ON RESIDUE NUMBER A/D AND D/A CONVERTERS

G. J. Lipovski
Department of Electrical Engineerina
University of Florida
Gainesville, Florida

ABSTRACT

A very simple analog to digital converter and dig-
ital to analog converter is described for residue num-
ber digital processing. These simple devices make it
feasible to replace analog components with comparitively
inexpensive digital processors that use residue, or
modulus, arithmetic capable of operating at very high
speeds. Using off-the-shelf integrated circuits, add-
ition, subtraction or multiplication of about 15 bits
of accuracy can easily be done in as little as fifty
nanoseconds. Any function using these operations
(polynomial expansions, linear filters, fast fourier
transforms) can be economically implemented in a
pipeline or other structure to get very fast systems.
Moreover, a stage in the pipeline can correct for non-
linearities in the A/D or D/A converters. The simple
devices described herein make residue arithmetic dig-
ital processors extrerely attractive for use in fast
analog systems.

INTRODUCTION

A number of instrumentation and control systems
require a considerable amount of processing. For
example, digital filters and fast fourier transforms
are used in signal processing and control. In computer
controlled engines, complex polynomials are evaluated
in order to determine the amount of fuel that is in-
Jected into the engine cylinder. Although the input
and output for the process is usually an analog vol-
tage, the signals are generally converted to digital
form for processing by a minicomputer, or more recently,
by a microcomputer. The computer is used because of
its capability to add, subtract and multiply quickly
and accurately. However, the minicomputers are too
expensive, and the microcomputers are too slow for
many of the kinds of problems mentioned above.

It has long been known that residue, or modulus,
arithmetic is very fast and is economical to implement
for addition, subtraction and multiplication. This
should make them attractive for the problems mentioned
above. The problem with this form of arithmetic is
that division, comparison and decoding residue numbers
are all quite difficult. Hereinjt is shown that deco-
ding is actually very easy, especially when the decod-
ed output is analog (i.e., a simple D/A converter
is shown.) A corresponding A/D converter is also
shown. This simple technique makes residue number
processors extremely attractive, at least for proces-
sors whose input and output are analog voltages.

This paper describes a coincidence of three very
simple ideas from diverse areas of Computer Engineering
that together contribute to a potentially important
result. Even though the basic concepts in this paper
can be explained on one short paragraph, it is likely
that the reader will be unfamiliar with at least part
of the necessary background. Therefore residue num-
bers, digital processing, and A/D converters will each
be briefly covered.

RESIDUE NUMBERS

Herein, the characteristics of residue number add-

197

ition, subtraction, multiplication, and incrementation
are briefly discussed. To accurately describe these
characteristics, a simple language will be used. Inte-
gers will be denoted as lower case symbols: c[1 to n]
is an n element vector of integers. As in APL, +, -,
X, *, , [, | and , are / addition, subtraction, mul-
tiplication power, logarithm, maximum, modulus and
concatenation. alb is b module a. a *» b is a to the
power b, aeb is b lTog to the base a, and a [b is the
maximum of a,b. For example, 215 is 1. These opera-
tions are extended to vectors. If a[l to 3] is 2,3,5
and b[1 =0 3] is 7,7,7 then a[1 to 31/b[1 to 3] is 1,
1,2, Scalars are expanded to vectors when they are
operated on with vectors. If ¢ is 7 then a[l to 3]ic
is 1,1,2. Finally, / indicates an operator reduction
over a vector. For instance, x/a[l to 3] means a[1]x
a[2]xa[3). Or r/a[l to 3] is the maximum of a[1],
a[2], a[3]. These simple APL constructs make the fol-
Towing explanation very simple.

A residue number is defined by a modulus vector
ml1 to n] whose elements are relatively prime to each
other. For reasons explained in the next section, a
good modulus for about eight bits of accuracy is 15,
16, and “or about fifteen bits, 11, 13, 15, 16. A
number ¢ is represented by the n element vector
ml1 to nlic., For example, the representation of 0 is
0,05 of = is 1,1; of 100 is 5,4 for the first modulus
vector given above. Any number between 0 and (x/m[]
to n]) - 1 can be uniquely represented modulo m[1 to
n]. Two modulus m[1 to n] numbers, a[l1 to n] and b[}
to n], can be added using the formula m{1 to n]!(a[1
to n] + b[1 to n]). This means that for each i, the
ith element of the sum is a[i] added to b[i] modulo
m[i]. Note that a[1 to n] is simply incremented by
the formula m[1 to n]i(all to n] + 1). Similarly,
the product of ali] times b[i] is m[1 to nlI(a[l to
n] x b[1 to n]). This means that the ith element of
the product is a[i] times b[i] modulo m[i]. Note that
addition, incrementina,subtraction and multiplication
are done element-by-element without shiftina carries
or borrows between elements.

DIGITAL PROCESSING HARDWARE

Residue numbers can be expressed by encoding each
element in binary. Some notation to handle bit vectors
and arrays is now introduced. Upper case symbols will
denote binary variables. A[1 to n] is an n bit binary
vector. B[1 to h; 1 to k] is an h word, k bit per word
array (e.a. a memory). Finally, B[A[1 to pl;] denotes
the entire row of arry B which is addressed by binary
vector (number) A[1 to p].

The modulus representation a[l to n] can, in turn,
be represented as a binary array A[1 to n; 1 to p]
where p is > 2 @ (I/m[1 to n]). For example, as 100
is represented in modulus 15, 16 numbers by 5,4, it
is represented now by the binary array:

0101
0100j .
Addition, subtraction, and muitiplication can be
done by table Jookup for cach element. The tables can
be stored in read-only memories {ROM's) or more easily

used programmable read-only memories (PROM's)}. Each
element needs only one tabie (ROM or PROM) having a

surprisingly small number k > (m[i]%2) rows and k >
(2em[i]) columns for stcring the addition table, sub-
traction table, or else the multiplication table. Sup-
pose ADDi [0 to h-1; 1 to k] is the addition table for
the ith element of modulus in [1 to n] numbers, that
was formed as follows: To add any two numbers a, b,
their bit patterns A[1 to k] and B[1 to k] are concat-
enated to get the address A[7 to k], B[1 to k] of a

row in ADDi wherein the bit representation of sum mil
I(a + b) has already been stored. Then once these
tables have been stored, the ith row of the represent-
ation of the sum of a and b is simply ADDi [A Ei to k7,
B[1 to kJ;]. Multiplication and subtraction are simi-
Tarly easily carried out by table lookup.)

The significance of table Tookup can be appreciat-
ed when the rapid drop in the price of PROM integrated
circuits is seen. Fast, cheap PROM's have been devel-
oped because PROM's are the easiest way to design con-
trol modules in computers, and control modules have to
be faster than anything they control. The “eight bit"
modulus 15,16 adder requires two PROM's, ADDI[0 to 255;
T to 4] and ADD2[0 to 255; 1 to 4] that have size 256
x 4 (a conventional binary adder can be used in place
of a PROM if the modulus is a power of 2). Similarly,
the corresponding multiplier uses two PROM's, MULT1
[0 to 255; 1 to 4], MULT2[0 to 255; 1 to 43, A 256 x
4 signetics PROM (82 5 1291) is now available in small
or large quantities for under $4.00. And it has a max-
imum access time of 50 nanoseconds. Faster, more ex-
pensive, (ECL) PROM's are also readily available with
15 nanosecond access times. Note that the adder or
multiplier can be built for about $10.00 each and can
add or multiply in about 50 nanoseconds. Similarly,
the "fifteen bit" modulus 11,13,15,16 adder or multipli-
er can each be built for about $20.00 and can add or
multiply in about 50 nancseconds. As was suggested
earlier, the 15,16 modulus or 11,13,15,16 modulus num-
ber forms are desireable because their addition and
multiplication tables can be effectively put in fast,
inexpensive, readily available PROM's.

The residue adder or muitiplier can be connected
to standard microcomputers as I/0 devices. Two regis-
ters (A[1; 1 to 4], A[2; 1 to 4]) and (B{1; 1 to 4],
B[2; 1 to 41) can be Toaded by the microcomputer, and
then the sum ADDI[A[1;], B[1:1;], ADD2[A[2:]1, BI'2:]5]
can be read into the microprocessor using one input
device Jocation. Also the product MULTI[A{1;]. B[1.]
515 MULT2[A[2;], B[2;];] can be read into the micro-
processor using another input device location. Pro-
grams to load the input registers and read the outputs
of the PROM's can evaluate any formula involving addi-
tion, multiplication and subtraction. These include
polynomials +/a[1 to n] x (b = {n-1,...,0}), Tinear
expressions +/al1 to n] x b[1 to n] used in linear
filters and graphical transformaticns, and fast-four-
ier transform operations.

The extreme simplicity and low cost of these add-
ers and multipliers makes it attractive to impiement
hard-wired logic with them as building blocks. For
example, the polynomial above can be evaluated by re-
petatively using the formula p' = a + (b x p}. The
output of the multiplier can directly feed the input
of the adder, so that for the ith element, the output
is ADDT[A[1;], MULTI[B1;], P[151;1;], ADD2[A[2;],
MULT2[B[2;], P[25]5];].

By holding the variable B in a Jatch, supplying
coefficients A from a shift register, and updating P
with the result of this operation, an eighth order
polynomial can be evaluated in about one microsecond,
at a cost of about $30.00.

One Tast observation that is critical to the D/A
converter is that a residue number can be incremented
using the formula m{1 to nli{a[] to n} + 1). This
means the binary representation A[1;1 to p] of each
eiement a(i] can be put into a canventional moduln
m{i] binary counter. The whole number i< incremented

by merely clocking each counter at the same time.

It should be noted that table Tookup is feasible
using modulus arithmetic that uses small modulus ele-
ments. Orcinary binary addition or multiplication
would require enormous tables. For example, eight bit
multiplication would require a 64k by 8 PROM. It
should alsc be noted that residue incrementing is eas-
ier to carry out in a counter than conventional binary
number incrementing because the clock goes into all
the (small) counters at the same time rather than rip-
pling through one counter into the next counter. There
are no substantial propagation defays to slow down the
counter,

A1l of these concepts are well known or are eas-
ily observed. They invite the use of residue arithme-
tic in many applications.

Howevar, there always was a problem converting
residue numbers to some other form. The next section
shows that it is easy to convert the residue number
into a voltage, or vice versa,

A/D AND D/A CONVERTERS

The A/D converter converts an analoag voltage in-
to a digita’ binary number, and the D/A converter does
the inverse operation. A/D conversion can be accom-
plished in c¢ne of two basic ways. Successive approxi-
mation is scmewhat 1ike binary division in that one bit
of the output binary number at a time, most signifi-
cant bit first, is generated. Actually, an analog vol-
tage is generated like the partial remainder and its
sign is used to determine the next converted bit,
which is like the quotient. Since conversion time is
dependent on the number of bits produced in the binary
number, it is quite fast. Ramp converters, on the
other hand, simultaneously generate a voltage ramp (saw
tooth wave form) as a counter is incremented. The
binary number in the counter is always equal in value
to the voltage on the ramp. By means of a voltage com-
parator, when the input voltage equals the ramp voltage
the counter value is Joaded into a register as the out-
put binary number. Various different schemes use the
ramp technique, such as dual ramp converters found in
digital voltreters, and so on.

A D/A converter can be implemented by a resistor
Tadder network with some analog switches, or by means
of a ramp and counter. While the former scheme is
faster, the latter scheme is Tess costly and can share
the logic of the ramp A/D converter. Basically, to
output a voltage equal to a binary number, a binary com-
parator and & sample-and-hold are used. As the ramp
voltage and count increase, when the count equals the
binary number, the ramp voltage is sampled and held un-
til the next sample.)

A conventional binary A/D converter can be modi fied
to provide the residue number by simultaneously accum-
ulating the rasidue representations of the values of
the bits generated for the binary number output. How-
ever, no fast corresponding D/A converter is known,
Ngverthe1ess, ramp type A/D and D/A can easily be adapt-
ed.

The whole point of this paper is this: Replace
the binary counter by a simpler residue number counter
in ramp type A/D and D/A converters and take advantage
of the properties of residue arithmetic.

A "fifteen bit" A/D and D/A converter would con-
sist of a ramp generator, four counters that are mody-
1o 16, modulo 15, modulo 13 and modulo 11 counters, and
a voltage comparator, a binary comparator, and a sample-
and-hold circuit. See figure 1,

The A/D converter works thus: The ramp voltage
rises from 0 to (x/m[1 to 41) -1 millivolts as x/m[1 to
4] clock pulses cause the four counters to increment.
When the input becomes Jess than the ramp, the counter

198

ANALOG MODULO 11,13, for nonlinearity is the second, the FFT processor
COMPARATOR 15.16 COUNTER (which itself may be pipelined) is the third, the
’ polynomial evaluator/linear filter is the f?urth, the
- D/A converter is the fifth stage. The sampling rate
fﬁaiijf:>—~CLOCK INPUT RESISTOR SAMPLE is limited by the maximum time for any of the five
OUTPUT operations rather than the sum of these times. It is
t t t fﬁ entirely reasonable to expect a FFT processor to keep

o :
; I ° up with the TV scan rate to produce real time speech
::[:r plots, where the intensity shows the frequency com-

RAMP
GENERATQR
+— 1[I+ 131+ 1 1l+'|6

z CONCLUSTONS

ponents as a function of time.

y X Simple A/D and D/A converters have been described

that invite the use of residue arithmetic in digital

EQUALITY COMPARATOR processors that interface with analog systems. These

processors should find application in fast-fourier

transform, and linear filter processors, as well as con- ‘
trols for fuel injection systems in automobiles. Due

to the development of inexpensive fast programmable
ctock M | outPUT REGISTER read-on'y memories, these procewsors should be both an |
- order of magnitude faster and an order of magnitude m
cheaper than current systems. :

INCREMENT

b b

Figure 1. A/D and D/A Converter g

REFEREMNCES
values are loaded into the input register, where they
are available as the residue number representation of 1) Szabo, N.S., and Tanaka, R.i., Residue Arithmetic
the input voltage (in millivolts). To output a res-- and Its Applications to Couputer Technology,
due number, it is put into the output register. When McGraw Hill, 1967.
it agrees, bit by bit, with the counter values, the
sample-and-hold switch is closed to sample the ramp 2) Flores, I., The Logic of Computer Arithmetic,
voltage. Prertice Hall, 1963,

It should be noted that the comparatively expen-
sive ramp generator and counters can be shared between
input and output systems. More input systems can be
added simply by replicating the voltage comparator end
input register. More output systems can be added by
replicating the output register, equality comparator
and sample-and-hold circuit.

Since 1GHz counters are available, "15 bit" con-
verters can conceivably be built with sample times of
about 30 microseconds, and "8 bit" converters can be
built with sample times of about 250 nanoseconds. Al-
though it is difficult to build ramp generators and
especially sample-and-hold circuits at these frequer-
cies, the power of residue arithmetic should be very
useful in "Tinearizing" these components. It shoulc
be noted that the accuracy of most ramp type A/D and
D/A converters depends strongly on the linearity of
the ramp. Highly linear ramps are attainable using
operational amplifiers to generate a constant current
to charge a capacitor. Unfortunately, these operational
amplifiers are subject to temperature and aging prob-
lems. However, a simple RC network can generate a very
stable exponential ramp. The converted number x[1 to n:
1 to p] can be corrected by applying a polynomial ex-
pansion of the function ee(x[1 to n; 1 to p] - 1).
Actually, any monotonic highly repeatable non-linear
ramp can be used. Similarly, the output can be pre-
corrected by a formule that takes into account the non-
Tinearity of the ramp and the inaccuracies of the
sample-and-hold circuit. The actual correction formu-
Ta can be attained by simply calibrating the circuit
once it is built. Note that the hysteresis of the
output capacitor can &lso be corrected by a linear
filter formula. Thus, using residue arithmetic, it is
possible to run ramp-type A/D and D/A converters well
beyond their rated capabilities for speed or accuracy.

Finally, the use of pipelining can be effective
where a high sampling rate is required. Suppose an
FFTprocessor is to be designed. The A/D converter is
the first stage, the polynomial evaluator to correct

199

