CASE STUDY OF THE PIPELINED ARITHMETIC UNIT
FOR THE TI ADVANCED SCIENTIFIC COMPUTER

Charles Stephenson
Texas Instruments Incorporated
Austin, Texas

Introduction

Many scientific applications today require com-
puters which are very fast and capable of processing
large amounts of data. Some advances in scientific
processing have been slowed due to the lack of super=
computer capabilities which are required primarily in
the area of Central Processor speed and the availa-
bility of large amounts of high speed memory. Particu-
larly in the fields of modeling and simulation,
additional speed and memory capacity are desired to
allow increased resolution of the experiment. Techno~
logical developments in such things as integrated
circuits, multilayer printed circuit boards, memory
speeds, and others have contributed to the ability of
computer manufacturers to serve this market. In
addition to these developments, however, large advances
had to be realized from the standpoint of the basic
computer architecture. The concept of pipelining has
provided an answer to the large data execution rate
required. Pipelined capabilities in the form of arith-
metic units and special purpose functional units are
included in machines such as the CEC7600, IBM 360/195,

CDC STAR-100, etc.l’2 The Texas Instruments Advanced
Scientific Computer (ASC) uses the pipeline concept
throughout the Central Processor and carries the con-
cept throughout the Central Processor and carries the
concept further to include vector instructions in
response to the high execution rates required,.

The ASC Central Processor is composed of three
kinds of units as is indicated in Figure 1.4 The
Instruction Processing Unit (IPU) fetches instruc-
tions, decodes the operation ccde, develops the address
of the memory operand, and resolves address hazards.
Forty-eight addressable registers are resident in the
IPU. The Memory Buffer Unit (MBU) has complete control
during vector instructions and calculates all memory
addresses required for vectors. (A discussion of
vector instructions is contained in the following
section titled "Definitions"), The MBU contains a
Read-Only Memory (ROM), which provides the basic
control for the Arithmetic Unit (AU). The AU receives
all operands from the MBU and provides results to
either the IPU or MBU. The ASC can be configured with
one or two IPUs, each supplying operations for one,
two, three, or four identical MBU/AU pipelines. Seven
ASC systems have been manufactured; five with one pipe-
line each, one with two pipelines, and one with four
pipelines.

Definitions

Pipelining has been defined as a technique of
imbedding concurrency in a computer system by imple-
menting it in the form of a pipeline, a configuration
of independent autonomous units each of which is
dedicated to perform a specific subfunction in an over-
lapped mode with others. In terms of ASC nomencla-
ture, the pipeline is a series of sections, each of
which performs an independent operation. The require-
ment that each section must be independent requires
that any information calculated in one section which

168

will be used in succeeding sections must be captured

in a register or latch, and that output is transmitted
to the next section. A pipeline can have a fixed
configuration or the configuration can be variable
which is under hardware control. The ASC is imple-
mentec with a fixed configuration in the Instruction
Processing Unit and a variable configuration Arithmetic

Unit6. Figure 2 represents the IPU in pipeline form.
Each instruction passes through the sections in the
order indicated and the appropriate operation is per-
formed. The remainder of this paper will deal pri-
marily with a description of the variably configured
pipelined Arithmetic Unit.

Other terms which require definition are Vector
and Scalar instructions. A scalar instruction is one
which operates on only one or two operands (typically
one register operand and one memory operand) to pro-
duce one result which normally would be placed in the
addressed register. A vector instruction is one which
operatas on one or two series of operands (usually two
different areas of memory) and produces a series of
results (or, in special cases, a single result).
Examples of this would be a Vector Add which would
take n elements of Vector A, add those to the corre-
sponding n elements of Vector B, and produce a result
Vector C which has n elements. A Vector Dot Product
(VDP) instruction, however, can multiply An by Bn and

produce a single result which represents the sum of the
individual products. When executing vector instruc-
tions, the basic measurement, or the effective vector
rate, is stated in clocks per result. The goal with
a single pipeline is to operate upon a new set of
operands each clock. For vectors which produce n
elements, an effective vector rate of one clock per
result would require n clocks plus some time to fill
the pipe. If an instruction uses the same pipe sec~
tion for two clocks without allowing the next operand
to enter, the vector rate is two clocks per result.

The clock rate required by a pipeline is con-
trolled by the slowest section, or bottleneck.
Obviously the design goal is to implement the indivi-
dual pipe sections such that the propagation delays
are approximately equal. The amount of logic per-
formed in the individual sections will then determine
the length of the pipeline. Figure 3 represents three
possible pipeline structures for performing a Floating
Point Addition. In each case, the following functions
must be performed: (1) Determine the difference in
the two exponents, (2) shift the smaller operand to
the right to align the fractions, (3) add the frac-
tions, and (4) normalize the result. Fach of the con-
figurations can yield a vector rate of one clock per
result 3o the optimum configuration when considering
only vector execution rates would be one which con-~
tained many simple pipeline sections with the resultant
increase in clock rate since the logic has been over-
lapped. However, when considering only scalar exe-
cution rates the optimum configuration would be one
containing very few sections,

INSTRUCTIONS

OPERANDS

INSTRUCTION

FIGURE 1

INSTRUCTION

INSTRUCTTONS————]
PROCESSTNG FETCH
UNIT (IPU)
MEMORY
BUFFER
UNIT (MBU) INSTRUCTION
DECODE
ARTTHMETIC
UNIT (AU)
ADDRESS
DEVELOPMENT
ADDRESS HAZARD
DETECTION AND
REGISTER OPER—
AND FETCH
(MBU)
FIGURE 2
BT PON-
ADD SUBTRACT EXPON SUBTRACT
FLOATING ENTS & ALIGN EXPONENTS
FRACTIONS
I
ADD AND
NORMALIZE ALIGN
ADD
NORMALIZE
FIGURE 3

169

The ASC Arithmetic Unit

One of the key design considerations of the AU was
the approach used to control the execution of a large
instruction set. As was stated earlier, the basic
control is with a ROM located in the MBU. The resul-
tant MBU/AU pair forms a pipeline which contains all
the necessary hardware to perform instructions supplied
by the IPU. 1In particular, all vector instructions
fetch operands and store results with no further inter-
vention from the IPU. Therefore when reference is made
to the AU, actually the '"pipe" is a more representative
term. Some of the basic requirements in designing the
Arithmetic Unit for the ASC were:

Vectors performed at one clock per element.
Efficient scalar execution.

Very fast Vector Dot Product.

Fixed- and Floating-point formats.
Synchronous clock at best speed.

64~, 32- and 16-bit word sizes.

Flexible control for each of modification.

~NoOn W

An overriding factor which is, of course, present
in all designs which ultimately are implemented is to
keep costs down. Thus, it was decided to execute
scalar and vector instructions with the same hardware.
This along with requirements 1 and 2 listed above re-
sulted in the implementation of a pipeline to achieve
one clock per element but a pipeline which consisted of
as few pipe sections as practical to not unduly pena-
lize scalar execution. A good example of this type of
trade-off can be seen by examining a shift instruction
only. The shift hardware must be able to shift a 64—
bit word n places. A single pipe section as shown in
Figure 4 can be implemented which contains all of the
decode logic and selection trees for all bit positions.
This represents several levels of logic plus the set—-up
time required to appropriately load the holding
register at the output. Conversely a pipeline which
consists of six sections as shown in Figure 4b will
perform a vector shift at a rate of one clock per
result where the clock rate can be approximately the

[
32-BIT SHIFT

I

16-BIT SHIFT

|)

64-BIT SHIFT 8-BIT SHIFT

l |

4-BIT SHIFT

l

2-BIT SHIFT

l

1-BIT SHIFT

I
(b)

(a)

FIGURE 4

set-up uime for the output register since no logic is
performed and only hardwired propagation times are
involved. Obviously the vector rate is best with many
pipe sections but the scalar rate will degrade. Even
more significant amounts of hardware are involved and
sharp differences in execution times are realized when
making the same type of tradeoff for instructions such
as multiplication and division.

Figure 5 represents a block diagram of the ASC's
AU. There are eight distinct sections. These sections
were all implemented within ten levels of Emitter
Coupled Logic (ECL) integrated circuits which was the
design goal. The particular choice of pipeline sec~-
tions were incorporated to satisfy requirement (3) from
above - to implement a very fast Floating Point Vector
Dot Product (VDP). By examining this instruction, the
general use of the AU can be understood. For this
vector, the MBU must provide two operands on each clock.
As with all vectors, the MBU performs,look~ahead
operand fetches on both an A vector (A) and a B vector
(B). The MBU requests 8-word memory blocks, referred
to as octets, from an 8-way interleaved memory system
which is normally implemented with 160 nanosecond
BiPolar Memory. Since the MBU has total control of the
vector instruction it is able to perform 3-octet look-
ahead or each operand stream. The Input Section of the
AU serves as a means of buffering data from the MBU and
also provides a means of routing previous results
directly back into the AU for execution without being
resident in the IPU's Register File (this is referred
to in the ASC as a "short-circuit™). The Floating
Point VDP passes through the AU in the following way:
(1) Multiplier, (2) Accumulator, (3) Exponent Subtract,
(4) Align, (5) Adder, (6) Normalizer. Partial products
circulate through these sections until a final result
is obtained which then passes through the Output sec-
tion before being transmitted to the MBU. A brief
description of each section follows which relates the
function of each section in the execution of the VDP
and how other instructions use these same sections.

The Multiplier section is capable of multiplying
two 32-bit numbers and producing a 64-bit result. Ip
the case of the Floating VDP the operands are sign and
magnitude with the seven exponent bits being automati-
cally ignored. However, this section is also used for
fixed point multiplications with the fixed point format
being two's complement. In addition, all divide
instructions are performed as interactive multiplica-
tions and thus use this section of the pipeline. The
hardware consists of a Wallace-type summand tree of
full adder circuits with recoding of the multiplier
operand. The output of this section consists of two
64-bit registers, the Pseudosum and Pseudocarry which
must be added together to obtain any multiplication
result. Thus, no final result ever passes from the
multiplier to the Output Section but must always pass
through the Accumulator.

The Accumulator section is a 64-bit carry-propa-
gating adder implemented using a double-level lookahead
for carry generation. For the Floating VDP, this
section merely produces the partial products by adding
the outputs of the Multiplier section. The partial
product obtained is one of the two operands that will
be routed to the Exponent Subtract section. The 4
Accumulator is able to add three 64-bit numbers together i
with the third operand being the output of the Accumu- ‘
lator fed back for performing the accumulation of
partial products for the fixed-point VDP and also for
all Double-Length multiplications or divisions which
are performed by making iterative passes through the
Multiplier and Accumulator.

INPUT

MULTIPLY

ACCUMULATE

i

EXPONENT
SUBTRACT

ALIGN

ADD

NORMALIZE

]

OUTPUT

FIGURE 5

The exponent Subtract section operates upon the
floating point partial product which is at the output
of the Accumulator section and a partial product which
is at the output of the Normalizer section to determine
the smallest operand and how many bit positions that
operand must be shifted to align mantissas. Since the
floating point numbers are represented by a hexadecimal
exponent, the shift count will indicate a four bit
increment from zero to fifty-six. For all other in-
structions which use the exponent subtract section,
the operands are supplied by the Input section. The
Exponent Subtract section contains the comparison logic
for all fixed- and floating-point compare instructions,
including all Vector Compares. The major output of
this section is the Large Operand Register and the
Small Operand Register to be supplied to the Align
section.

171

In the Align section, all floating-point and add-
type instructions (Floating Add, Subtract, Add Magni~
tude, etc.) align the mantissas by shifting the Small
Operand Register to the right in one clock the
appropriate number of hexadecimal positions. For the
Floating VDP this function is being performed at the
same time that the next pair of operands are being
compared in the Exponent Subtract section. The Align
section performs all shift instructions that require a
right shift. Shift instructions require a bit shift of
zero to sixty-four and include logical, arithmetic, and
circular shifts. To reduce the amount of logic required
in this section, the implementation uses two clocks to
complete. On the first clock, a hexadecimal shift is
completed from zero to sixty bit positions. On the
second clock, a bit shift of zero to three occurs which
completes the instruction. This implementation re-
sults in fixed-point shift instructions having a two
clock per result execution rate.

The next operation performed for a Floating VDP
is the addition of the aligned operands. The Add
section contains a sixty-four bit carry propagation
adder with double-level lookahead for carry generation.
Inputs are selected from the Align section for all
floating-point additions, subtractions, etc. The
result is placed in a single register which represents
the result of the addition. As stated above, for the
VDP, the Add section operates independently upon one
partial product while the other sections are operating
on other partial products.

Since all floating-point results are required to
be hexadecimally normalized, the output of the Add
section is selected by the Normalize section where
leading zeros are examined to determine how far to
shift the result to the left to achieve normalization.
In the same manner that the Align section performed
right-shifts, the Normalizer executes all left shifts.
Once a partial product of the Floating VDP is norma-
lized, it is ready to re-enter the Exponent Subtract
section to be combined with the partial product leaving
the Accumulator. It can be seen that four pipe sections
exist between the point where an individual partial
product (An X Bn) leaves the Accumulator and the time
that a floating-point addition is completed at the
output of the Normalizer [(AnX Bn)+(An+4X Bn+4)]'

This results in a continual circulation of four partial
products in the pipeline, the MBU controls the
sequences of the partial products through the sections
in such a manner as to produce the final result.

The Output section receives results from the
appropriate section depending upon the instruction per-—
formed and sends the output to either the MBU or IPU.
The Output section contains hardware to perform logical
instructions such as And, Or, Exclusive-Or, etc. The
operands are received directly from the Input section
for these instructions.

Vector and Scalar Control

In addition to implementing a small number of pipe
sections to optimize scalar execution, while providing
vector streaming, the control is designed to recon-
figure the pipeline for each instruction, thus mini~
mizing the number of sections utilized for a given
instruction. Figure 6 demonstrates different configu-
rations which are used for (a) a fixed-point addition,
(b) a floating-point addition, and (c) a fixed-point
multiplication. The ROM which controls the AU has 512
addresses by 256 output lines. Some of the ROM output
is used by the IPU and MBU with approximately 180

INPUT | INPUT INPUT
MULTIPLY
ACCUMULATE
EXPONENT EXPONENT
1 SUBTRACT SUBTRACT
ALIGN ALIGN
|| ADD ADD ADD
NORMALIZE NORMALIZE
ouTPUT | OUTPUT OUTPUT
(a) (b) (c)
FIGURE 6

individual signals being routed to the AU. FEach scalar
instruction produces signals that control the functions
to be performed in the AU and performs the timing by
stepping through a fixed sequence. Only one instruc-
tion-type is resident at any one time in the internal
sections of the AU and the ROM output is enabling sig-
nals necessary to that instruction. All sections of
the pipeline are operating at each clock as could be
determined by examining the "don't care" conditions

but their output register is merely not selected by an
adjacent section. The number of internal sections re-
quired by an.instruction constitutes the number of ROM
locations required. With respect to Figure 6, the
number of ROM locatioms are one, four, and two respec—
tively.

For vector instructions, once the pipeline is
filled, the configuration remains fixed until the MBU
recognizes that the addresses corresponding to the end
of each loop has been fetched. At that time, the pipe
must be reconfigured to complete the instruction such
as adding together the four partial products at the
end of the floating VDP, This is accomplished by
having two addresses (Bl and BZ) provided as output

172

signals from the ROM. These addresses feed back into
the input of the ROM as controlled by the MBU, Bl’

being normally selected with B? chosen when end-of-

loop is observed. For example, a vector may sequence
through location 100, 101 and 102 until the pipe is
filled. Once the pipe is filled the control bits do
not change for the entire loop length thus address
location 103 in addition to providing the control bits
yields a ROM address Bl equal to 103 and B2 equal to

104. When end-of-loop is reached B, causes the ROM

2
to go to 104 and then sequence through remaining
addresses until the pipeline is empty.

A primary reason for selecting ROM as the control
mechanism was the ease of correction, addition, and
maintainability of instruction. A special ROM card
tester is used to program the ROM packages to the
patterns described in the logical implementation.

When changes are desired the card tester indicates the
packages to be replaced and creates the new patterns
in the replacement packages. Using this technique,
many implementation errors were corrected during inte-
gration. Also, new algorithms have been incorporated
to speed up instructions such as Divides and VDPs with
short size loops. In addition, new instructions
(Select, Replace, and Map) have been implemented.

Swmmary

Instruments ASC was

Unit pipelines that achieve
per result. To accomplish
executions, a method of

for each instruction was
set, and in particular the

In summary, the Texas
designed to use Arithmetic
a vector rate of onme clock
a goal of efficient scalar
reconfiguring the pipeline
required. The instruction
design goal of a very fast floating-point Vector Dot
Product produced a minimum requirement of eight pipe
sections. Design constraints in the Instruction
Processing Unit required the use of ten logic levels
which became the upper limit throughout the pipeline.
It was determined that both fixed- and floating-point
operations could be performed within that number of
levels; and thus, cost could be reduced by sharing
the logiz. The selection of a ROM for the AU control
has allowed new vector instructions to be added to the
repertoire after the hardware was built and has pro-
vided a flexible control enviromment which has proven
to be easily documented and maintained. The Arithmetic
Units are installed with machines in Austin, Texas;
Amstelveen, Holland; Huntsville, Alabama; and
Princeton, New Jersey in both single and multiple
pipeline systems. The units are executing the full
ASC instruction set and have proven to be very
reliable.

References

Anderson, D.W., F.J. Sparacio, and R.M. Tomasulo,

"The IBM System/360 Model 91: Machine Philosophy

and Instruction Handling', IBM Journal of Research
and Development, Vol. 11, No. 1, January 1967,

pp 8-20.

Purcell, Charles J., "The Control Data Star-100-
Performance Measurements'", Compcon 1974.

Watson, W. J., "The TI-ASC - A Highly Modular and
Flexible Super Computer Architecture', AFIPS,
FJCC, 1972, pp. 221-230.

Watson, W.J. and H.M. Carr, "Operational
Experiences with the TI Advanced Scientific
Computer'", Compcon 1974.

Remamoothy, C.V. and H.F. Li, "Efficiency in
Generalized Pipeline Networks", Compcon 1974.

Stephenson, C.M., "Contreol of a Variable
Configuration Pipelined Arithmetic Unit",
Allerton Conference on Circuit and System Theory,
October 1973.

173

FS

e

e i st

