THE DESIGN OF A POLYMORPHIC ARITHMETIC UNIT*

Allan

L.

Lang

Florida Technological University

Orlando,

Bruce D.

Lafayette,

Summary

This paper presents results which stem
from a research effort concerned with the
specification and design of arithmetic units
which can execute nonstandard integer and
floating-point arithmetic. An arithmetic
unit is proposed whose characteristics are
based on user specifications and subsequently

is termed a Polymorphic Arithmetic Unit (PAU).

The user binds the identity of the PAU by
specifying the contents of various descrip-
tors and semantic interpretation tables which
the PAU accesses during its execution. This
capability removes several of the restric-
tions found in commercially available arith-
metic units and potentially assists in mak-
ink mathematically software portable.

Introduction
The design of machines for scientific
computation is not keeping pace with the
growing needs of the scientific community.
Since the introduction of second generation
computing systems and wide spread usage of
floating-point arithmetic, there have been
few improvements to arithmetic unit general-
ity and organization. However, arithmetics
are needed that moye accurately resemble
their igt nded use~. This paper discusses
a study”,” which defines a versatile, user
controllable arithmetic facility and which
presents an operational definition of this
facility which allows for alternative hard-
ware/firmware/software implementations.

A General Description of the PAU

The Polymorphic Arithmetic Unit can
execute nonstandard integer and floating-
point arithmetic. The PAU has the user
specifiable characteristics of: T

1) variable length integer operands,

2) variable length coefficient and
exponent fields for floating-
point operands,
automatic conversions between
integer and floating-point operands,
a selection of rounding strategies
which can be employed during a
floatimg-point operation, and during
conversion between operand types,

3)
4)

*This work has been partially supported by
NATO Grant No. 755, and by research funds
provided by the University of Southwestern
Louisiana

Florida

and

32816

Shriver
University of Southwestern Louisiana

Louisiana

48

70501

5) augmented operand representations
tc include special representations
for numbers too large or too small
tc be represented (#«), numbers too
close to zero to be represented
(te), and undefined (U),

integer and floating-point opera-
tions defined on combinations of
representable and non-representable

6)

numbers (i.e. augmented representa-
tions), and

7) a variety of specifiable bases, B
(B =2, 3, 4,..., 16).

The operations the PAU support are the
standard arithmetic operations +,-,%,/, and
the relationals <,>,=., There are four dif-
ferent operand interpretations which the PAU
can operate upon: single/extended precision
integer (I1,I2), and single/extended preci-
sion floating-pcint (F1,F2). Each integer
operand is composed of one sign-magnitude
scalar, and similarly two sign magnitude
scalars. Operands have representations which
are specified by the Arithmetic Operand Des-
criptor (AOD). The AOD is the seven-tuple
(i1, i,, ey, f., e,, f,, B) where B8 is the
common basg, a%d tﬁe o%her elements of the
tuple indicate the number of base B digits
that are contained in the integer, exponent
and fraction fields of each single and ex-
tended floating-point operands.

Interpretation and the Description Problem

An example cf multi-level arithmetic
interpretation can be seen in the realiza-
tion of complex arithmetic on contemporary
computer systems. This realization has the
following structure:

1) the machine code generated by a
compiler for complex arithmetic
contains repeated references to
the floating-point instruction set,
each floating-point operation is
realized by a set of microinstruc-
tions, and
there exists hardware, known as a
microprocessor, that executes the
microinstructions.

2)

3)

The lowest level of interpretation, that is
icentical to the host machine, is called
Level 0. The next level of interpretation,
Level 1, is the microcoded realization of
fioating-point operations, and the last
level of interpretation, Level 2, is the
se¢t of instructions that "drive" the float-
irg-point unit. The characteristics of

his multi-level system are:

1) each level is entirely supported by
the immediate level below, i.e.
each interpreter at Level N, N = 1,
2, 3,..., m, is realized by the
instruction set of the interpreter
at Level N-1.

2) any level N is finally realized by
the host processor at Level 0,

3) each Level N, N =0, 1, 2,..., m,
of interpretation has a decoding
procedure, instruction simulation
procedure, initialization procedure,
sequencing procedure, and stop pro-
cedure.

The systems designer needs to recognize
om the many examples of multi-level inter-
etation is also another level of execution
iverhead. When an increase in system per-
formance is required, significant gains can
je made by:

1) decreasing the execution speeds of

the lower levels of interpretation,

2) minimizing instruction simulation

procedures, or

3) eliminating any of the intermediate

\ levels.

e PAU was specified, designed, and imple-
ented as a multi-level computer system.

en approaching the problem of improving
erformance in arithmetic units, the multi-
evel interpreter approach may be used to:

1) serve as a unitfying feature so as
to create more amenable arithmetic
facilities for the user,

2) serve as a unifying structure so
that speed increases may be made
possible by implementing lower
levels of interpretation in lower
level technologies, i.e. "harder";
moreover,

3) separate an interpreter into major
subdivisions so that the basic
functions of an interpreter may be
examined with respect to cost/
performance.

'Since the interpretation process ends at the
ost level, the realization of higher level
applications via multi-level interpreters
is onl ossible in a cost/effective sense
when tEe ost is powerful enough to support
the interpretation process.

Combining Arithmetic Units

The PAU is composed of seven arith-
metic units that have often functioned in
the past as independent entities within a
computing system. The arithmetic units
that function within the PAU in a coordi-
nated fashion are discussed below.

Yohe Arithmetic Unit, YAU

The YAU4 is a working model for rounded
floating-point arithmetic where the user can
specify one of the five rounding options.

The rounding strategies supported by the YAU
are the symmetric rounding 1) truncation,
2) away from zero, 3) closest, and the non-

49

symmetri: roundings, 4) upward directed , and
5) downward directed. The floating-point
representation is variable base, and has
variable field lengths for the exponent and
fraction. The YAU also supplies a mathemat-
ically consistent treatment for procedures
that perform rounded floating-point opera-
tions. Fach arithmetic operation is a func-
tion defined on representable floating-point
numbers, and the result of each operation is
a represcentable number. Figure 1 is a unit
diagram for the YAU.

Figure 1

YAU Unit Diagram

where,

R - a rounding strategy selector,

F - arithmetic function selector,

A,B - fixed-length, floating-point oper-
and registers,

C - a destination register which con-
tains the floating-point result,

YAU/C - a control unit that uses a sub-
ordinate machine (EU) to execute
primitive operations that consti-
tute F,

I - an indicator to denote exceptional
conditions,

EU - an execution unit which supports the

YAU/C by serving as the host machine
(either real or virtual).

One extention to the YAU would be the
incorporation of non-representable numbers
into the definition of YAU arithmetic.

This is accomplished in the PAU by the
utilization of another arithmetic unit, the
Neely Arithmetic Unit.

Neely Arirhmetic Unit, NAU

-
Neely’ provides a description of an
augmented floating-point and integer number

system and proposes it as an enhancement
for arithnetic units. The augmented number
system would enable arithmetic units to
provide an interpretation for all possible
arithmetic operations on elements in the
augmented set, and provide a consistent
treatment for the irregularities that occur
during arithmetic operations, e.g. under/
overflow.

The range of floating-point and integer
numbering systems is extended by defining
the following concepts:

9

ocij, «f are intervals which repre-

sent numbers that are too large or
small to be represented,

2) e. are intervals which represent
floating-point numbers that are too
close to zero,

3) Of is the set of floating-point

ze}os, and

4) Us.» Uf. are the set of undefined

L)
numeric”values.

In the above, i denotes integer, and f de-
notes floating-point; j indicates that each
concept has a single and extended precision
counterpart.

Operands within the PAU have tag bits
associated with them which specify: (a) if
the operand is a single or extended precision
integer or floating-point number, and (b) if
the operand is to be interpreted as a repre-
sentable number or a member of one of the
above augmented sets, Tagged6,7 data de-
mands more memory space to be allocated so
that the hardware can determine the content
of data represented in memory. With the
descreasing cost of computer memory, tagged
architectures are becoming more cost/effec-
tive, so in general, the designers of future
computing systems (arithmetic units included)
have the option of utilizing the tagged data
concept. The lack of this option in the
past could explain the relative unavail-
ability of Needly type arithmetic units.

Figure 2 is a unit diagram for the NAU:

RSIT

Figure 2

NAU Unit Diagram

50

a function selector that specifies
the mode (integer or floating-
point), and the arithmetic oper-
ation to be performed,
fixed-length input registers
which contain integer or floating-
point operands,

a destination register which con-
tains the result,

coded operands of the augmented
set found in the low order set of
contiguous bits,

indicators that signal the pre-
sence of an augmented number (in
Ay,Ba,Ca respectively),

an Operand Semantic Interpreta-
tion Table,

a Recovery Semantic Interpreta-
tion Table,

a functional unit called the
Recovery Unit which specifies a
result when normal operation pro-
duces an irregularity,

a functional unit called the
Augmented Arithmetic Unit that
uses the OSIT to determine the
result,

an Execution Unit that realizes
the functions of the AAU and RU.

OSIT
RSIT

RU

AAU -

EU -

The NAU is not an independent unit; it
is actually an extension to a typical arith-
metic unit that '"smooths over' hardware
irregularities that occur in arithmetic
units. The Recovery Unit is what provides
a user specifiable assignment to irregular-
ities that occur during normal arithmetic
operations while the AAU handles irregular-
ities expressed as operands entering the
arithmetic unit. For example, if a and b
are two positive representable floating-
point numbers and c+a*b produces an overflow
in the YAU, then the Recovery Unit supplies
the special default symbol +« as
the result for c. Operand c is now tagged
and once ¢ re-enters an arithmetic system
as an operand for an operation, the NAU is
activated to execute the operation which the
YAU cannct perform.

The NAU is a table driven unit. An
Operand Semantic Interpretation Table (OSIT)
is the major input to the operation of the
unit. An OSIT for floating-point multi-
plication is shown in Figure 3. The elements
in the OSIT are references to the appropriate
semantic procedure to be used for the indi-
cated operand combination. Examples of these
semantic procedures are listed in Table 1.
Each operation that is supported by an arith-
metic unit (i.e. +,-,/,%,<,>,=) has a cor-
responding operation in the NAU and a separ-
ate OSIT.

Selection of the elements (semantic
procedures) for the OSIT is the major math-
ematical issue to be considered in the unit.
The major design philosophy for the NAU is
to make the OSIT accessible to the user so
that the user can specify the appropriate
interpretation,.

b Mixed-Mode Filter Unit, MMFU
-F +F -of -e 0¢g +e +of Ug

Another arithmetic unit that is included

. 0) i u within the definition of the PAU is the Mixed-
e lte 191 i A B 4 Mode Filter UnitZ. A MMFU is a unit that
exists in a software environment on most
arithmetic facilities that support both in-
teger and floating-point operations on mixed
operands. It is the function of the MMFU to
preprocess operands of different represen-
0 0 U tations so that the standard operations of
F f integer or floating-point arithmetic may be
performed. To do this preprocessing,
£ operands are converted to a standard, pre-
determined type. Problems arise during con-
version. For example, how is a, floating-
*e lre [re | -Ugl-e |0p |ve |+UL U point number to be converted tp an integer
if its magnitude is larger than the maximum
representable integer? Again, if a floating-
point number is to be converted to an in-
teger where the whole number part of the
f floating-point number is representable by an
integer, but there also exists a fractional
part, must one employ an optional rounding
strategy? Finally, a zero integer is to be
converted to a normalized floating—poinf
number, what value must be chosen?

-oof | 4of|-of Ug U

+oof - +0o 8]

-F negative floating-point numbers
+F positive floating-point numbers

* specifies processing to be done

. 7 N : i iff f' d
by a subordinate arithmetic unit The sixteen different types of operan

combinations that can exist upon entering
the unit are shown in Figure 4 which is
called a Mixed Mode Semantic Interpretation
Table (MMSIT). The table entries for Figure
4 indicate which standard operation is to be
performed for the Operand A, Operand B com-
bination. This means that both Operand A
and Operand B will be converted to the same
data type as specified by the table element.

Figure 3

Operand Semantic Interpretation Table
for Augmented Floating-Point
Multiplication c+a*b

Table 1 OPERAND B
AAU Semantic Interpretations 11 F1 12 E2
Il ‘
INTERPRETATION CODE
ASSIGNMENT
' F1
C + OPERAND A (A)
C + OPERAND B (B) OPERAND A
12 aij

Ca+- -0 (-oo)

Ca+ -¢ (-¢)

a F2

Ca* Of (0f)

Ca*e *e (+g)

Cac 4o (+) where aije{Il, F1l, I2, F2}

i, j =1, 2, 3, 4
Ca* Ug (Ug)
I « TRUE (T)
* Figure 4
I « FALSE (F)
A Mixed-Mode Semantic
1 « STOP MACHINE (SM) Interpretation Table

51

Rather than have an operation for each Figure 6 is a unit diagram for the MMFU,
operand combination, i.e. an F1 0Py, 12, and

an F2 OP37 Il1, this decision table mechanism

may be utilized; hence the need for only one CSIT
add operator. This type of operator is called
a polymorphic operator.

By allowing the user to control the
selection of the table element in. the MMSIT
a general approach must be analysed for the
converting process. There are sixteen pos-
sible conversions, four of which are the
identity conversions. These conversions
are called P functions. Each Pj has situa-
tions where the mapping must be specified
by the user. In the description of each Pj
when the user can specify a mapping assign-
ment '"user specifiable" is indicated. The
possible assignment that can be made, when
one of these situations occur, is an element
from the set «:, t£c, 0f, Uc, where ¢ = I1,
I2, F1, or F2; f = Fl1 or F2; or a STOP-
MACHINE indicator may be specified which
aborts MMFU execution. When the user speci-
fies part of a mapping, a table element in
the Conversion Semantic Interpretation Table EU
(CSIT) is altered to indicate to the PAU
the desired interpretation.

When rounding is performed in a Pj, the Figure 6

rounding is in the same context as those :
strategies discussed for the YAU, and is con- MMFU Unit Diagram
trolled by the user.

where,
Figure 5 shows how conversion function
. s . o A,B,C,D - operand storage registers,
P, is parameterized to allow a flexible in T1,T2,75 - tag information denoting the

terpretation of the P, function. operand type,

81,82,83,54 - signal information denoting

€ ——————— ~——~}+mI2 that an operand (A,B,C,D) is
in either representable form
. or augmented form,
o : Cu - a functional unit that perform:
T - CSIT R luti the conversion function as
t Resolution indicated by the functions
) ’ P:. (i =1, 2,..., 16)
——— - *x EU - tﬁe Execution Unit which

IIm@x executes instructions speci-
fied by the CU,

* % MMSIT - the semantic interpretation
table which specifies the
arithmetic type that A and B
0 0 are to be converted to, and
35| S 1 67 *k SCIT - the semantic interpretation

] table which specifies assign-
i ments for nonstandard mappings
; "% in a P function.

11 The Integer Unit, TU

. max_____ L2

* % The Integer Unit“ executes standard
operations on sign-magnitude operands that
7 e — = are defined in the ACD by the i;, i, and B
*

} parameters. The IU is able to perform vari-
able length integer operations by utilizing
a subordinate machine, the Basic Integer
? o ——— }-mIZ Unit which executes fixed-length integer
operations.

Interpretation and the PAU

The PAU is composed of three levels o:
CSIT Specification for P,: 12~11 interpretation. Figure 7 shows these level:

52

and identifies the functional units associ-
ted with each.

LEVEL 2 MAIN
CONTROL
__YAU _ __ _ _—T ‘ MMFU [~]
i 1
i |
3 ¢ONTROL l =
i }
']
E '
1| ARITH| |NORM | |ROUND || =
I N IR R L

LEVEL 1 BIU
LEVEL 0 HOST
Figure 7

PAU Data Paths
Between Functional Units and Levels

The flow of data is directed by the
MAIN CONTROL. The MAIN CONTROL is passed
the data that it needs by the user or higher
level arithmetic unit. The MAIN CONTROL
first passes the input data to the MMFU that
performs the necessary conversion (if one is
needed) transforming the input data to a
common data format.
by the MMFU, MAIN CONTROL proceeds to send
he input data to the NAU if one or more of
he flags (S7,S;) are set. If no flags are
et, then MAIN CONTROL sends the input data
‘to the YAU where a standard operation takes
place. If the YAU cannot perform the oper-
ation due to the result being unable to fit
in the predetermined format, then the RU is
“invoked to supply an interpretation for the
*YAU error. If the standard operation to be
performed is an integer one, then the input
data is sent to the IU, where the operaticn
is performed, and again, if an integer error
;occurs the RU is invoked. The result from
“the YAU, NAU, or IU whichever may be the
case is returned to MAIN CONTROL.

Using the PAU

Figure 8 shows the virtual arithmetic
unit that is presented to the user. This is
the arithmetic unit that a high level langu-
ge translator could utilize by generating
~arithmetic and control instructions.

When control is released

53

14 [Asi | | Bf | LS J
| A4 I | B4 l C4
[|
Ag By C3
| | |

| %2 L2 | C]Z |

| }

L4 [| L5 . I & |
Lnmrs mofs SO
3
AOD d

F
Ry 2| YAU | MMFU | NAU | RU o |2
Rz
7
~ — 1 5 Y

L

loadabitzziijj CSTT OSIT | |RSIT |*4
: =

*1 operand registers *3 processing para-

meters
*2 processing units *4 semantic inter-
pretation
tables
Figure 8

PAU Unit Diagram

The block diagram for the PAU is divided into
four groups:

1) opnerand registers,

2) processing units,

3) processing parameters, and

4) semantic interpretation tables

There are several tasks that must be
completed before PAU execution can begin.
These tasks mainly concern the loading of
needed information located in the operand
registers, processing parameters, and seman-
tic interpretation tables. The following
is a sequence of data transfer that occurs
before PAU execution:

1) 1load the AOD elements - this speci-
fies to the PAU the operand field
lengths and radix.

2) load the F register - this specifies
one of the standard PAU functions
('-7_>*7/’<’>7=)’

3) load Rl’ R2 which is the rounding
strategies for the YAU and MMFU,
respectively,

4) 1oad the two input operand register
stacks (A, B), indicating operand

i
!

type by separately loading the tag
registers (T), and indicating the
presence of a Neely representation
by loading the signal registers (S),

5) load each of the Semantic Interpre-
tation Tables (MMSIT, CSIT, OSIT,
and RSIT); note, since there are four
different arithmetic types, and
seven different operations, there
are 28 different interpretation
tables for the OSIT.

PAU Operational Definition

The operational definition of the PAU
is given in its entirety in reference 3. The
PAU is composed of several functional units.
Each of these functional units possess three
major organizational characteristics. They
are:
1) a unit diagram -
the operational definition is composed
of elementary functions defined on
fixed-length resources that are defined
in the unit diagram. Each register is
a binary register that can be read or
written to by other functional units
or by internal procedures defined with-
in the same functional unit. (See
Figure 9) .
2) a unit control procedure -
.each functional unit has a separate
procedure called the CONTROL procedure.
There are three tasks associated with
this procedure 1) loading registers,
2) selecting the appropriate instruction
execution procedure, and 3) storing
registers. (See Figure 10)
3) instruction execution procedures -
this procedure utilizes functional units
at the next lowest level of interpre-
tation to perform a virtual instruction.
(See Figure 11)

SOURCE/
DEST SGE1 REGEl

o 1 P

SGF1 REGFL

2_—"_£J ks 0

3

SGEZ REGE2
4 E] 3 0
5

8—'] 3 0

9,___.

Figure 9
YAU Unit Diagram

A brief introduction to the technique,
which was used to describe the PAU, can be
given by considering an overview of a descrip-
tion of one PAU component, the YAU. Consider
the unit diagram of the YAU as shown in
Figure 9.

One instruction within the YAU is
floating-point multiply. To realize this
jnstruction the YAU must be activated, and
then, once activated, select the multiply
procedure (MUL). Figure 10 shows the Control
procedure that activates floating-point multi-
plication. Note that the description tech-
nique implies control via an ALGOL-like lan-
guage structure. Figure 11 demonstrates how
two primitive functions within multiplication
are simulated with the use of the Basic
Integer Unit (BIU). Figure 11 shows how
arguments are sent to the BIU, and how the
result is returned. Of course, this example
is over-simplified, but does illustrate the
needed detail for arithmetic unit specifica-
tion.

procedure YAU-ARITHMETIC CONTROL;
begin

feteh SGEL,
feteh REGEL,
feteh SGFL,
Ffeteh REGF1,
feteh SGEZ,
feteh REGEZ,
feteh SGF2,
fetceh REGFZ,
feteh OPERATION;

end;

begin
2f OPERATION (2:0) = 0 then ADD else
2f OPERATION (2:0) = 1 then SUB else
if OPERATION (2:0) = 2 then MUL else
if OPERATION (2:0) = 3 then DIV else

SYSTEM-ERROR;
comment on SYSTEM-ERROR post error and
return control;
end;
begin
send SGE1,
send REGEL,
send SGF1,
send REGF1L,
send SENSE;
end;
end YAU-ARITHMETIC CONTROL;

Figure 10

YAU-Unit Control

procedure MUL ;

begin

comment add exponents;
store SGE1 in SGN1 of BIU;
store REGEl in OPERANDIA of BIU,
store SGE2 in SGN2 of BIU,
store REGEZ <in OPERAND?Z2 of BIU;
store 0 in OPERATION of BIU;
start-up BIU wait "+" cycles; of BIU;
load REGE1l from OPERANDIA of BIU;
load SGEl1 from SIGN1 of BIU;

end;

bPegin

pomment multiply fractions;

store SGF1 in SGN1 of BIU;
store REGFl in OPERAND1A of BIU;
store SGF2 in SGN2 of BIU;
store REGF2 in OPERAND?2 of BIU;
store 2 in OPERATION of BIU;
start-up BIU wait "*'" cycles;of BIU;
load SGF1 from SGN1 of BIU;
load REGF1 from OPERANDIB of BIU;
end;

d MUL;

Figure 11

YAU-ARITHMETIC MULTIPLY

Once the arguments reach the BIU, def-
nitions are given for sign-magnitude integer
perations, and these definitions are applied
o fixed-length registers in the unit diagram
or the BIU.

Simulation

The entire PAU was simulated7 in PL/1
ithin a period of about six months. The
imulator length is approximately 70% is
directly related to realizing the PAU opera-
ional definition.

The testing phase of this study com-
pleted a necessary feedback inspection. Each
of the following was experienced as a result
of the testing phase:

1) errors were found and corrected in
the PAU operational definition,

2) the operational definition was re-
duced 20% by finding commonly used
functions, and realizing them in
lower levels of interpretation, and

3) the resulting simulator proved to
be a useful tool which one could
use to become familiar with the PAU

The simulator is an interactive program that
allows for sample data to be run through the
system, and permits the display of the con-
tents of registers in the system from any
level.

Cost/perfor@ance studies are supported
by the simulator.® The simulator possesses
a logging feature which traces data flow
throughout the system. This feature allows
the researcher to analyze the set of in-
structions executed at each level of inter-
pretation. Status information can indicate
bottle necks, or frequently used instruc-
tions whose performance is critical to the
attainment of a desired cost/performance
ratio.

References

1. Shriver, Bruce D. (1973). A Small Grou
of Research Projects in Machine Design
for Scientific Computation. Computer

Science Department, University of
Aarhus, Aarhus, Denmark, DAIMI PB-14.

operational definition, and concepts.

55

Lang, Allan L. (1975). The Design of a
Polymorphic Arithmetic Unit: A Case
Study of a Multi-Level Interpretive
Computing System. Department of
Computer Science, University of South-

western Louisiana, Lafayette, Louisiana.

Lang, Allan L. (1975). The Polymorphic
Arithmetic Unit: An Operational
Definition. Department of Computer
Science, University of Southwestern
Louisiana, Lafayette, Louisiana.

Yohe, J. M. (1973). Roundings in float-
ing-point arithmetic. IEEE Trans-
actions on Computers. C-22,

Neely, Peter M. (1972). On conventions
for systems of numerical representa-
tions. Proceedings ACM 72. Assoc-
iation for Computing Machinery, New
York.

Feustel, E. A. (1972). The Rice Research
Computer -- a tagged architecture.
AFIPS Spring Joint 1972 Conference
Proceadings. AFIPS Press, Montvale,
New Jersey.

Reuter, Eric, Lang, Allan. (1975). A
Users Manual for the Simulated Poly-
morphic Arithmetic Unit. University
of Southwestern Louisiana, Lafayette
Louisiana.

Shriver, Bruce D., Lange, Allan L.,
Reuter, Eric. (1975). A Case Study of
a Simulator for a Multi-Level Inter-
pretive Computing System. University
of Southwestern Louisiana, Lafayette
Louisiana. (forthcoming)

