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Abstract

ROM-rounding is introduced and is shown to compare
favorably with existing floating-point rounding meth-
ods on design considerations and on performance over a
series of error tests. The error-retarding value of
guard digits, of rounding the aligned operand, and of
rounding in general are discussed.

1. Introduction

Existing computer arithmetic units use various
methods to reduce floating-point numbers to shorter—
precision approximations. The standard methods in use
are

(1) ordinary Truncation (or '"chepping).
(2) ordinary Rounding.

Other methods have been proposed for their cost-
effectiveness or for their error resistance properties,
e.g.,

(3) von Neumann rounding (equivalent to
Truncation except that the lowest order
bit of the result mantissa is forced to
al).

4) R*-rounding (equivalent to Rounding ex-
cept when the digits to be rounded away
have bit balues 10000..., in which case
von Neumann rounding is used.)

This paper compares these methods with a fifth methed,
ROM~rounding, an attractive alternative both from a
standpoint of cost and error resistance. With ROM-
rounding the (say) 7 low-order bits of the significant
part of the mantissa and the highest bit to be rounded
away, together form an 8-bit input ("address") to a
ROM or PLA. The output of the ROM/PLA is the 7-bit
rounded value of these bits, except in the threshold
case when all 7 low bits of the significant part of
the mantissa are l--the case in which rounding over-

flow might occur-~rounding is not performed. This is
illustrated in Fig. 1.
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Note that ROM-rounding provides the advantages of
rounding (255 times out of 256 for the 8-bit scheme
above) without the timing or hardware overhead of the
traditional additional rounding adder stage. It is
also a cheap scheme to implement in modern technolo-
gies. Thus, from an engineering standpoint alome,
ROM-rounding 1is an appealing way to build rounded
arithmetic into a floating-point unit. Since its
arithmetic properties are sound, it remains to verify
only that its error resistance is adequate. The rest
of this paper shows that its resistance is not only
adequate, but superior: with respect to three
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indicators of rounding scheme effectiveness, viz.,

(1) Average relative representation error
(ARRE)

(2) Rounding scheme bias

(3) Statistical tests with specific problem
types

ROM-rounding gives uniformly excellent results. The
paper also investigates the value of guard digits
(extra low-order digits in floating-point hardware
that hold part of the aligned operand, which is
shifted right during exponent comparison, giving the
final result greater precision; this result may then
be rounded to single precision), and the value of
alignment rounding (i.e., the use of a rounding method

to reduce the aligned operand to fit in the aligned
word and guard digits before addition or subtraction).
To our knowledge, the latter subject has not previously
been discussed--Truncation has simply been used.

2. Representation Error

A theoretical metric of rounding scheme effective-
ness is the average relative representation error
(ARRE) incurred by the scheme in representing real
numbers in floating-point format. McKeeman [5] and
later Cody [2] used this metric for comparison between
base 2, 4, and 16 arithmetic systems. They defined the
ARRE of a t-digit, base B, sign-magnitude system using
Rounding by
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where (1/x #nP), the reciprocal density, has been used

because of the logarithmic law (of leading digits in
floating-point computation, see e.g., [8]) and

Average (]Round(x,t) - x])

875 1/8<x<1
G =

X

is used as an approximation to the absolute value of
the relative error

fﬁ(x)[ _ |Round(x,t) - x
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With this in mind we redefine, for any rounding scheme,

d
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This quantity was evaluated for each of the five
rounding schemes (via a 20,000-point Monte Carlo
integration) using B = 16 and various values of t.
The results are plotted in Fig. 2, and agree excel-
lently with the theoretical values for Truncation and
Rounding. Using the error density functions for
Truncation and Rounding in [8], we expect
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A glance at the plot shows 8-bit ROM~rounding is only The ROM-rounding scheme has particularly inter-

marginally worse than regular Rounding for ARRE--this esting bias properties. The artificiality of the
is reasonable not only because the two are identical method in the threshold case causes the factor
255 times out of 256, but also because the one case in _ 1-9

which they differ (inputs to the ROM are all 1) has the (278 - 2777

lowest individual relative error. to appear in its average bias. If we think of the g

3 Rounding Scheme Bias bits to be rounded away as the guard bits in a

, ) = floating-point operation (c.f. [3] for a definition of
; guard bits), then choosing the ROM length £ such that
£ - 1 =g will give the ROM scheme zero average bias.
Selection of the proper length ROM is vital for good
error performance. Fig. 3 shows what happens when
different length ROMs are used for mixed-sign sum-
mations (see next section for details) with one and
two hexadecimal guard digit computation. Note that
for all practical purposes ordinary Rounding on a 360-

While ARRE measures the average magnitude of
roundoff errors, we need some indicator of a rounding
scheme's tendency to favor errors of a particular sign.
Consider the set M(t+g) of all normalized binary
mantissas of length t+g, which are to be represented
in M(t)--i.e., rounded to t bits. We can define

Average Bias (t,g) = M% +')r0und(x,t) T like hexadecimal machine can be thought of as 25-bit
xeMittg, ROM-rounding (6 hex digits + 1 rounding bit). Ordi-
nary Rounding would, therefore, have very nice error

||M(t+g)f| y 3 > B y

properties if this machine had six guard digits (24
guard bits). But this is unreasonable, and will pre-
sumably be unreasonable on all machines, so ROM-
rounding seems preferable to ordinary Rounding for

This is not a perfect measure of bias since it evalu-
ates absolute and not relative errors, but it is very
informative and makes computation of the following

table possible: good bias.
Table 1 It has been proposed that an R* variation on ROM-
rounding might be a superiocr method. There are three
Scheme for Average Bias (t,g) with Base 2 arguments against this proposal:
round (x,t) arithmetic (1) Increased Cost: ALL of the g bits to be
-1-t . -g rounded away, rather than just the high-
Truncation 2_1_t(2_ -1 order bit, would somehow have to be
von Neumann 2 (2 g) (multiplexed or otherwise) fed into the
Rounding 2t 078y ROM.
R* 0 (2) 1Increased Bias: The average bias for
-1- - - ROM/R*-— h é
ROM (2) 2 1 t:(2 g _ 21 2) (% is the KOM this / roundf?gtca;_ze shown, as
length in bits; follows, to be -2 (2 )
2<t+1) (compare Table 1). From the definition

of Average Blas, we have

This table is easily modified to hold for any nuneric
base B = 2%, n > 1. Because mantissas in base & have
from 0 to n ~ 1 leading binary zeroes, average bias
can be computed by treating all mantissas in base 2
and summing up the different cases:

n~-1
Average Bias (Eygﬂ = I Average Bias (t-i,g) |]M(t—i+g)|
n’n .
Base R i=0 Base 2
n-1
t o M(e-14g) | |
1=0
Now using
[IM(c-14g) || = 28717872
and Average Bias (t-i,g) = 21'Average Bias (t,g)
Base 2 Base 2
we find - -1
. g ot 2t"i+g—l
Average Bias (—;g) = Average Bias (t,g) «| _i=0
D0 pase B Base 2 | n-1
5 2t—i+gnl
L 1i=0
B log2 8
= Average Bias (t,g) . Y

Base 2

Thus if all entries in the table are multiplied by
(B log28/2(8—l)], and t and g are replaced by t/r. and

g/n, respectively, the table holds for base B nor-

malized arithmetic.
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Average Bias [ROM/R*] = Average Bias [R*] + ( I

xEM(t+g)

Now (ROM/R*(x) - R*(x)) =2t if x is such
that the ROM inputs are all ones; other-
wise ROM/R*(x) = R*(x). Since Average

Bias [R*] = 0 and the number of x in
M(t+g) with ROM inputs all ones is
2t—£+g—l’
Average Bias [ROM/R*] = 0 + (_th)(zt—£+g—l)/(2t+g—l)
- _2-1—t (2l—£>
as stated. This cannot be forced to zero

as with ROM~rounding.
(3) Questionable Utility: As will be shown in
the next section, ROM-rounding gives
roundoff performance as good as that of
R*-rounding. Need for further improve-
ment must be demonstrated.

4. Discriminating Problems

A number of papers appearing in 1973 ([1], [4],
[ 6]) attempted to discriminate between floating~poirt
systems which used various radices and rounding schemes
by applying varied sets of data to a given problem, and
statistically measuring the resultant roundoff errors.
Except in [1], the problems typically consisted just of
repeated arithmetic operations—--for our purposes we
will only examine repeated addition and/or subtraction
because:

(1) Local roundoff errors in multiplication

and division are distributed exactly like
representation errors and can be measured
with ARRE. The theory of accumulated
multiplicative errors is trivial (see
on.
(2) Only with addition and subtraction is
R*-rounding really different from regular
Rounding, because the special circum—
stance under which the two are different
(the bits to be rounded away have bit
values 100000...) is much more likely to
occur.
(3) Only with addition and subtraction can the
effects of a) rounding the aligned
operand, ») guard digits, and c¢) a) and
b) togethar, be measured.

With this in mind, the error growths were analyzed
for three separate problems: repeated serial addition
(all summands positive), repeated serial subtraction
(intermediate result and subtrahend forced positive he-
fore subtraction), and mixed-sign addition (50% of the
summands negative). All problems were performed for
six-digit hexadecimal arithmetic on an IBM 360/75 over
200 sets of 1024 summands. The summands were randomly
generated from a logarithmic distribution (having the
reciprocal demsity; c.f. [8]) and possessed a maximum
base 16 exponent difference of 3 (c.f. [7, p. 39)).

At several points throughout each computation the hexs-
decimal significance of the intermediate result—-
defined here as the bage 16 logarithm of its relative
error--was calculated. At the end, these significances
were averaged over the 200 observations and plotted.
Throughout the computations, the ROM length used was
chosen so as to give ROM-rounding zero bias, as sug-
gested in section 3. Thus, for one guard digit of 4
bits, a 5-bit ROM was used. Note that some of the
plots have two lines drawn for individual rounding
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ROM/R*(x) - R*(x))/| [M(t+g) ]|

methods, corresponding to results for the different
alignment rounding schemes which are indicated in
parentheses.

As with ARRE and Average Bias, it should be
pointed out that the plots in themselves are not
complete indicators of rounding scheme performance.
Flrst, the curves plotted are averages and say nothing
specific about error behavior for a particular set of
data. (Although for the 200 sets of summands used the
standard deviations of hexadecimal significance were
usually less than 0.5--providing a clear discrimina-
tion in almost all cases between Truncation and the
other methods). Second, the data was chosen to be
"commonplace" but obviously most programs will not use
identically distributed data. Third, the problems
themselves are mildly contrived in that few programs
will serially add up thousands of such numbers. The
plots serve to indicate the tenacity of the rounding
schemes against error, and reflect some of the facets
of accumulated error not detectable with metrics of
local roundoff error like ARRE and Average Bias.

4.1 Addition

Fig. 4 shows the error growth for repeated addi-
tion. The initial bumps result from the loss of
significance involved in hexadecimal postnormalization
shifting: the relative errors actually decrease for
most methods because the magnitude of the sum's man-
tissa increases faster than the magnitude of accumu-
lated roundoff error (so, the relative error goes down),
but when carry-out finally occurs around 256 oper—
ations, normalization of the mantissa gives it a
leading digit 1 plus loss of the low-order digit and a
sudden jump in relative error results.

More marked in addition of positive operands than
in the subtraction problems is the interplay of guard
digits and rounding of the aligned operand. The fewer
guard digits used, the more effect alignment rounding
will have. In fact, guard digits are important for
addition only in the way they enhance or inhibit
alignment rounding. Note that for two guard digit
(8 guard bit) addition, alignment rounding has little
effect, while for one guard digit it is extremely
important. With zero guard digits the rounding
schemes are not defined.

The case of one guard digit is interesting. The
magnitude of the sum is increased by round-ups, and
alignment round-ups if the guard digit has value

5~ 1; and is decreased by round-downs, alignment

round-downs 1if the guard digit has value % -

carry-outs. Thus the error is extremely sensitive to
rounding bias. Rounding with Rounded alignment gets
bad results because of amplified bias: for example,
computing (12. + .45) in 2 digit, 1 guard digit, base
10 arithmetic would give the answer 13. Because
Rounding has positive bias and Truncation negative
bias, Rounding with Truncated alignment results in
some bias cancellation. It is for this reason that,
with Truncated alignment, Rounding performs better on
addition than ROM- or R*-rounding. The bias cancella-
tion is, moreover, good enough that Rounding with
Truncation competes with the rounded-alignment ROM and
R* schemes. At any rate the statement in [4] that R*-
rounding is '"unbiased'" is untrue if one does not use
an unbiased alignment rounding scheme.

1, and




4,2 Subtraction [4] H. Kuki and W. J. Cody, "A statistical study of
- the accuracy of floating-point number systems,"

We now concentrate on the effects of subtrszction Comm. ACM, vol. 16, no. 4, pp. 223-230, April
on error growth. Figs. 5 and 6 trace the average in- 1973.
crease in relative error for, respectively, repeated
serial differences and the more realistic problem of [5] W. M. McKeeman, "Representation error for real
the serial summation of numbers roughly half of which numbers in binary computer arithmetic,” IEEE
are negative. Truncation performs much better for Trans. Comput., vol. EC-16, pp. 682-683, Oct.
these two problems than for addition because the local 1967.
errors are not always of the same sign (as they were in
addition), resulting in some error cancellation. This [6] J. D. Marasa and D. W. Matula, "A simulative study
is especially not:iceable in Fig. 6, where Truncation of correlated error propagation in various finite-
with O guard digits eventually outperforms Rounding precision arithmetics,” IEEE Trans. Comput.,
with 1 guard digit. This phenomenon was first observed vol. C-22, no. 6, pp. 587-597, June 1973.
by Kuki and Cody in [4]}; they also pointed out that
additional guard digits harm Truncation for mixed-sign [71 T. Sweeney, "An analysis of floating-point addi-
summations because guard Ezgits inhibit the error tion," IBM Syst. J., vol. 4, no. 1, pp. 31-42,
cancellation Truncation relies on so heavily. ¥uki and 1965.
Cody correctly claim that use of the unbiased R¥-
rounding method produces the best results--but they [8] N. Tsao, "On the distributions of significant
leave the impression that regular Rounding is always digits and roundoff errors,” Comm. ACM, vol. 17,
worse than Truncation with 0 guard digits for mixed- no. 5, pp. 269-271, May 1974.
sign summations, which is true only if one guard digit
is used with Rounding and the sum has many operands [9]1 J. H. Wilkinson, Rounding Errors in Algebraic
(at least 300, using Fig. 6). The high error growth Processes. FEnglewood Cliffs, N. J.: Prentice-
rate of Rounding with one guard digit significantly Hall, 1963.

declines when two guard digits are used.

Note that the hexadecimal significance plots for
subtraction indicate a gradual significance loss
totally different from the graphs of Figs. 10-12 in
[6]. The methed of [6] is questionable, with its plots
of median elements and statistical basis of two obser-
vations. However, duplicated simulation showed con-
clusively that the dramatic error growths in Figs. 10-
12 are due exclusively to the rescaling of all numbers
into [0.25,4.00), which confessedly '"will tend to ac-
centuate the error growth under subtraction, as pro- .
spective arguments are brought closer together in Figure 2. ARRE for different schemes
value" [6, p. 58%3]. Although it is not a benign
process, floating-point subtraction is not usually
malignant.

0.0

5. Conclusion ° l///ﬂlfz/,—von Neumann

The main conclusion is clear: ROM-rounding is

not only technologically one of the cheapest schemes ’//\J/Truncation
to implement, but also one of the best schemes in - \\\\\\
guarding against roundoff errors. Not only does it Qit
have excellent bias and representation error proper- ‘\\\\
ties, but it makes feasible the use of alignment \\
rounding. Alignment rounding decreases the bouads on ~ o . />‘A
local roundoff errors in addition and subtraction g o4 8~bit ROM —
(derived in [3]), although it is apparently useful =
only when few guard digits are employed. ROM-rounding ~ Rounding, R*
can probably be used--especially with binary machines © o (identical) e
having only a couple of guard bits--to exploit the 0 7T
tradeoff between guard bits and alignment rounding, S
producing an extremely cost~effective rounding scheme.
(=]
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Figure 3. Effect of ROM length on error growth
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Figure 4. Serial addition error growth
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Figure 5. Serial subtraction error growth Figure 6. Mixed-sign addition error growth
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