dept. of Computer Science, University
of Aarhus, Denmark.

47

