UNDERSTANDABLE ARITHMETIC

Pat H.

Sterbenz

Brooklyn College

Brooklyn, New York

Summary

Since the floating-point operations form
the basic steps in our programs, the pro-
grammer has to understand the results that
will be~produced by these operations. This
paper discusses operations which have been or
might be implemented in the hardware. The
emphasis is on making the results easy for the
user to understand.

Introductiog

Most programs are written in a high level
languagg, and the programmer has to understand
the basic operations that will be performed by
?he statements he writes, Integer arithmetic
is easy to understand, and there are few sur-
prises, But scientific computing is performed
with floating-point numbers, so the FORTRAN
programmer has to understand what happens
wben he uses these numbers in his program,
Since the floating-point arithmetic will be
performed by the hardware, he has to under-
stand ?he operation of the floating-point in-
structions on the machine he is using.

Floating-Point Numbers

In order to allow for differences i
machlpes, we shall designate the set ifln
floatlng-point numbers by S(r,p), where r is
the.rad+x and p is the number of base 1 &
digits in the mantissa. Then S(r,p) contains

zero and numbers of the form irem, where

-1

r =m«<l,

gnd ;pm 1s an integer. The inequality (1)
implies that all of the floating-point num-
bgrs are normalized, which is a valid assump-
tlon_for programs compiled by many FORTRAN
compilers. The numbter of bits used to hold
tpe exponent e places a restriction on its
Egig, so it must satisfy a constraint of the

(1)

*
~€y,<cexe .,

(2)
Therefore, tgere is a 1apgest floating-point
number 2 =r® (1-r_p) and a smallest floating
point number a>=r(e*+1).

We are continually faced with the prob-

lem of apprgximating a real number x by a
floating-point number., Iet X be the largest

number in S(r,p) which is < x, and let Xp be

the smallest number in S(r,p) which is > x.
Then xLand X are called the left and right

neighbors of x, respectively, and either

%LA X <x, or else X;=X=Xp. We say that X
is the approximation for x obtained by chop-

Einé X to 3(r,p) if ¥ is the neighbor of x
with the smaller absolute value. Similarly,

e
X is obtained by rounding x to S(r,p) if X is
the nieghbor which 13 closer to x.’(If xp

and X are equally close to x, a rule must be

33

given t¢ specify which neighbor is to be
chosen. The commonest rule is that rounding
selects the neighbor with the larger absolute
value when the neighbors are equally close to
X.)

Floating-Point Arithmetic

The hardware usually provides instructions
for floating-point addition, subtraction,
multiplication, and division. The sum,
difference, product, or quotient of two
floating-point numbers may require more than
p digits, so the floating-point arithmetic
operations produce results that are approxi-
mations for the results that would be pro-
duced in the real number system. Since these
floating~point operations are the basic oper-
ations that the programmer uses in his pro-
grams, it is important for him %o understand
what they do. He should be able to think
about what happens when these instructions
are executed without having to read the
microprogram, Therefore, we want to be able
to describe the results produced by these
instructions in terms that are meaningful to
the user.

Suppose that the operands are a and b,
and let X be the result that would be pro-
duced if the operation were performed in the
real number system. Then the floating-point

arithmetic will produce an approximation X
for x, and our objective is to describe the

Some possible state-

result ¥ to the user.
ments are:

(a) The result is

(b) The result is

(c) The result is

of x.

(d) The result deces not differ from x bty
more than k units in the last place.
Alternatively, the relative error in
the approximation X«x is less than,

say, 1077,
Bach of these statements is understandable,
but statements (a) and (b) are much easier
for the user to comprshend and use.

Much of the discussion of floating-point
arithmetic is concerned with the accuracy of
the results it produces. Here, our emphasis
is different. While we want the arithmetic
to be accurate, we also want it to be under-~
standable. There are several reasons for
this. First, consider the person who is
developing the library programs for the com-
puter. Some of these programs, such as the
routine that computes sin x, are among the
primitive elements that are used by the
applications programmer, so they should pro-
duce results that are almost as accurate as
the results that are produced by the floating-
point arithmetic., In order to avoid needless
loss of accuracy, the developer of these
programs must understand the floating-point
arithmetic. Otherwise, he simply can't
produce high quality mathematical software.
To cite a simple example, he wants to know
whether multiplication by a power of the

x rounded to S(r,p).
x chopped to S{r,p).
one of the neighbors

radix is exact, so that he can choose scale
factors that don't introduce errors.

The applications programmer also has to
understand the floating-point arithmetic of
the machine he is using. Even though he
writes his programs in FORTRAN, the basic
steps in his program are the floating-point
operations, and they will be the operations
provided by the hardware. Therefore, he must
be aware of the anomalies of the floating-
point arithmetic, such as the failure of the
cancellation law. For example, since multi-
plication by 2 is exact only on a binary
machine, the FCRTRAN statements

A=2¥X
(3)
B=2%Y

can produce the same value for A and B even
though X# Y.

The primary reason that the details of
the floating~point arithmetic operations are
important to the applications programmer is
that a change of 1 unit in the last place can
change the branches thet are taken, and any
change that affects the flow of the program
can have a dramatic effect on the answer.
For examsle, suppose that the statements in
(3) are followed by the statements

IF(X.LE.Y) GO TO 500 (4)
and
0=2./(4-B) (5)

If statement (5) is executed, we know that
X¥Y, so we might expect A and B to be un-~
equal, But it is possible to have 4A=B, and
this will cause difficulty when we try to
divide by A-B in statement (5). Similarly,
if we use the statements (3) and (4) and then
print A and B, the fact that the same value
is printed for A and B coes not tell us which
branch was taken at statement (4). This can
cause us to search for a bug in the wrong
part of the program.

Exponent Spill

Another aspect of the floating-point
arithmetic is the way the hardware behaves
when the answer cannot be represented as a
floating-point number without violating the
constraint (2)., This is called exponent
spill. Suppose that x is the number that
wou be produced if we did not have the
constraint (2). The spill is called exponent
overflow if Ixi>2 , and it is called exponent
underilow if O< (Xj<w . Now typical values
for <2 are on the order of 1038, 1075, or
10300, and «w 1is on the order of 1/4 ., Since
this allows us to handle such a large range
of numbers, it might appear that we will
never encounter exponent spill unless there
is a bug in the program and it is running
wild. But there are calculations in which
we develop very large (or-very small) inter-
mediate results, even though the final ans-
wer is neither abnormally large nor abnor-
mally small, For example, in the evaluation

X

of the expression nte —, we can encounter

spill in both n! and e~ ¥, even though the
final answer may be on the order of 1,
It is important for the hardware to pro-

vide a reasonable =reatment for exponent
spill., Many computers produce an interrupt
when exponent spill occurs, and then either
the compiler or the operating system must
supply an interrup®t handler which provides

the appropriate treatment for spills. With

a versatile interrupt handler, this approach
can allow the user to control the way spills
are handled. He can ask the interrupt handler
tc print an error message for each spill, and
he can specify whether he wants it to termi-
nate the calculation or to provide an appro-
priate fixup and allow the calculation to
proceed, Ways to use various fixups hdve been

discussed in the literature.3’5

Since exponent spill is an exceptional
case, we don't want the tests that determine
whether spill has occurred to degrade the
performance in the normal case in which there
is no spill. When spill does occur, we want
the system to provide a satisfactory treat-
ment for it, but we are not worried about the
speed with which it recovers from the spill,

Other Qperations

As the cost of logic drops, increased
attention is being directed toward including
other operations in the hardware., The usual
criterion is cost/performance, and the de-
signer considers wrether the improvement in
speed justifies the additional cost. But we
should also consider the understandability of
the operations we add. If the operation is
poorly implemented, either it will be wasted
because the compilers don't use it, or else
the user will be stuck with it.

There are some simple operations, such
as reverse divide, that present no problems.
The user will be unaware of whether the com-
piler uses it, and the only question is
whether the operation is worth including.
Multiply~-add is a little bit more subtle. Is
the multiply-add command equivalent to a
multiply followed by an add? If it is not,

a new operation has been introduced, so the
user has to know when the compiler will use
it. Such an operation may make the results
unpredictable, because the programmer doesn't

- know which operations will be produced by the

statements he writes.

It is also reasonable to consider
commands for the conversion of data types,
such as FLOAT to FIXED. These operations are
easy for the user to understand, but we still
have to be careful about the details. Wwhat
happens if the floating-point number is too
large to be represented in the fixed-point
format? How is the floating-point number to
be shortened if it is not an integer? 1If
these details are not handled carefully, the
operation will not be useful.

Radix conversion is another candidate
for inclusion in the hardware. Although it
is easy to understand the conversion of small
integers, the conversion of floating-point
numbers is more difficult., Should the answer
be rounded or chopped? Can we guarentee that
it will be accurate to a unit in the last
place? How many digits can be specified in
the decimal representation of the number?
Radix conversion is particularly important
because most of the constants in a FORTRAN
program are written in the decimal represen-
tation, and the programmer can't understand
what happens during the execution of his

program unless he understands how these con-
stants will be converted. If the radix con-
version is performed by the hardware, it be-
comes the responsibility of the hardware
designer to provide clean conversions.

Functions

When we consider including additional
features in the hardware, it is natural to
consider the elementary functions, such as

sin x or ex, which are extensively used by
the applications programmer, But the imple-
mentation of these functions presents some
subtle problems.

We shall begin by discussing exponentia-
tion, as called for by the ** operation in
FORTRAN. The fact that exponentiation is
written as if it were an arithmetic operation
has led many users to expect it to be as
accurate and as reliable as the floating-
point arithmetic is., But it can be very
treacherous. Is 3.0%%2 equal to 9,07 What
about 3.0%¥2,0 and (~3.0)**2,0? It is natural
to use logarithms for the real to real case,
and many of the subroutines for the real to
real case don't bother to check whether the
exponent is the floating-point representation
of an integer., Then X**Y is equivalent to
the expression EXP(Y*ALOG(X)), so 3.0%%2,0
is computed as 1BXP(2.0%ALOG(3.0)), which
can produce a result that is not exactly 9.0.
Even more annoying, this approach will not
work at all for (-3.0)*%2,0, because it would
require us to compute the logarithm of a neg-
ative number. Consequently, many of the
subroutines for exponentiation give an error
message for (-3.0)*%2,0. Regardless of
whether exponentiation is performed by the
hardware or the software, great care must be
taken with its implementation in order to

produce reliable results.1":t
We encounter similar problems with other

functions, such as e® or sin X. The domain
of the function is the set of values Tor
which the function is defined, so we have an
error condition if the argument is outside of
the domain. Practical considerations require
us to restrict the domain to values of the
argument for which the answer can be repre-
sented as a floating-point number. For exam-

pié, eX*>n for rather modest sized values of
X, so the domain of the function EXP is the

set of arguments for which e¥ lies between w
and 2 . Also, we may want to exclude from
the domain arguments for which the problem is
extremely ill-conditioned. TFor example,
suppose that we are using a decimal machine
on which the floating-point numbers have 8
digit mantissas. If the argument for sin x

is x=109x,12345678, then a change of 1 unit
in the last place of x is a change of 10
radians, which is more than a revolution.
Therefore, even if we knew that the error in
X was less than 1 unit in the last place, we
would still have no idea what sin x was.
Many of the library programs for the trigo-
nometric functions treat this case as an
error, because the ansgwer is so sensitive to
noise in the argument that the value is al-
most never worth computing. Thus, the domain
of the function is not as obvious as it
appears to be.

35

Since the elementary functions are among
the basic elements we use in constructing our
programs, it is important that the values
produced for them be very accurate, Ideally,
we would like these values to be good to the
last bit. But this often requires us to use
a few guard bits in computing them., One good
reason for implementing these functions in
hardware is the possibility of retaining
guard bits in their caleculation. This would
make it possible to produce highly reliable
values for these functions.

Conclusion

In order to write reliable programs, the
programmer must understand the operations
performed by the hardware, Therefore, great
care must be taken in the design of these
operations to ensure that they can be de-
scribed to the user in gimple terms.

Referernces
1. Clark, N. A., W. J. Cody, and H. Kuki,
"3elf-Contained Power Routines," in
"Mathematical Software" (ed. J. R. Rice),
Academic Press, New York, 1971, pp.399-415,

Cody, W. J., "Software for Elementary
Functions," in "Wathematical Software"

(ed. J. R. Rice), Academic Press, New York,
1971, pp.171-186,

Kahan, W. "7094 II System Support for
Numerical Analysis," SHARE Secretary Dis-
tribution, SSD 159, C4537, pp. 1-54,
Matula, D, W., "In and out Conversions,"

Comm. Assoc., Comput., Vach., 11, 1968,
Pp.47-50,

Sterbenz, P, H., "Floating-Point Compu-
tation," Prentice-Hall, 1974.

