THE

UNRAU

a Unified Numeric Representation Arithmetic Unit*

by

Bruce D. Shriver
University of Southwestern Louisiana
Lafayette, Louisiana 70501

Peter

and

Kornerup

University of Aarhus*#
Aarhus, Denmark)

épstract

A companion paper entitled!, "A Unified
Numeric Data Type in Pascal', proposes the
substitution of the standard data type real
of the language Pascal with a unified data
representation termed numeric. The numeric
data type can represent a variety of arith-
metic operands such as integers, normalized
floating point numbers, and centered-radius
intervals.

This paper describes an arithmetic
unit which is capable of executing the
standard arithmetic operations (addition,
subtraction, multiplication, and division)
on pairs of operands specified to be of the
numeric data type. This arithmetic unit,
called the UNRAU - Unified Numeric Repre-
sentation Arithmetic Unit, supports operations
on operands externally represented as S-tuples
(t, a, e, £, r). The UNRAU provides for
automatic conversion among the various data
types and can also be used to perform an
explicit conversion on a single operand.

It is intended to implement the UNRAU
on a dynamically microprogrammable micro-
processor to determine what host facilities
are required to efficiently realize such an
arithmetic unit and to experiment with the
high level language support of such a unit.

1.
An External View of the UNRAU Operands

The UNRAU is an arithmetic unit which
is capable of executing standard arithmetic
operations upon operands which may be inte-
gers, normalized or unnormalized floating
point numbers and center-radius intervals.

The operands are '"tagged" to indicate which
particular type of number they are to be
interpreted as representing. There is only
one set of arithmetic operations and not four
sets, i.e., integer arithmetic operations,
normalized floating point operations, etc. As
such, the operations are referred to as 'poly-
morphic' operations.

Operands are represented, external to
the UNRAU as 5-tuples, (t,a,e,f,r). The t
field (tag-field) is a pointer to a descriptor
which contains data concerning the represen-
tation. This is shown symbolically as:

*The work has been partially supported by
NATO Grant No. 755 and The Danish Research
Council Grant No. 1546/511.

**Currently at the University of Southwestern

Louisiana.

[‘
[t[a e f r IAL{dualifierJ(e,f,r) datQ]

operand descriptor
tuple

The descriptor contains a '"qualifier" field
which specifies how the operand tuple is to
be interpreted and a "(e,f,r) data" field
which specifies the position and sizes of

the e,f, and r fields of the operand. The
(e,f,r) data field will be referred to as the
"format data'.

The (e,f,r) triple is interpreted in one

of the four ways shown in Table 1 as specified

by the contents of the qualifier field.

Name of Interpretation of (e,f,r) as
representation |a "normal" operand
(qualifier)

fixed: the value represented is f,
where the f-field is inter-
preted as a sign-magnitude
integer, the e and r fields
are not used.

mormalized:
where f and e fields are in-
terpreted as sign-magnitude
integers. The f-field is
assumed to be normalized,
i.e., the most significant
bit of the f-magnitude fields
is a 1 if the field is non-
zero. The r-field is not
used.

the value represented is f*Ze,

unnormalized: the value represented is
£%2°, where the interpreta-
tion is the same as for nor-
malized numerics. The f-
field is not normalized, and
the least significant bit of
f is considered as being the
last "correct" bit. The r-
field is not used.

centered: the "value'" represented ig
the interval (f-r, f+r)*27,
where e and f are sign-mag-
nitude in:egers, and r is the
magnitude of the unsigned
integer value of the r-field.

The f-field is not normalized

Table 1

Normal Operand Interpretations

179

[T N

A non-representable number may result
from the execution of an arithmetic operation
or whenever a mapping into the finite pre-
cision representation (as specified by the
format data) is impossible.
the operand tuple provides an escape bit to
signal the presence of such non-representable

The a-field of

When an operand is to be sent to the UNRAU,
its t-field is decoded to fetch the descriptor
associated with that operand and the data
actually presented to the UNRAU is the (a,e,f,
r) tuple and the descriptor. The UNRAU can
execute the operations shown in Table 3.

numbers. If the a-field has the value '"nor- Output
mal', it indicates that the number is repre- Operations Input Data Status
sentable and should be interpreted as shown
in Table 1. However, if the a-field has Push (a,e,f,r) § 0s,as
the value "augmented', indicating that a non- descriptor
Xepresentable value has been introduced, Pop descriptor (a,e,f,r) 0s,as
then the (e,f,r) triple will be interpreted Store descriptor (a,e,f,r) 0s,as
as one field which can assume the following
values: negmax, negmin, posmin, posmax, Add 0s,as
undef. These values are interpreted as shown Subtract 0s5,as
in Table 2 for each of the four types of Multiply 0s,as
operands. Divide 0s,as
Negate
Absolute
qualifier fixed normalized §
nrv unnormalized § Compare R data os
centered Characteristics C data
Convert descriptor as
negmax too large neg. | too large neg. Dupl?ca?e 0s
value value (exp. ov- Initialize
erflow) Interchange
negmin not applicable | too small neg. Table 3
value(exp. un- UNRAU Operations
'derflow)
posmin ;mot applicable | too small pos. The Push, Pop, and Store are the input/
value (exp. un- output operations associated with the UNRAU.
derflow) Push is used to load operands onto the stack.
- Store presents the top of the stack element
posmax , too large pos. | too large pos. to the output lines, while Pop is a store
value yvalue(exp. ov- followed by a "popping" off of the top of the
erflow) stack element. The dyadic arithmetic opera-
“ : X tions operate on the two top stack elements,
undef undefined val. | undefined val. pop them, and store the result on the top of
the stack. Monadic operations operate on the
Table 2. top of the stack. Duplicate pushes a copy of
the top stack element ontc the stack while
. . interchange swaps the two top stack elements.
Interpretation of (, f, r) triple as an 'nrv" Convert is discussed in Section 3 and the
operand Compare operation and its associated R data
2 and the Characteristics operation and its

An External

View of éhe‘UNRAU Operations

A block diagram of the UNRAU is shown
It has an' internal stack store

in Figure 1.

of finite length and can be used to directly
evaluate arithmetic expressions presented to
it in reverse polish form (postfix notation).

4

operation

control

ALU

r__,d,status

‘(a)e;f’r}
descripto

conversio

4

stack

data

Figure 1

A Block Diagram of the UNRAU

180

associated C data are discussed in Section
4. The Initialize operation is used to set
the UNRAU to a specified state: the stack is
emptied and all status lines are cleared.

The two classes of status data which are
available externally at the end of the exe-
cution of each UNRAU operation. These are
identified as "os" and "as" in Table 3. "Os'"
refers to operational status and indicates (1)
stack overflow, (2) stack underflow, or
(3) the Compare operation was executed on
augmented data. Stack overflow can arise as a
result of the Push and Duplicate operations,
while stack underflow can result from the
Pop operation, Store operation, dyadic oper-
ations with only 1 element in the stack, or
unary coperations with no elements in the
stack. "As" refers to augment status and
indicates (1) an augmented form has been push-
ed onto the stack, (2) a non-representable
value has arisen during the computation, or
(3) an augmented form is being stored or
popped off the stack. Thus there are 6 inde-
pendent status lines available at the end of

each UNRAU operation; they are summarized in
Table 4.

Status
Class Status
os so, stack overflow
su, stack underflow
ra, relational involving
augmented numbers
as pa, push augmented
number onto stack
nrv, non-representable
value has arisen
spa, an augmented number
has arisen during a
Store or Pop Operation

Table 4
UNRAU Status Data

Whenever a non input/output operation has an
operand which is an augmented form, the result
undefined is placed on the top of the stack.

3.
An Internal View of UNRAU Operands

Whenever data is presented to the UNRAU
along with its descriptor, it is converted in-
to an internal UNRAU representation before
pushing it onto the top of the stack. This
internal UNRAU representation corresponds to a
bound format '"maximal accuracy' representa-
tion. The data in the descriptor is used
during the conversion process and then dis-
regarded. The operand on the top of the
stack is then represented by the 5-tuple
(qualifier, a,e,f,r).

All intermediate results are kept inter-
nally on the stack in the '"maximal accuracy"
format which means that no format specifica-
tions are needed for temporary results. Since
the operations are polymorphic, any necessary
implicit conversions are delt with by the
UNRAU. 1If, on the other hand, the user wishes
to force stack contents into specific format
restrictions, an explicit conversion operation
is provided. When the Convert operation is to
be executed, a descriptor must be presented to
the UNRAU as data. Whenever a Pop or Store
instruction is issued, descriptor information
is needed so that the top of stack is con-
verted from its internal type and form, to
the type and form required.

The internal representations have been
chosen such that all fields are expanded
compared to the maximal external represen-
tations. Hence arithmetic operations can
take place, and intermediate results be placed
on the stack, in an extended precision compar-
ed to that of the external representation.
Furthermore, the internal representation
carries a number of guard digits, in the
planned implementation two binary digits.

, Results of the arithmetic operations are
truncated when placed on the stack, if the
result is of normalized or unnormalized types.

181

When numbers are packed into an external
representation, a standard rounding takes
place (rounding upwards when the leading cut-
off bit is a one). Because of the guard-
digits provided, this double rounding strategy
will only under very rare circumstances give
an incorrect rounding.

Center-radius represented intervals are
treated differently since any mapping into
this representation has to guarantee that the
actual '"wvalue'" lies within the interval repre-
sented. Hence, any change in the value
representing the center has to be reflected in
the value representing the radius. The center
and the radius carry guard-digits which means
that only during quite long expressions can
accumulation of such rounding effects add up
to significant increases of the radius.

4.
An Internal View of the UNRAU Operations

The dyadic operators operate on the two
top stack elements. In order for the opera-
tion to be performed, both operands must be
of the same type. The internal representa-
tions and interpretations of the operands are
different only if their qualifiers are dif-
ferent. If the two do not have the same
qualifier, one of the operands is converted to
the type of the other and this will also be
the type of the result. The types are ranked
in a priority sequence corresponding to their

qualifiers as follows:
(lowest) 1) fixed
2) normalized
3) unnormalized
{(highest) 4) centered

The type of highest priority is chosen to be
the common operand type and the type of the
result.

The principles of conversion between
internal representations of representable
values are given below:

From fixed into all other representations:
The f-field is copied, e and r fields
are set to zero. If the conversion is
into normalized, the f-field is left
shifted until it is normalized, and the
e-field is adjusted accordingly.

From normalized into fixed:
The nearest integer value is chosen (if
representable, otherwise an augmented
form is introduced).

From normalized into unnormalized and center-
ed:
The = and f-fields are copied, the r-
field 1is set to zero.

From unnormalized into fixed:
The nearest integer value 1s chosen
{(if representable, otherwise an aug-
mented form is introduced).

From unnormalized into normalized:
By standard normalization.

From unnormalized into centered:
The new tractional part will be 2 * f if
possible, otherwise f; and the r-field
will be set to 1.

P

£
¥
¥
b
§

i

From centered into fixed or normalized:
Gives the result of the center interpre-
ted as an exact quantity.

From centered into unnormalized:
The f-field is shifted entier (log,r)+1
places to the right, the e-field i%§ ad-
justed accordingly, and the r-field is
set to zerc.

The standard dyadic arithmetic operations
can then, after the initial conversions, oper-

ate on stack elements of the same type and
representation. The implementation of these
is then straightforward , but it is worth

noticing that substantial savings in the oper -
ation time for the multiplication and division

can be achieved by operating only on the sig-
nificant digits. The sign magnitude repre-
sentation allows for an easy determination

of the part of a given field which contains
the essential parts of the number represented,
which then are the parts to be used in stan-
dard sequential implementation of those
operations. Especially when realizing the
interval arithmetic these savings may be
essential, since the radius usually only will
contain a few significant bits. The arith-
metic operations may cause augmented forms

to be introduced, which will be delivered

on the stack in a special representation; and
information about this will be presented in
the "as'" status.

Any arithmetic operation involving an
augmented form as an operand will give as the
result an augmented form with the non-
representable value "undef". This implies
that other non-representable values can only
be the immediate result of underflow or over-
flow situations either in arithmetic opera-
tions or in conversions in connection with
assignments or explicit conversions.

The language support of UNRAU provides
for an explicit type conversion operator,
which is implemented as a monadic, top of
stack, operator convert. Given the descrip-
tor of an external representation, the opera-
tor takes the top of stack number and converts
it into the corresponding external represen-
tation (including the rounding) and then
expands it into an internal representation,
of the type requested.

The Compare operation computes all the
relations <, <, =, #, >, > between the two
top elements of the stack, and then pops these
two elements off the stack. The result of the
Compare operation, the R-data, is a 6-tuple
(1t,le,eq,ne,ge,gt) where each element has a
value true if the (top stack) R (top stack-1)
holds, else the value is false. The environ-
ment external to the UNRAU can, of course,
test any elements of the R-data 6-tuple at
the end of the Compare operation. Implicit
type conversions may be required to complete
the Compare operation and are performed in the
same manner as a dyadic operation requires.

+ . - . .
An implementation scheme for the arithmetic
operations on center-radius represented
intervals is presented in the appendix.

The Compare operation is also defined when
the operands are intervals. The interpreta-
tion of the R-data elements is as follows,
where A and B are intervals:

1t: AnB = ¢ A (V xeA A vy yeB = x<y)
le: AnB = ¢ A (I xeA A yeB => xcy)
eq: AcB

ne: AnB = ¢

ge: AnB =z ¢ A (I xeA Ay yeB = x5y)
gt: AnB 2 ¢ A (Y XeA A W yeB = x>y)

The Characteristics operation yields
data concerning the nature of the top of the
stack element. The Characteristics operation
examines the stack top element and presents
a 12-tuple called the C-data. The elements
of the C-data, <f, u, n, ¢, -max, -X, -min,
0, +min, +x, +max, und>, give the type of the
number, i. e., fixed, unncrmalized, normalized,
or centered, and sets one of the other flags
to indicate if the number is negative (-x)
positive (+x), undefined, etc. The environ-
ment external to the UNRAU can test any ele-
ments of the C-data tuple at the end of the
Characteristics operation.

5. Summary and Some Related Issues

There are two major developments which
are currently taking place concerning the
UNRAU. First, a firmware implementation of
the UNRAU itself and secondly, the develop-
ment of language support which will give user
accessibility to the UNRAU. The latter issue
is dealt with in the companion paperl, "a
Unified Numeric Data Type in Pascal" and wilil
not be discussed here.

The implementation will be on Ehe dy-
namically microprogrammable MATHILDAZ machine.
In the planned implementation on MATHILDA the
stack will be kept in a 64-bit wide local
store. One possibility under consideration
for operand representation is to have each
entry in the stack occupy 1, 2 or 3 words,
depending on the values of q and a:

Augmernted forms:

G L I A

Normal forms:

fixed:
EP [0 ,fs‘ f magnitude 1
normalized
& unnorma-
lized:
01710 0 Tes] e magnitudefg
fs] f magnitude|g
centered: [1 [0 Tes] e magnitudelg
fs f magnitude|g
0 r magnitudefg

In the above diagrams, g represents guard

digits. The arithmetic operations and type 3
conversion operators use operands on the stack 3
in these representation, and deliver their re-
sult in the same representation. The Push

182

instruction packs an internal representation
into the external representation, except for
the tag field, which is supplied by the
environment.

It is anticipated that the interface
between the UNRAU and the language (e.g. the
prefetching of descriptors to deliver to the
UNRAU) will also be implemented in firmware
on MATHILDA.

References

Kornerup, P., "A Unified Numeric Data Type
in Pascal'", this conference.

Kornerup, P., and Shriver, B. D., "An Over-
view of the MATHILDA System," SIGMICRO

Newsletter, January 1975, Vol. 5, No. 4.
Appendix
A. The implementation of arithmetic opera-

tions on interval numbers

Since the center radius representation is
not the most commonly known among interval
representations a description of the algor-
ithms will be given.

It is assumed that the arithmetic oper-
ations compute their results as a tuple
(y,e,p) representing the interval as:

[a-p, a+p]*2"
where (v,a,p) then has to be mapped into the

interval representation (e,f,r).

e: sign magnitude int, 0< |e| szg: -1
f: sign magnitude int, 0s< |f| <2k -1
r: unsigned integer, 0z |r| <2

A.1 Mapping into the representation

The mapping of an interval [on—o,on+p]2Y
where o and p are binary numbers, possibly
with a fractional part, satisfying:

min ({al,p) 2z 1 or a =p =0

is given by the following algorithm:

s = sign (a); a:= abs(a);
while o = 2" 1ap > 2571 go
begin p = /25 a:= a/2; v 1= y+1 end;
p = p+(o-La); a = Loy
while o = k-1 do
begin p = (pramod2)/2; a:= af2; a:= o+l
end;
ri= p; f:=s*(La); e:=v;
A.2 Addition and Subtraction
For these and the following arithmetic

183

operations we will assume that the operands
are (el,fl,rl) and (ez,fz,rz)respectively.

The results of the operation will be des-
cribed in terms of (y,a,p) which then has
to be mapped into the representation.

2

Assuming that ey e, then the result of

the addition is:

e,-¢e
a=f +£,2 1 2
1+

2

€2

el
s p=r1+r22 »oY=e.

Similarly for subtraction:

e
2

-€

1 72

sy PET

e -e.,
r2 12

o fl-fﬂ —e
L 1 , Y 1.

Notice that a and p may be numbers con-
taining a fractional part.

A.3 Division
Assume that the numerator is (el,fl,rl)
and the demoninator is (ez,f?,rz). If
Ilegr2 the result will be "undefined",
otherwise:

M fol + myry

2 2
£, -1
£y 1ry + 1fyiry
oz 7 Z » YEe17%
f? - T,
In general o and p will not be exact

representable, as they may contain infinite
fractions. If the division algorithms for

o and ¢ are stopped whenever the quotients
of o« and p contains as many binary digits

as can be represented (n-1 or k respectively),
then the addition of a one to the least
significant bit of p will compensate for the
fractions of o.

A.4 Multiplication

There are four different cases to con-
sider, depending on the signs of fl and fz,

and the relations \fllzr and Ilezrz.

1
The cases may be considered two by two:

Case 1 & 2 (The origin is not in any of the
intervals)
1) flfz > 0, !fllzrl s llez ryt

a=f. f +r.r p=|f1lr2+[t2\r1, y=e1+eZ

172 "1°2°
2) f1f2 < 0, !fllzrl , !fz\z T,
a=f1f2-r1r2, p=|f11r2+|t2|r1, y=e1+e2
Which implies that both cases are covered by
the expressions:
a=sign(f1f2)(|f1]|le + r1r7),

O=|f1]r2 + llerl Y=e te,

1

Cases 3 § 4 (The origin is in either or both
intervals)

Both cases are covered by the following exp-

ressions:

vef g [d| -Isl . fdl o+ |s
172 P ?oPTT T, + —«——:~————:

=€ re,

where d=f1r2-f2r1 and s=f1r2 + fzrl. Since

these expressions involve unnecessary com-
putations, they may be split into the
following two cases:

3) flrz + fzr1 20:
a=f £, min(flrz,fzrl),
p=T T, * max(flrz,fzrl),
Ye, + e,

4) flr2 + fzr1 < 0:

a=f, f, - max(flrz,fzrl}ﬂ
p=r;T, - mln(tlrz,fzrl),
Y=e, + e,

Notice that multiplication results in both a
and p being integer numbers.

184

