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SUMMARY

A unique code (called Hensel's code) is derived
for a rational number, by truncating its infinite
p-adic expansion. The four basic arithmetic algo-
rithme for these codes are described and their appli-
cation to rational matrix computations is demonstrated
by solving a system of linear equations exactly,
using the Gaussian elimination procedure.

A comparative study of the computational com~
plexity involved in this arithmetic and the multiple
prime module arithmetic is made with reference to
matrix computations. On this basis, a multiple p~
adic scheme is suggested for the design of a highly
parallel matrix processor.

, 1, INTRODUCTION

Matrix. computations such as solving a systen
of linear equatioms, finding the inverse or gensrali-
zed inverse of a matrix or reduction of a matrix to
a specified canonical form or the determination of
the characteristic equation are of great importance
in & variety of scientific applications. It is well
known that when conventional p-ary or floating point
arithmetic is used for such computations, the cumula-
tive round-off errors make the results totally un-
reliable. If the matrix contains only rationsl
entries there are two approaches to obviate such
errors:

a. Use of rational arithmetic
b. Use of residue or modulo arithmetic.

The use of rational arithmetic, Knuth} though exact,
is very expensive and laborious - esch rationsl add/
subtract operation requires three multiplications,
one add/subtract and a reduction of the resulting
fraction to its lowest form (by dividing both the
numerator and denominator by the atest common
divisor); rational multiplic:ationﬁ;:vision operations
involve two multiplications and a reduction of the
result to its lowest form. Therefore residue or
modular arithmetic approach has been suggested; young

and Gregoryz; Knu'thl; Rao et 513. In the latter
approach, every rational number a/b (b £ 0, 0€a < p-1,
0<bgp~1) is uniquely identified with a ., b~ » where
the binary operation is the product of modulo, &

prime number p and bl the multiplicative inverse of

b in the Galois field formed with elements 0,1,2, «e0s
(p-1) under the two binary operations "add modulo p"
and "multiply modulo p". Naturally, the magnitude of
P restricts the range of uniquely representsable
rationals,

It is easily seen that the computational com-
plexity increases with increasing p; for instance, the
multiplication complexity is of the order

° ()

where k is the precision or number of binary digits
in p; the computation of multiplicative inverse

(and hence the division) over GF(p) requires the use
of Euclidean algorithm similar to that for G.C.D.
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involving on an average 6 log, p(=6k) k - precision

divisions and 12k, k-precision_ multiplications, each
of complexity O(k?); see Knuthl, p.333. To reduce
the complexity, therefore, the use of multiple prime

2
modulii has been suggested (see Young and Gregory”,

Rao et al3). Here a modulus M (of precision k) which
is a product of the distinct primes Py Py eeees P,
’ ’

(each approximately of precision 21 ={ binary digits
such that k = sl) is chosen or

TT »,

i=1

Every integer a is then represented in terms of
a set of residues (r, r, T; <.e.... r_ ) With respect
- 1,72, 73, 8

to each p.. Every rational number a/b is then
identified with a . b > is unique and
b.b> has a representation (1, 1, 1, ...... 1) and

b.bY=E 1modHM.

where b-l

If multiple prime moduli arithmetic is used,
the matrix computations are to be performed for
each p i separately and the results are to be later

combined (using either the Chinese Remainder theorem
or by the simpler and faster symmetric mixed radix
procedire). For this approach to be faster

( uthl, p.2%2) each prime p; should be of the form

2° - 1l; then the addition and multiplication modulo
p;» 88 well as the conversion to positional repre-

sentati?n turns out to be simpler and faster. (Note
that 2% - 1 has to be & prime if multiplicative
inverse has to exist). In such a case the following
advantages result:

a, The aritbhmetic with respect to modulo p i

is of a lower precision (e‘.= e ) and 2

s multiplications each of complexity O )
are to be performed rather than 0(k<)

O(Esztz) .

b. The computation of multiplicative inverse
is less complex; it involves 6 sl divisions
each of precision L and complexity

0( £2) and 128 mwltiplications each of

precision € ana complexity 0(62); the
division requires one more multiplication
by the inverse or s multiplications each

of complexity 0(22) .

¢, Multiple modulii method allows many arith-
metic operatioms to take place simul-
taneously, so that a substantial savings
of execution time can be obtained. This
decrease in execution time, as well as the
posaibility of designing highly parallel




computers, meke this method significantly
important, particularly for real time
calculations.

However, the following disadvantages still
exist:

When the range of rationals required
depends upon the matrix problem in hand,
the choice of primes of the form 2°¢ 4+ 1
becomes difficult; accordingly the choice
of M (product of primes) camnot be enlarged
systematically to cope up with the hardware
design.

&a.

If the algorithms involve a large number of
divisions the complexity increases.

The conversion into modular form requires
a(c;rtain amount of operations of complexity
O(k).

The conversion back to positional notation
require the use of high precision multi-
plications; hence, if the output consists
of a large number of entries, as in matrix
inversion, the complexity increases.

Ce.

These difficulties motivated us to look for an
alternative arithmetic system which is also modular
in nature, but has the simplicity of arithmetic ope-
rations as in the b-ary system, yet free from round-
off errors and is simple for hardware realization.

The segmented p~adic arithmetic system, which is
equivalent to modulo p* (where p is & prime) arithmetic
has all these attractive features; it is surprising
that the potentialities of the 2-sdic arithmetic
system have not been explored. The following are some
of the attractive features:

a. The conversion of integers and other ration-
als into 2-adic representetion is simple
end realizable by existing hardware.

b. The evaluation of multiplicative inverse

is of many orders less in complexity; in

fact it is simpler than binary division

and has a complexity OQI:(M)) for k bit
b2

numbers.

Ce. The fast high~precision multiplication
algorithm duwe to Toom-Cook and Schonhagz-
Strassen (See Knuthl, Borodin and Munro?)
or other high~speed switching schemes could
be readily used for speeding up the 2-adic
arithmetic, when very large number of bits
are involved.

d. The conversion from modulo 2" to the posi-
tional representation is trivial, based on
the mature of the algorithm.

e. The choice of r can be made in regular

integral steps to meet the requirement of
the specific mairix problem in hand. Ac-
cordingly the hardware design becomes simple.

A detailed introduction to the segmented p-adic
arithmetic sgstem is available elsewhere, Krishna~
murthy et al”; however, for convenience we will briefly
describe in the next section some of the important
properties and the basic arithmetic algorithms in this
system.

2. PROPBRTIES OF H(p,r) CODES AND ARITHMETIC

By the H(p,r) code of the rational mumberd ,
we mean that finite segment of the infinite p-adic
expansion of & , consisting of the first r-digits,
the redix point occupying the same position as in the
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infinite expansion; (Bachmanns, Borevich and
Shafarevich’):

i. Let & o8, ﬁ an be the infinite
expansion of o ; then the finite segment
a, a—ml"""ao"“an where m+n+l = r is
called the Hensel code of o/ denoted by H(p,r,‘().
ii. s b¥ 0 and GCD (p,d) =1

Giveno{ =g =¢ P
b

d
and GCD (p,c¢) = 1, H(p,r,c/d) is thi p-ary re-
presentation of the integer (¢ . d™*) modulo p¥,

where d-l is the multiplicative inverse of d

modulo p* (for computing ¢ oo (v) below);
note that the p-ary representation is written
for convenience, in the reverse order, with
ascending powers from left to right.

For convenience H(p,r,®%.) is denoted as an
ordered pair in the mantissa exponent form thus:
(m oL’ %% ).

Since we keep the length of H(p,r,ol) constant
(r digits), we denote only the negative exponents in
€y + When e, = -m, the radix point is placed m

digits to the right of the left most digit.

Example:
H(5,4,_7) is obtained thus:

L= 7/15 = /3.5 .
Tous m = (7.3™1) mod 625 = (7.417)mod625 =

=419 = .4313

€ = -

b.  H(5,4, 15/7) = (m, , e, ); ol = 15/7 where
m, = .0402, e“_ = 0.

H(5,4, 15) = (m, , ey ); « =15 where

= L0300, ey = 0.

N = T where denotes the lower
L= e L

integral part. Then every rational number o =
a/b such that 0 £|al < N and 0 <b £ N has
a unique H(p,r, ).

The H(p,r, ) codes are closed with respect to
basic arithmetic operations; or in other words,
H(Psr, o *f) = H(Pvrvo() * H(Pv-"-'tﬂ)’ (* deno-
tes ADD/SUBTRACT/MULTIPLY/OR DIVIDE) provided
oL, A and o * B satisfy the range condition
(dii).

Given H(p,r, ), the code H(p,r, - %) is ob-
tained by a radix complement operation. In
view of this, multiplication and division can
be performed without corrections that are re~
quired in positive p-ary complement number re-
presentation. In this sense, it resembles the
pblarization; algorithm in negative base;
Krishnamurthy et al.

The complementation algorithm is exactly simi-
lar to the irue or radix-complement of positive p-ary
numbers, except thet it is taken from the lower
index position.

LetO( =8 fmil

a.

C.

m
iii. ILet

iv.

.a

LIS &-llao..... n

then its complement

KA ==& = b—m b—m+1
is obtained thus:

« D

....b_l o

esesd
n




Rule 1: If ai;éOfor-mgzi.gn

thenbi=p-a for i = -m

i
and b, = (p-l)-ai for -ml g i g n.

Rule 2: If ai=0 for -m K1 KJ

%
then bi=0 for -m i 4

-~

and by g =P -y,

b, = (p-1) - a, for j+2 i gm.

vi. The arithmetic operatioms using H{p,r) codes is
almost identical with p~ary arithmetic, since it
is essentially modulo pT arithmetic realized as
a simple recursion of modulo p operations.

All these arithmetic ed.gorithm,s,including the
division, proceeds from the lower index to the higher
index position. In particular, the division (and
reciprocal) is deterministic ,free from trial-error
involved in p-ary arithmetic for quotient determinat-
ion.

Let
« = 8 ccve 85 .8 8 ..., a

/é’ =b_g eeeDy o b bl b

be the H(p,r) codes of rationals X and £ consisting
of r = m¢n+l digite.

a. Addition/Subtraction:

The elgorithm for addition aligns the p-
adic point and finds the sum digit 8y and the

carry digit c:i+l from a knowledge of a, bi and

ey
Thus 5 = (ai + bi + G:L) mod p
for i = =m, -m+l, .... n
Cii1 = 1 if ai+bi+ci> P
= 0 otherwise;
c, = 0 and ignore °n+1'
Subtraction is realized as a complemented
addition.

b. Multiplications
This is similer to the p-ary multiplication,
except that the product is developed to only
lower r digits (mod pT) {and hence has & comple—
xity O (z{p+l)). The algorithm consists in
2
forming the cross-products:

Pij= bia;j for ~-ngign

and 3 = -My, ~n+l, .eeey 1
Then the partial product
i 2
2 Pij o (mey)
e J
I=m
where A\ (x) denotes & right shift by x digits.

Example: H(5,4y'}) . H(5'41§) = (-433390)‘
(.2333,0) = (.3424,0) = H(5,4, 1/12)

C, NMultiplicative inverse and division:

Given 0 <. b < p’~1 and GCD (p,b) = 1, b+ moa p¥
cen be obtained very simply by a recursive so-

lution of the congruences with resi:ect to p.
Let b =.by b ..eee. b1, (bo,é 0)

-1
and b T = .qo Q. eseee
1 Spe1
The qi's can be obtained by solving for 9y in

=] i r
b ¥ P E 1lmod p
1=0 qi
. R ~1
Thus starting with q; = b, mod p, each 4 (k> 1)
is computed by solving for
K+l

6 v T oolyp =
qkp+z=10q1p)b-1modp

This leads to the following deterministic trial-
error-free division algorithm for obtaining the quo-
tient, digit by digit, proceeding from the lower
index to the higher index position.

The following is the algorithm for finding a.b-lz

Let R = Zeroth partial remainder or initial
numerator & (= 1 for finding b~1)

Ri = ith partial remainder

Rii== ith positional digit of Ri

-1
Then 9y = Ri:'i_bo mod p
for i = 0,1,2, .... (r-1)
and Riyp =B -q b &@)

where A (i) = right shift by i digitas.

Note that this algorithm can be applied for any
numerator; by setting ROO = 1, and all other digits
of RO to zero, one can obtain the multiplicative
inverse of b. This algorithm has a complexity
O(x{x+1)).

2
Example:

H(5,4, 8/9) / H(5,4, %)

= (.2243,0) / (.3222,0) = (.4432,0)

(5,4, 16/9).
Remark: If bo = 0, ghift the divisor left keeping

count until the first digit is non-zero and suitably
adjust the exponent. It is assumed that by shifting
the divisor, it does not go outside the range for
the given H(p,r,ol).

vii. It has been shown in Krishnemurthy et al5 that
every rational number a/b in the range
0OLagNand 0<bg N

where N = Lfgi.j (see 4ii)
2

hae a unique H (p,r,ol). This permits us to
convert these into rationals by a diophantine
solution of {wo unknowns and amount to & brute—
force multiplication by 1,2,.....b to obtain
an integer. Since this method is tedious we
will describe an alternative method which is
applicable to particular algorithms in matrix
computations.

2. CONVERSION OF H(p,r) CODES TO RATIONALS

The conversion is based on the following simple
principle:




45 every rational number a/b (b £ 0, 0¢ a € oL

PP-1,0<b&pF ~1) is represented in the form

(a. b-l) mod p* it is possible o determine a as

well as b if some common multiple of all the deno-
minators involved in a given algorithm is known. Since
any algorithm consists of a predetermined sequence of and
arithmetic operations, it is possible to derive the

arithmetic expression for this common multiple and

this facilitates the comversion.

For instance, if we assume that k b is known, i
then the national number corresponding to (a . b™1)
mod pr is

[1/ . (a b-l .k bﬂ mod pr

kb ) } ¢
Therefore as long as (a vt x b) and k b are re-
presentable uniquely as H(p,r) codes the conversion
is straightforward.

For this purpose, we introduce the following
definitions:

i, For each integer &, O <La g pr-l
VALUE (a) = a if 0 < a < (p™=1)/2
r .
= a-p , otherwise.
ii, Let m, be the mantissa and -C;‘_ be the exponent
of a p-adic number = (a/b). Then let
r~1 i
I (mx) = Z ai P
i=0
i1i. Let § = k. b be the integral multiple of id.
b. Since f§ is an integer its H(p,r) code will
have ep = 0.

iv. Let o = K .6 and H(p,r,¥ ) = (m’ en,_)
= . T 2 =4
where L (me( ¢) mod p~ and - <

Then the rational equivalent of H(p,r, a/b) is

got from
1 JALUE Ifm,(g_
p ° VALUE I Ty

Thus given the H(p,r,o ) code the rational &
can be obtained provided the common multiple of all
the denominators is available. Let us cell this
common denominator as COMDEN,

4n expression for COMDEN can always be derived
in advance and COMDEN can be computed in parallel for
all the algorithms whose inputs are rational numbers.
The computation of COMDEN is simplified by using the
following procedure:

i. Rescale all the input entries into integers,
keeping the scale factor for use at the end.

ii. Convert the entries into p-sdic form.

iii. Perform all necessary arithmetic operations

of the algorithm.
iv. Compute in parallel COMDEN,
v. Convert the output entries to ratiomals

using:
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where H(p,r,«)

= 1 VALE (I(m .nm, ) mod p¥)
p™ T VALUE (1(m_))

= (m ,e )
COMDEN

(mc, ec) , ec = 0.

4. DESIGN OF MATRIX PROCESSORS

Design considerations:

In using p~adic arithmetic for matrix compu-
tations the important decisions to be made are:

(a) The range N of rationals numbers required;
accordingly the choice of p and r are to
be made.

(b) COMDEN for the algorithm.

Since expressions for these can be
obtained, Rao et al3, these are easily computed.

We already saw that the arithmetic unit
for 2-adic arithmetic is identical to that for
binary arithmetic, but for a very minor change
required for the division operation. Therefore
it is quite straightforward to design a matrix
processor which would use various algorithms.

Since the arithmetic unit can be made to
function for either 2-sdic or binary, the final
results can be obtained in floating-point
binary or decimal form.

Complexity of p-adic computation:

It is now necessary to compare theoreti~
cally the complexity involved in using the 2-
adic arithmetic with that in using the multi-
ple prime moduli arithmetic, assuming that
right choices of primes of the form

2t 31
of nearly same precision Ki = Q are available.
(For an up to date review of computational
complexity see Borodin and Munro%);

It is well known thet (Berezin and
Zhidkov®; Faddeey and Faddeva®) that most al-
gorithm for solving linear equations or for
generalized or conventional matrix inversion
involve O(N3) multiplications, O(N3) edditions
and O(N) divisions where (NxN) is the order of
the matrix. However, the computation of charac-
teristic equation by reduction to Frobenius form
involves O(Nz) nmultiplications, O(NS) additions
and 0(N2) divisions. Therefore the 1T pi and

i
2" arithmetic will have the following comple-

xities (Table 1) for matrix inversion:




Operations -] r
T >, 2" Let a4, = M/(p, 1)
jo1 & e 4 = Py
-1 Tiy-1 Ty
and d, = d :
Input Conver- NZBZL, i ( i mod Py )" mod Py
sion ’ nil
> 1) mod p. 4
Multiplicate Then a = d, ((& . a ") mod p,* ) Moa M
ions ¥ s f,z o 52(),2,/2 P i1 i
9

IDivisions 18Ns(’,3+j_\mﬂ2 N s2 f,"/ 2 It is possible to optimize such a hybrid scheme
Output Con- » 1> for computational complexity, pa.ri.élelism, economy
version ¥ s2 §? nil and simplicity in hardware design’ ., This hybrid

TABLE 1 scheme will have extensive applications in linear

Since the N3 tern is dominant for larger N, computations, Fourierlzra.nsfoms/convolutions and

the multiple prime moduli arithmetic seems to be digital filter design .
lower in complexity compared to the p-adic arithmetic
which requires s/, times more multiplications (s = iii, Example:
number of primes Chosen). This gives us an impres-
sion that as s increases the gain increases. In Consider the solution of
practice, however, this gain will not result since Ax = b

the choice of many primes of the form
ﬁ where A is a non-singular (n¥xn) matrix with rational

27 g i [ L entries ai;j and b is a (nxl) vector with rational
becomes difficult by keeping 4, = (a constant); entri & 4 . )
also other operations and the Sverhead of the re— ntries b . It is easily proved that for Gaussian
cursions and indexing which have not been taken into elirination

account add to the complexity. If the number of

divisions increase, as well as the number of output r n n , n

entries are large the comversions might considerably p >2(TT (X &5 ;j)% T lbkl )
add to the complexity. i=1 j=1 k=1

In spite of all these, the overwhelming ed-
vantage of the multiple prime-moduli arithmetic for ( bk ié 0)
realizing a highly parallel computation system (in
which all the computations can be done simultaneously n n 2 % n
thereby reducing the execution time) is to be kept in or T __L (tog(2( T = ai;j ¥ 'hkl )))
k=1

mind. At the same time the fact that 2-adic arithmetic log p i=1 j=1
is simple and economical. for hardware design is also
to be given due consideration. Therefore a hybrid Let 2 2 -1 5
scheme which uses multiple p~adic arithmetic will have A=l-z o 2 s b o= -5 .
excellent potentialities. ’ ? = ’
4 =5 =1 0
As an example, consider the choice of primes
The choice p = 2, r = 16 would suffice.

2, 22 -1, 22 + 1, 23 -1 viz, 2, 3, 5, 7 and the

modulo Py Tj arithmetic with respect to each one of The input matrix 4, b are comverted to H (2, 16)
form. Then the augmented matrix (A H b) is reduced

them. It is well known that arithmetic modulo 22 -1, to the upper triangular form.

2 . s

2"+ 1, 23 = 1, are realized by s:_x:‘ple iod:.f;,ncations The COMDEN in this case coincides with the de-
of the binary arithmetic. Since 271, 372, 53 and terminant of A which equals the product of the pivotal

t .
7r4 are all relatively prime, the chinese remainder elements used in the elimination.
theorem or related procedures such as symmetric For convenience, we express the mantissa of

H(2, 16) code in hexadecimal form and exponents in

mixed radix procedure can be applied for comversion, decimals Then
. ?

(Note, particularly the advantage when H(2,r) and
. 2000,0 .2000,0 SE0F,0 «5000,0

H{5,r) are used; in this case, the conversion to Asb = LAfff,0  ,0000,0 ,2000,0 ,bfff,0
decimal is straightforwsrd), as shown below: +4000,0  .bfff,0 ffff,0 .0000,0
8 T, Elimination;
Let M = -Tr P, * H
41 4 +1000,0  ,1000,0 . ffff,-1 .5000,-1
. 0000,0  .3000,0 ,1000,-1 .5000,-1
then if we know a = &, modulo Py 1 of the integer 0000,0  ,7fff,0 .1000,0 .6fff,0

.1000,0  ,1000,0  ffff,-1 ,5000,-1
0000,0  .,1000,0 .basma,~l .7555,-1
_0000,0 0000,0  .5000,=1 .,bfff,=1

a (Mod M), it can be reconstructed thus:
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“1000,0  .1000,0 L ffff,-1 ,5000,-1
0000,0  .1000,0 .basma,-1 .7555,-1
0000,0  0000,0 ,1000,0  .ffff,0

COMDEN = (,2000,0) . (.3000,0) . (.5000,-1) =
(.£000,0)

Conversion to rational form:
15 1

x = VALUE X « COMDEN ) = =k 15 = 1
VALUE (COMDEN 5 15 (=15 -1
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