Mathematical Foundation of Computer Arithmetic

U. Kulisch

During the last years a number of papers concerning a
mathematical foundation of computer arithmetic have
been written. Some of these papers are still unpubli-
shed. The papers consider the spaces which occur in
numerical computations on computers in dependence of
a properly defined computer arithmetic. The following
treatment gives a summary of the main ideas of these
papers. Many of the proofs had to be sketched sr com-
pletely omitted. In such cases the full information
can be found in the references.

1. Introduction

Numerical algorithms are usually derived and defined
in one of the spaces R of real numbers, VR of vectors
or MR of matrices over the real numbers. Besides of
these spaces occasionally also the corresponding com-
piex spaces C,VC and MC occur. A couple of years ago
numerical analysts also began to define and study al-
gorithms for intervals over these spaces. If we denote
the set of intervals over an ordered set M,<} by

IM we get the spaces IR,IVR,IMR and IC,IVC and IvC.
See the second column in figure 1.

Since a real number in general is represented ty an
infinite b-adic expansion the algorithms given 11 the-
5€ spaces in general can not be executed withir them.
The real numbers, therefore, get approximated by a
subset T in which all operations are simple and fast
performable. On computers for T a floating-point sy-
stem with a finite number of digits in the mantissa
is used. If the desired accuracy can not be achieved
by computations within T a larger system S with the
property R>DSDT is used. Over T respectively S we
can now define vectors, matrices, intervals and so

on as well as the corresponding complexifications.
Doing this we get the spaces VT,MT,IT,IVT,IMT,CT,VCT,
MCT,ICT,IVCT,IMCT and the corresponding spaces over
S. See the third and fourth column in figure 1. In
the practical case of a computer T and S can be un-
derstood as the sets of floating-point numbers of
single and double length. In the table of figure 1,
however, S and T are only examples for a whole system
of subsets of R with properties which will be de®ined
later.

Now in every set of the third and fourth column of
figure 1 operations are to be defined. See the fifth
column in figure 1. Furthermore the lines in figure 1
are not indgpendent of each other. A vector can be

multiplied by a number as well as by a matrix and an
interval vector by an interval as well as by an inter-
val matrix. In a good programming system the opera-
tions in the sets of the third and fourth column in
figure 1 should be available possibly as operators for
special data types.

R > s > 7 + -/
VR > VS > vT + -
MR > MS > MT + -
PR > IR 2> IS > IT + -/
X
PYR > IVR > IVS > IVT + -
%
PMR > IMR > IFS > IMT + -
C> ¢ > (T + -/
VO > VS > V(T + -
MC > MCS > MCT + -
PC > IC > ICS > ICT + -/
x
PVC > IVC > 1viS > IveT + -
X
PMC > IMC > IMIS > IMCT + - .

Figure 1: Table of the spaces and operations
occuring in numerical computations

The following treatment is devoted to the question how
these operations are %o be defined and in which struc-
tures they result. We shall see that all these opera-
tions can be defined by a simpie, general and common
concept which allows to describe all the sets listed
in figure 1 by two abstract structures. More precisely
the structures derived from R can be described as or-
dered ringoids respectively as ordered vectoids while
those derived from C zre weakly ordered ringoids re-
spectively weakly ordered vectoids. (Definitions see
below).

We are now going to describe this general principle a
Tittle more closely. Let M be one of the sets listed
in figure 1 and M a set of rules (axioms) given for
the elements of M. Then we call the pair {M,ﬁ} a
structure. In figure 1 the structure is well known in
the sets of R,YR,MR,C,VC and MC. Let now M be one of
these sets and % one of the operations defined in M.
Then also in the powerset PM, which is the set of all

subsets of M, an operation % can be defined by




VAN AxB
A,B=PM

If we apply this definition for all operations » of M

i={axblas A nAbe B} (1)

we shall see below that also in the powerset & struc-
ture {PM,E&} can be derived from that in {M,M}. Sum-
marizing this result we can say that in figure 1 the
structure {M,ﬁ} is known always in the left most ele-
ment of every line. We are now looking for a general
principle which allows us, beginning with the struc-
ture in the left most element of every line, also to
derive a structure in the subsets to the right hand
side.
First of all we define that the elements of a set M
have to be transfered into the elements of a subset
N on the right hand side by a rounding. A mapping
0: M —=>N, Nc M, is called a "rounding" if it has
the property
(R1) AN\ Dac=a.

a e N
Further in all structures of figure 1 which we alrea-
dy know a minusoperator is defined and if for instance
S and T are floating-point systems it is sasy to see
(see [11},{12],0131,114]1,[161,[19]1) that in every line
in figure 1 all subsets have the property
(s) N -ae Nac,eesh,

ae N
where o denotes the neutral element of additicn and
e the neutral element of multiplication of it exists.

It will turn out below that the rounding O : M — N
is not only responsible for the mapping of the ele-
ments but also for the resulting structure in the sub-
sets N. If the structure {M,ﬁ} is given the structure
{N,N} is essentially dependent by the properties of
the rounding function O . More precisely N can be de-
fined as the set of rounding invariant properties of
M, i.e. it is Nc F. Or in other words the structure
{N,N} becomes a generalization of {M,M}. If we move
from the second to the third column in figure 1 we get
a full generalization Nc M. In the next an possible
further steps N o= M.

Let us now consider the question how a given structure
{M,ﬁ} can be approximated by a structure {N,N} with

N e M Ina first approact one is attempted to try it
with useful mapping properties 1ike isomorphism and
homomorphism. But it is easy to see that an isomor-
phism can not be achieved and it can be shown by simp-
Te examples in the case of the first line of figure 1
that also an homomorphism can not be realized in a
sersible way. We shall see, however, that it is possib-
Te to implement in all cases a few necessary condi-
tions for an homomorphism. With these conditions we go

as far to an homomorphism as possible. Let us there-
fore at first repeat the definition of an homomor-
phism.

Definition: Let {M;M} and {T,T} be two ordered alge-

braic structures and let a one to one correspondence
exist between the operations and order relation(s) in
M and T. Then a mapping O: M —N is called a
"homomorphism” if it is an algebraic homomorphism,
j.e. if
/A (Oa)®(Ob) =0 (a x b) (2)
a,be M
for all corresponding operations » and B and if it
is an order homomorphism, i.e.

AN (a<b=[a<Ob). o (3)
a,beM

We are now going to derive these necessary conditions.

If we restrict (2) to elements of N we get immediately

because of (R1)

(R) A
a,beN

Later we shall use this formula to define the opera-

a@b=[0(axb).

tion @, xe{+,-,-,/}, by the corresponding opera-
tion # in M and the rounding J: M —N.

From (3) we get immediately that the rounding has to
be a monotone function

(R2) A\ (a< b =>0a
a,beM 7

nA

db) monotone

If we further in case of multiplication in (2) repla-
ce a by the negative multiple unit -e we get
/\ O(-b) = O(-e)@ Ob = (-e)@ 0Ob = a(-0b) =
be M (S),(R1) (R)

= -0b, i.e.
(S),(R1)

(R3) A

aeM

O(-a) = -0Oa antisymmetric

This means that the rounding has to be an antisymme-
tric function.

The conditions (R1),(R2),(R3) do not define the roun-
ding function uniquely. We shall see later, however,
that the structure of an ordered or weakly crdered
ringoid or vectoid is invariant with respect to
mappings with the properties (S),(R1),(R2),(R3) and
(R). The proof of this assertion in all cases of fi-
gure 1 is a difficult task which can not be solved
within this paper. It is, however, an essential re-
sult that it can be given in all cases. (See [11],
[12},{131,{14],[16],(19],(201).

Now there arises the question whether an arithmetic
which fulfills all our assumptions (R1),(R2),(R3),(R)
can be implemented on computers in all cases of fi-




gure 1 by fast algcrithms. We shall informatively ans-
wer this question positively within the next chapter,
{For proofs see {131,[141,[161,[31,(61).

2. Further Roundings, Implementation and Accuracy

: The situation is the following. We have a set M with
~ an operator ® , for instance +,-,+,/. On our computing
tool in general the elements of M as well as the ra-
_ sult of an operation a ¥ b are not exactly represen-
- table. Therefore we approximate the elements of M in
a subset N by a prooer rounding O0: M — N . For an

approximation of the operation # we have derived the

formula
(R)y A afMb := O(a % b).
a,beN

At the first view this formula seems to contain a
contradiction. The in general not representable re-
sult a ® b seems to be necessary for its realization.
If, for instance, in the case of addition in a deci-
mal floating-point system a is of the magnitude 1090
and b of the magnitude lo"50 for the representation of
a + b about loo decimal digits in the mantissa would
be necessary . Even the largest computers do not have
such long accumulators. A much more difficult situa-
tion arises in the case of a floating-point matrix
multiplication or in the case of a division of complex
floating-point numbers by formula (R}. It can be shown,
however, that in all cases in which a ¥ b is not re-
presentable on the computer “t is sufficient to re-
place it by an appropriate and respresentable value
a % b with the property O(a * b) = O (a x b). Then
a% b can be used to define @ [¥lb by

A afb:=0O(asb)=((axb)

a,beT
The proof of this assertion has to be given by con-
crete algorithms in all cases of figure 1.

Before we are going to discuss the question of imple-
mentation in more details let us increase the ava'-
lable set of roundings. A rovnding O: M =N s
called "directed" if

(R&)y A\ Dac<a downwardly directed

upwardly directed

Let us now assume that the subset T of R in figure 1
is a floating-point system T = T(B,n,el,e?) wherein

B denctes the base of the number system, n the number
of digits in the mantissa, and el and e? the jeast
and greatest positive exponent. Then we shall use spe-
cial notations for the following special roundinge:

Va : monotone downwardly directed rounding
Aa : monotone upwardly directed rounding
/A Oga $aa /\ Oga = —DB(—a) menotone rounding

> <
azo aso towards zero

N a ;Eloa VAN O,a = -O,(-a) monotone rounding

> <
azo aso away from zero

Further let
5,(2) = Va +iv—at‘)‘§ﬁ-u , u=1(1)8 . (1)

Then we define roundings EJu TR =T, u=1(1)6-1, by

O a-=o0
aelp,pel-1y ¥

1
DU

<a<B

) {Va-&raE[Vaﬁ(aH
a = H

A
gel-1 Aa for a5, (a),Aa]

/A Oa-= -Elu(-a),,

ac<o H
where B := 0.(8-1)(R-1)...(B-1) « BeZ denotes the grea-
test representable floating-point number.
If 8 is an even number then E]B/Z denotes the rounding
to the nearest number of T and EJB/Za = (Va-Aa)/2.

The roundings {V7,zk,[]u, u= o(1)6} are not indepen-
dent of each other. The following relations are easily

verified:
Aa = -(-a) (3)
Va = -A(-a) (4)
E]oa = sign(a) * Ala
O.a = sign{a) + Vlal

8
A11 roundings E]u : R ~->T,u = o(1)B, are further
antisymmetric functions. From (1),(2),(3),(4) follows
that all these roundings can be expressed by the mono-

tone downwardly (resp. upwardly) directed rounding.

An algorithm for the realization of formula (R) can in
principle be separated into the following five steps:

1. Decomposition of a and b, i.e. separation of a and
b into exponent part and mantissa. (DC).

2. Execution of the operation a xb. It is possible
that a » b = a x b,

3. Normalization of a # b. If the result is already
normalized this step can be omitted (N).

4. Rounding of a # b to a@b = O(a % b) = O(a

—~ 1

b).
).

R
5. Composition, i.e. combination of the resulting

exponent part and mantissa to a floating-point

1 Since it is not necessary for the purposes of this
paper we do not define the roundings OO , u=1(1)8,
for |a} > B. H




number. (C).

“

Figure 2 gives & graphical diagram of these five
steps. A more detailed discussion of these steps can
be found in the Titerature [13],[14],{151,[171,[22],
[8].

A,S Addition and Subtraction

M Multiplication

DV Division
Figure 2: Flow diagram for the arithmetic operations

The algorithms can be implemented using accumulators
of different length. A convenient algorithm uses an
accumulator of one digit which can be a binary digit
in front and 2n+l digits of base R after the point.
See figure 3. A more structured algorithm does it
with an accumulator with one digit which can be a
binary digit in front of the point and n+2 digits of
base 8 plus one binary digit after the point. See
figure 3. This algorithm shows that a further reduc-
tion of the length of the accumulator is impossible if
formula (R) strictly is to bte realized.

long accummulator

( 1 n__ 1]
t

1 bit Zn+l digits of nase B

short accumulator

i n P11
t
1 bit n+2 digits 1 bit
of base 8

Figure 3: Long and short accumulators

The algorithms show as an essential result that the
whole implementation can be separated into five steps
as indicated above which are independent of each
other. This means that the provisional result a b
can be chosen independently of the rounding function
such that for all ¥ €{+,-,+,/} and for all roundings
of the set {Y7,£§,E]u, u=0(1)B} formula (R) holds.

With these algorithms the question of implementation
is solved in case of the first line of figure 1 and
since formula (R} has also been implemented with the
roundings V and A also for most of the interval
lines in figure 1. This last assertion will be dis-

cussed later.

We are now going to discuss briefly the implementa-
tion in case of matrix operations. Let O : R —T be
a rounding. If we define a mapping O: MR —MT by
OA = (3a,.)
A=(a,.) EMR W
ij’
then also O0: MR —MT is a rounding. If further the
rounding O: R — T is monotone, directed, anti-
symmetric respectively then also the rounding O:
MR —>MT is monotone, directed, antisymmetric re-
spectively.
By formula (R) the operations % , #€{+,}, in MT have
to be defined by
(Ry /N A@EB := O(2 % B) for all xe{+,},
A,BeMT
If A={(a,,)and B
W

addition

It

(bij) then we get in case of

A@B := O(A+8B) = (aij E]bij)'

Therein the addition on the right hand side means the
addition in T which by assumption is properly defined
and there is no problem connected with the addition.

In the case of multiplication, however, we get

r
AGIB := (A - B) == O( 2 agbs) (5)
v=1 J
where in

r
a. b (6)

vel V]
the multiplications and additions denote the real
multiplication and addition. Even on computers with a
so called accumulator of double length only in very
rare cases (6) is exactly representable. The algo-
rithms show, however, that whenever (6) is not re-
presentable it can be replaced by an appropriate and

representable value

.;\_//
T a; b . (7)
val VIV
with the property
r - T oS—
g(A-By=0(1t awbvj):D(A- B)=0( £ aivb\)j) (8)
v=1 v=]

Then (8) can be used to define (5). The explicit al-
gorithms prove this assertion. See [16],[3].

In order to realize (8) at first the products

a5, bvj are calculated. If aij

point numbers of n digits in the mantissa then

and bij are floating-

3y bvj can exactly be generated within an accumu-
lator of L = 2n digits. If this is done then (8) can
be generated if the sum
/;\\__/
z:=0(I x)=0(1 %) (9)
i=1 i=1

can be implemented where the X35 i=1(1)r, denote




"L = 2n digit floating-point numbers and z is an n di-
git floating-point number. Tne algorithms mentioned
above could also be used to osroduce a floating-point
number z defired by (9) of n,n+l,...,L=2n correct di-

gits just by rounding the intermediate result
P

E X5 to other Tength. These algorithms again can be
i=1
separated into several independent steps which means
’r‘\./
that the intermediate result g X; can be chosen
i=1
indepandently of the rounding function such that for
all roundings of the set [ (V7,Z§,C]u, pu=0(1)gr} the

equality
r /Y’\/
O(z %) =02 x;)
i=1 izl

holds. The whole algorithm uses an accumulator with
one digit which can be a binary digit in front of the
point and L+2 digits of base B plus one further
binary digit after the point. If n denotes the num-
ber of digits of the floating-point mantissa then
L=2n. See figure 4.

L l LTl
4

, . 7
1 bit L+2 digits of 1 bit
base B, L=2n

Figure 4: Length of the accumulator for scalar
prodructs

With this algorithm the question of implementation
is solved not only in case of the thirc line of fi-
gure 1 but also in the cases of vector matrix multi-
plication, multiplication of complex floating-point
numbers by formula (R), complex floating-point ma-
trix products and matrix vector multiplication, ard
since formula (R) has been realized also for the
roundings V and A in all cases of interval struc-
tures occuring in figure 1.

As far as the implementation is concerned there
remains only cne open guestion. This is the case of
complex floating-point division. In this case the

formula
ab + cd

L](E?fraﬁ)
has to be realized. But also this problem has been
solved in [6]. In this case still a little longer
accumulator is necessary. The running time for a
software solution of this quotient comparad with the
usual complex quotient (UNIVAC 1108) was enlarged by
an average factor of 1.2. If we take into account the
improvements with respect to error analysis (see be-
Tow) or to a much better theoretical understanding of
computer arithmetic (see below) this shows that such
algorithms should be realized.

Let us in case of matrix operations still discuss the
general advantage which we get if we define the compu-
ter arithmetic by formula (R) in all lines of figure 1.
Figure 5a describes the way how matrix-operations on
computers are usually defined. The matrix-operations in
MT for instance are defined by the floating-point ope-
rations in T and the usual formulas for matrix addi-
tion and multiplication of real matrices. An error
analysis of such an arithmetic has to go back to the
elementary floating-point operation and in general
there are no obvious compatibility properties valid
between the matrix operations in MR and MT,

R——>» § —m—» T

a | | |

MR MS MT

R——» S s T

b) |

MR ——» MS ——= MT

Figure 5: Definition of floating-point matrix
operations

Figure 5b describes the new way of defining floating-
point matrix operations by formula (R). The opera-
tions in MT, for instance, are directly defined by the
operations in MR. This leads to a much higher accuracy
and allows a much simpler error analysis (see below).
Further by the rounding properties (R1),(R2),(R3)
which we have assumed the following reasonable compa-
tibility properties betwsen the structure in MT and
that in MR are easily verified

(RG1) A
A,BeMT

(A% BeMT =A BB = A % B) for all
ae {+,-,¢}
(RG2) A (A&B;Ca(Dﬁ)ABECD)foraH
A,B,C,DeMT e, - o)

(RG3) A -A = DA:=(-E) DA, E unit matrix
Ae MT

(RG1) should be valid for every computer arithmetic
(RGZ) expresses its monotonicity and (RG3) the iden-
tity of the minusoperators in MR and MT.
In all interval lines in figure 1 the rounding is
furthermore upwardly directed. Then we get a fourth
compatibility property:
(RG4) A\ AxB <A@B

A,B
In this case the < sign reans the inclusion and (RG4)
then says that the result of an operation inthe ori-
ginal set is always included in the result in the
approximating subset.

Concerning accuracy we begin with the following well




kncwn result: Let T = T(B,n,el,e2) be a floating-point
system and [J: R —T a monotone rounding and le-
§(0a) := a - Oa denote tne absolute rounding error
and € := §({Ja)/a the relative rounding error. Then

A L e 6% 0 = a(1-c) with fe] < f =

aeR =>la - Oa| ¢ X+ ja])
where
% 51'” for the rounding to the nearest floating-
. point number
el else Ho

If we define floating-point arithmetic by formula (R)
and a menotone and antisymmetric rounding we get
immediatly for all operations xe{+,~,+,/}

A B < lamb <e® =a @b = (ax b)(l-¢)
absT with e] < ¥ =
=laxb-a@b| ¢
< * - Jaxbl)
where e* is defined by (10).

This result is the base for most rounding error esti-
mations in Numerical Mathematics. It should, however,
be c¢lear that such estimations only lead to reliable
error bounds if formula (R) is strictly implemented.

Error estimations for floating-point matrix computa-

tions are usually derived in the sense of figure ba.

See [21]. If we apply the new definition (R) (fi~

gure 5b) we get identically the same formulas than in

the case of the elementary floating-point operations:

Let again O: R —= T be a monotone and antisymmetric

rounding and a rounding O: MR —> MT be defined by
VAN OA := (E]aij)'

A=(aﬁj)eaMR

Then

/\ (/\ bel‘l Ja
A=(a; )R 1, i

with [g”| <e® =p [A -OA| < *. |A])

e? )
<b J.(l—E,U

HA

=>0A=(a, )

where e* is cdefined by (10) and the absolute value is
defined componentwise.
If in MT operations » e {+,-}, are defined by
formula (R) and A,BeMT we get with tne abbreviation
ARE (Zij) i= A% B for all operations e {+,~,-}

A AT T b mame - (2 (1))
ABaMT i,j =W [ (11
with feg s <X => [AxB-ARB|<e® [ANE]).

This is the same simple formula with the same ¥ which
we have got in case of the elementary floating-point
operations. Because of its much simpler form it

allows a much simpler error analysis for floating-
point matrix computations than an errar analysis derj-

ved in the sense of figure 5a. Furthermore (11) s
more accurate. In [5] an error analysis of the GauR
algorithm for linear equations using formula (11) 1is
given. See also [4].

In contrary to most error estimations in Numerical
Mathematics the error formulas derived in this paper
lead to absolute error bounds if formula (R) is
strictly implemented.

3. The Structure of Computer Arithmetic

In literature severa® attempts to formulize computer
arithmetic are known. A1l these models are only in-
terested to describe the relationship between the
real numbers and a floating-point system. It turns
out, however, that the real numbers have to many very
special properties in order to recognize all essen-
tial properties already at this model. Only the enti-
rety of structures listed in figure 1 seems to give
the frame which allows a general theory of computa-
tions in subsystems. Essential contributions towards
a theoretical understanding come especially from in-
terval arithmetic. Roughly it can be said that bet-
ween the powerset of an ordered algebraic structure
and its intervals there exists mathematically the same
relationship than between the real numbers and a
floating-point system.

An abstract theory of computations in subsets has to
begin with a characterization of the essential proper-
ties of the sets in figure 1. A1l these sets are or-
dered with respect to certain order relations. Let us
consider the interval vectors of dimension 2, IVZR.
This are intervals of two dimensional real vectors.
Geometrically such a vector describes a rectangle
with sides parallel to the axes. These interval vec-
tors are special elements of the powerset PV2R of the
real vectors which is defined as the set of all sub-
sets of real vectors. Between these sets the follow-
ing relationship holds:

1. For all aEIDVZR there exist upper bounds (with
respect to the inclusion as order relation) in the
subset IVZR. Figure 6.

2. For all aEIDVZR the set of all upper bounds in the
subset IVZR has a least element. Figure 6.

4477' c

A ae PV2R

b,CEIVZR

acbaacca

IWAN (ach =>ccbh)
be IV,R -

—> 2

Figure 6: To the concept of a screen




These two properties also characterize the relation-
ship between any set of figure 1 and its subset(s) on
the right hand side. Let us now consider the set of
real numbers R and a subset T of floating-point num-
bers. We have again the two oroperties:

g . 1. For all a=R there exist upper bounds (with re-
spect to the order relation < of the real numbers)
in the subset T. Figure 7.

2. For all a&€R the set of all upper bounds in the
subset T has a least element. Figure 7.

In this case corresponding properties are also valid
for the lower bounds.

aeR
b,ceT
'*9—+—%*—¢kaL¢-+*}~+>R a<baac<ca
b' c'ac N -

Figure 7: To the concept of a screen

We summarize these properties by the

Definition: Let {M,<} be an ordered set and L(a) :=
{beMb < a| respectively U(a) := {beMja < b} dencte
the set of all Tower respectively upper bounds of a.

A subset TS M is called a lower resp. an upper screen
of M if

(1) AL@NnT4¢ resp. N U(@a)NT 4 p
aeM as M
(s2y NV /N b<x resp.

aeM xelL(a)NT bel(a)NT

vV N\ x <b
aeM xeU(a)NT bel(a)NT
If TeMis sumultaneously a lower and an upper screen
then it is called a screen of M,{9]. ul

In all essential applications of the concept of a
screen the basic set M is not only an ordered set
but a complete lattice. In this case nesessary and
sufficient conditions can be derived. See [10].

Let {M,<} be a complete lattice with the greatest
element i(M) and the least element o(M). If a subset
Tc Mis also a complete lattice it is called a com-
piete subformation. Then

, ;;\T,A ; D(1'n1’TA < infyAasupyh < supsh) .

If the first inequality always is an equality T is
called a complete infimum-subformation of M and in

the dual case a complete supremum-subformation of M.
If both inequalities are always equalities T is called
a complete sublattice of M. The following theorem
holds

Theorem: A subset {T,s} of a complete lattice {M,s}
is a Tower screen (resp. an upper screen) of {M,<} if
and only if

(S1') o(M) = ofT) (resp. i(M} = i(T)) and
(sz2') {T,<} is a complete supremum-subformation (resp.
a complete infimum-subforation) of {M,<} .

{T,2} is a screen of {M,<} if and only if o(M)=0(T),
i(M) = i(T) and {T,<} is a complete sublattice of
M,<t . o

For the proof see [10]. Now it can be shown that all
sets in figure 1 are screens of the set(s) on their
left hand side. See [111,[12],[13].

With this concept further theorems can be derived. For
instance if {M,<} is a complete lattice and {T,<} a
lower resp. an upper screen then the monotone down-
wardly resp. upwardly directed rounding can be
characterized by

/\ Va=sup(L(a)NT) resp. /\ Aazinf(U(a)NT).
aEM aeM
If further {M,x} is a groupoid with a right neutral
element then {T, ® } is a groupoid on the screen with
the properties (RG1),(RG2),(RG4) if and only if

/N a@®b=V(a»b) resp. A\ allb=A(a % b).
a,beT a,beT
For proofs and applications see {9],[13].

We are now going to define the special structures of

a weakly ordered resp. an ordered ringoid and derive
its most important properties. We shall Tater see that
this under the assumptions (S1),(S2),(S),(R1),(R2),
(R3) and (R) describes the structures in the Tines 1,
3,4,6,7,9,10,12 of figure 1.

Definition: A non empty set R in which an addition

and a multiplication are defined is called a ringoid
if

) N a+b=b+a
a,beR
m2) V AN\ a+o-=a
o=sR aeR
) V. A ace-e-a-a
esR\{o} aeR
(D4)/\a‘0:0.a:0‘
aeR

(D5) There exists an element x=R\Je} such that

(a) x+x = ¢

(b) /N x(ab) = (xa)b = a(xb)
a,beR

(¢) /N x(a+ b}y = xa + xb
a,beR

(D6) x is unique.
If furthermore in a ringoid a division /: RxR\N —>R




is defined with Nc R and o= N it is called a civi-
sion-ringoid if

(0b7) /\ a/e =a

ae R
(08)y /\  ofa=o0
aeR\N
(D9) Besides of (D5) the element x also fulfils the
property
/N /N x(a/b)=(xa)/b=a/(xb).
ae R b=R\N

A ringoid is called weakly ordered if {R,<} is an
ordered 1) set and
(on1y /N (a<b=>a+c <b+c,

a,b,ce R
(on2) /N (a £b=-t < -a)

a,be R
A weakly ordered ringoid resp. divisionsringoid is
called an ordered ringoid resp. an ordered divisions-
ringoic if
(op3)y  /\

(o<a<bacr»o =>a-c<becac
a,b,ceR

cac<ceh)

respectively
(opa)  /\ (o <a<bac>o =>o0<a/csb/cac/a;c/bzo)

e,b,ceR o

The uniqueness of x can be used for the following
Definition: In a ringoid R we define a minus opera-

tor and a subtraction by

/N -a = x-e (1)
aeR
AN a-biza+ (-bl. O (2)
a,beR

Simple consequences:

(1) => x = -e
a=e

(D5a) = (-e)(~e) = e

(D5b) == -(ab) = (-a)b = a(-b)

(D5¢c) =>=-(a+b) = (-a) + (-b)

(0D2) =>(a<b =»-b<-~a)

In general there do not exist inverse elements of
the addition within a ringoid. But nevertheless the

subtraction is no independent operation. It is de-
fined by the multiplication and the addition.

Theorem: In a ringoid R the following properties hold:
(a) e 4 0, e 3 0, -e % e.

(b) o - a=-a

1 . . )
) {R,g} is an ordered set means < is a reflexive

(01) transitive (02) and antisymmetric (03)
relation

(-a)(-b) = ab
o respectively e is the only neutral element of the
addition respectively multiplication

(h) o is the only right neutral element of the sub-
traction.

In a divisionringoid we get further

(1) (-a)/(-b) = a/b

(3) (-e)/(-e) = e

In a weakly ordered ringoid holds

(k) a gbac zd=>a+c cb+c

(1) a<b ==-b<-a

In an ordered ringoid respectively ordered division

ringoid we get

(m) o<agbacz<cs<d =»ogacgbdaogcagdd

(

p)
(q) a<oab>c =>a/bgoab/aco
r)

(

a>oab>0 =a/b2o0

a<oab<o =>a/bzo . D

The proof is left to the reader. See [111,[13]. The
theorem can be summarized. In a ringoid the same rules
for the minus operator hold than in the real number
field. In an ordered ringoid for all elements which are
comparable with o with respect to ¢ and > the same
rules for inequalities hold than in the real number
field.

Applications: Let R be a divisionringoid.

If MR denotes the set of r xr matrices with components
out of R and in MR the equality, addition and multi-
plication are defined by the usual formulas for the
components then also MR is a ringoid.

If PR denotes the powerset of R and in PR operations
are defined by 1. formula (1) then also PR becomes a
divisionringoid.

Let CR denote the se® of pairs of elements of R and let
in CR an addition, multiplication and division be de-
fined by the same formulas than in the complex number
field then also CR becomes a divisionringoid.

If R is a weakly ordered divisionringoid and in MR
respectively CR an order relation is defined component-
wise then MR is a weakly ordered ringoid respectively
CR a weakly ordered divisionringoid.

1f furthermore R is an ordered ringoid then also MR is
an ordered ringoid.

For the proofs of these results see [111 and [13].




If in figure 1 R is an ordered divisionringoid then by
these results the structure is also known in the first

elements of the lines 3,4,6,7,9,10 and 12.

We are now going to discuss the theorems which allow
us to transfer these structures to the subsets on the
right hand side.

Theorem: Let R be a ringoid with the special ele-

ments {-e,0,e}, {R,c} a complete lattice and {T,<t a

symmetric screen (51),(S2),(S) (resp. a symmetric

lower screen resp. a symmetric upper screen), O:

R -—>T an antisymmetric rounding (R1},(R3) and let in

T cperations x , ¥<{+,+}, be defined by formula (R)

Then

(A) in T the following properties hold: (D1),(D2) for
0, (D3) for e, (D4),(D5) for -e and

(RG1) A\
a,beT

(anxbeT =a@b =axb), xe{+,-,+}

(R&3) A\ -a=(-e)Ha
ae T
(B) if O: R ->T is monotone (Rz) =>
(Re2) /N (axbscad =>a@bsc@d),
a,b,c,d&T xa {+,-,0 -
(C) if O: R ~>T is upwardly resp. downwardly direc-

ted (R4) =

(RG4) AN aMb<axb resp.
a,beT N
VAN a%¥b<a@b , = {+,-,+}
a,beT -

(D} if R is weakly ordered (0D1),(0D2) and O: R =T
montone =»
T is weakly ordered, i.e. {0D1), (0D2) hold.

(E} if R is ordered (0DB3) and O: R —> T monotone =
in T (0D3) holds. o

Theorem: Let R be a divisionringcid with the special

elements {-e,0,e}, {R,g} a complete lattice and {T,<}

a symmetric screen (resp. a symmetric lower screen

resp. a symmetric upper screen), [d: R =7 an anti-

symmetric rounding and let in T operations &,

%e{+,-,/} be defined by formula (R}. Then

(A) in T the following properties hold: (Dl1),(D2) for
o, (D3) for e, (D4),(D5) for -e, (D7),(D8),(D9)
for -e, (RGl) for e {+,~,-,/} and (RG2)

y if O: R > T is morotone = (RG2) for wel{+,-,,/]

v if O: R ~>T is downwardly resp. upwardly direc-
ted => (RG4) for ¥ e {+,-,+,/"

(D) if R is an ordered divisionringoid and O: R =T

monotone =>in T (0D4) holds. o

A1l statements of these theorems are easily verified.
As an example we prove the properties (D5c) and (0D1):

(D5c): (-e)E a = O(-a)

1t

((-e)E a) @ ((-e) B b).
(0b1): a < b= a+c<b+c=20(a+c)sOb+tc)=>
- (0bL)p (R2) = (R)
=>afBc<bMlec .

The proofs of these two properties show already that
our assumptions (S),(R1),(R2),(R3),(R) are really
necessary in order to get the desired structure in T.
If we change these properties or do not realize them
strictly we get a different structure in the subset
T.

The last two theorems show that if we proceed as sta-
ted we get nearly again the structure of a ringoid

in the subset T. The only propertiy which can not be
proved by a general theorem is (D6). The proof of
this property is a difficult task in all cases of
figure 1. Concerning to these proofs we refer to the
Titerature (113, [121,0131,0141,[16],[20].

We still indicate the proof in the case of the first
line of figure 1. As usual we call an ordered set
Tinearly ordered if (04) holds:

(04) A
a,beR

{asbwvbga).

Theorem: In case of a linearly ordered set {R,<} (D6)

is no independent assumption, i.e. (01),(02),(03),
(04),(D1),(D2),(D3),(D4),(D5),(CD1),(0D2),(0D3) =
(D6). O

This theorem guarantees that the structure of the
floating-point numbers S and T (first line of fi-
gure 1) is that of a Tinearly ordered divisionringoid.

We are now going to define the structure of the
"higher dimensional spaces" listed in figure 1. We
shall later see that the structure of a weakly or-
dered resp. an ordered vectoid under the assumptions
(S1),{S2),(5),(R1),(R2),(R3) and (R) describes the
structures in the lines 2,3,5,6,8,9,11,12 of figurel

Definition: Let R be a ringoid with elements

a,b,c,... and the special elements {-e,o0,e} and {V,+}

a groupoid with elements a,b,c,... and the proper-

ties

w1y AN
a,beV

a+b=>5b+a




VoA a+o=a.

veV asV

(v2)

V is called an R-vectoid {V,R} if there is a multipli-

cation + : RxV —> V defined which, with the abbre-
viation

/N ~a = (-e) - a,

asy

fulfils the following properties:

(wl) A AN (a+0=0mn0-+a-=

o)

as=R qeV

(VDZ) /\ e s a=q
aey

(VD3) /\ /\ ‘(a s a) = (-a) q= i e ("d)
aeR aeV

(Vo4) A -(a+b) = (-a) + (-b)

a,be ¥
An R-vectoid is called "multiplicative® if in V also
a multiplication « : VxV =>V is defined with the

properties:

(v3) V N are=¢+a=a
eeV\{o} aeV

(V&) N\ aro=0-a=0
aeV

(VD5) A\ ~(ab) = (=a)b = a(-b).
a,beV

An R-vectoid is called “weakly ordered" {V,R,<} i*
{V,<} is an ordered set and

(oviy A\ (a < b =a+¢ <b+e)
a,p,ceV

(0v2) /A (agb= -b< -a)
a,be V

A weakly ordered vectoid is called "ordered” if R is

an ordered ringoid and
AN AN

a,heR a,bey
0<a

(0V3) (ogasbac fa=acagbean

AO <a<h=aac<a- b).

A multiplicative vectoid is called “weakly ordered" if
it is a weakly ordered vecteid. A multiplicative vec-
toid is called "ordered” if it is an ordered vectoid

and

(ovay A (ccaghbac

a,b,ceV
AC

fe=>accgb-coa
< b). o
A
a,beV

Again in general there do not exist inverse elements

vectoid we define a subtraction by

a-b:=a+(-b). n

of the addition within a vectnid. But nevertheless

the subtraction is no independent operation. It is de-
fined by the multiplication with elements of R and

the addition.
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Theorem: In a vectoid {V,R} the following properties
hold:

(8) 0 is the only neutral element of the addition,

(bYo - a=-a

(¢) ~(-a) = a

(d) ~(a-b) =-a+b=b -a

(e) (-a)(-a}) =a-a

(f) -a =o<=>a =¢

In a multiplicative vectoid {V,R} we get further

(9) e is the only neutral element of the multiplica-
tion

(h) ~a = (-¢) »+ a=a-(-e)

(1) (-a) «(-b) =a « b

In a weakly ordered vectoid holds

(JJagbacsd=a+e <b+d
(k) a < b =>-b< -a
In an ordered vectoid respectively ordered multiplica-

tive vectoid we get

(IJogagbrocegd=0gac<bd
(mMagbsorNecsdso=o <bod g ac
(nagb<ong gecd=ad ¢bego

(o) o ga g bres<dgo=begadcso
(Plogacbrogesd=>ogacs<odno <ca<db
(@acsbco™oce sd=adgbegondagechco
(rfasbsonrccd $0=0cbd ¢ac™ 05 db<ca.

a

The proof is left to he reader. See [191,[13]. The
theorem can be summarized. In a vectoid the same rules
for the minus operator nold than in the real vector
space. In an ordered vectoid for all elements which
are comparable with ¢ with respect to < and > the

same rules for inequalities hold than in the real
vector space.

Applications:
Let {V,R} be a vectoid. Then the powerset {PV,PR} is

a vectoid as well as {PV,R} is a vectoid.
Let R be a ringoid with the special elements {-e,o0,e}.

If VR := RxRx... xR denotes the set of vectors with
companents out of R and in VR the equality, addition
and multipiication by elements of R are defined by the
usual formulas for the components then {VR,R} is a
vectoid.

If MR denotes the set of rxr matrices with components
out of R and in MR the equality, addition and multi-
plication as well as tne multiplication by elements of
R are defined by the usual formulas for the components
then {MR,R} is a multiplicative vectoid.

If VR again denotes the set of n-tupels over R and in
VR the equality, addition and multiplication by ele-




ments out of MR are defined by the usual formulas for
the components then {VR,MR} is a vectoid.

If R is a weakly ordered respectively an ordered
ringoid then also {VR,R,<} as well as “VR,MR,<} are
weakly ordered respectively ordered vectoids.
{MR,R,<} is a weakly ordered respectively an ordered
multiplicative vectcid.

The proof of these results is left to the reader. See
[19] and [13].

If in figure 1 R is an ordered ringoid then by these
results the structure is alsc known in the first ele-
ment of the lines 2,3,5,6,8,%,11 and 12.

We are now going to descuss the theorems which aliow
us to trarsfer these structures to the subsets on the
right hand side.

Theorem: Let {V,R} be a vectcid and ¢ its neutral
element, {V,<} a complete lattice and {T,<} a symme-
tric screen (S1),(S2),(S) (resp. a symmetric lower
O:v—T
an antisymmetric rounding (R1),(R3) and S a screen-
ringoid of R. In T let an operation [H: TxT =7
SxT —>T be defined by

screen resp. a symmetric upper screen),

and a multiplication OJ:
formula (R). Then
(A} {7,S} is also a vectoid with neutrzl element ¢

and
(R61) /\ (a+ beT =a@b=a+b)a
a,beT
N\ /\(a-aET=>aEJa=a-a)
aesS asT
(Re3) /\ Ba=-a,
aeT
(B) if O:V =T is monotone (R2) =>
(rR62) A\ (a+b<c+d=a@b<cld
ab,c,deT h -
/AN /N (ara<beb=>alla <bllb)
a,beS a,beT h N
(C) if DO: VvV —=>T is downwardly resp. upwardly dirac-
ted (R4) =>
(RG4) /N a@b<a+tresp. /\ a+b<af@b
a,beT ; a,teT B
/N /N aBa < asa resp. /\ /N ara < aBa
ae S aeT - a=S ael N

(D) if {V,R,<} is weakly ordered (OV1),(0V2) and
(J: V = T monotone = {T,S,5} is weakly ordered,

i.e. (6D1),(0D2) hold.

if {V,R,<} is ordered (0OV3) and O : V — T mono-
tone =={T,S,<} is ordered, i.e. (0V3) holds. «

Theorem: Let {V,R} be a multiplicative vectoid with

neutral elements o and e, {V,<} a complete lattice
and {T,<} a symmetric screen (resp. a symmetric lower
Vv —=T
an antisymmetric rounding and S a screenringoid of R.
In T let operations m: TxT =T, *e{,+,-}) and a
SxT —>T be defined by formula

screen resp. a symmetric upper screen), [1:

multiplication [@:
(R). Then

(A) {T,S} is a multiplicative vectoid with neutral
elements ¢ and e and (RGl) holds for all opera-
tions as well as (RG3)

if O:V —=T is monotone == (RG2) for all
operations

if O:V —>T is downwardly resp. upwardly direc-
ted =>(RG4) for all operations

if {V,R,<} is weakly ordered and O: V —T
monotone == {T,S,<} is a weakly ordered multi-
plicative vectoid

if {T,5,<} is an ordered multiplicative vectoid
and O : V —>T monotone = {7,S,5} is also an
ordered multiplicative vectoid. o

A1l statements of these theorems are easily verified.
The proofs show that our assumptions (S1),(S2),(S),
(R1),{R2),(R3),(R) resp. (R4) are really necessary in
order to get the desired structure in T. If we change
these properties or do not realize them strictly we
get a different structure in the subset T.

The last two theorems show that the structure of a
weakly ordered or ordered vectoid is invariant with
respect to monotone and antisymmetric roundings into a
symmetric screen if the operations in the subset are
defined by formula (R). This describes all structures
in figure 1 in the lines 2,3,5,6,8,9,11 ana 12.

A few words still have to be said about the interval
structures. This chapter is the most interesting one
of the whole theory. It can, however, not be treated
within this paper. See [12],{13]. In every interval
set listed in figure 1 we have two order relations.
With respect to < the structures are ordered respecti-
vely weakly ordered in the complex case and the
rounding is monotone. This guarantees 1t finally that
we get the same structure on the upper screen. The
other order relation is the inclusion c with respect
to which the upper screens are defined. The rounding
is antisymmetric, monotone and upwardly directed

with respect to the inclusion.

Further with respect to the inclusion all operations




are monotone, i.e. the property [ 81 Knuth, D.: The Art of Computer Programming,
A (AcBacC SD=A#CcB D) Addison-Wesley, 1969, Vol. 2

A,B,C,D

is valid for all operations #«{+,-,+,/} and not only

for the addition.

At the first view some of our interval spaces ir fi-
+
w

[ 91 Kulisch, U.: An Axiomatic Approach to Rounded
Computations, Mathematics Research Center, The
University of Wisconsin, Madison, Wisconsin,
Technical Summary Report Nr. 1020, Nov. 1969,

comp p. 1-29, and Num. Math. 18, p. 1-17 (1971)

sl 3w

[}
ct
C
S

gure 1 seem to be unrealistic. 4

tations are not done in the set of intervals of

vectors or matrices IVR,IMR respectively IVC,IMC but (0] - = - - - + On the Concept of a Screen,

in the sets of vectors and matrices with interval Mathematics Research Center, The University of
Wisconsin, Madison, Wisconsin, Technical Summary
Report Nr. 1084, Juiy 1970, p. 1-12, and ZAMM 53,

115-119 (1973)

components VIR,MIR respectively VIC,MIC. It can,
however, be shown by not at all trivial theorems that
the spaces IVR and VIR,IMR and MIR,IVC and VIC,IMC and

MIC are isomorphic with respect to -he algebraic (117 - - - - - : Rounding Invariant Structures,
structure ana the order relation < - See [13]. This Mathematics Research Center, The University of
finally shows that the structures which we have deri- Wisconsin, Madison, Wisconsin, Technical Summary
ved also in the interval cases are realistic. Report Nr, 1103, Sept. 1970, p.1-47

[12) - - - - - : Interval Arithmetic over Completely

Ordered Ringoids, The University of Wisconsin,
Madison, Wisconsin, Technical Summary Report
Nr. 1105, Sept. 1970, p. 1-56
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