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Summary

Recently, there has been some interest in the use
of continued fractions for digital hardwzre calcula-
tions. We require that the coefficients of the
continued fractions be integral powers of two. As a
result well known continued fraction expansions of
functions cannot be used. Methods of expansion of a
large number of functions are presented.

We show that the problem of selection of coeffi-
ients of the continued fractions does not have
practical solution in most of the cases we have
considered. We conjecture that the solution of a
polynomial equation is the only problem that can be
solved in our formulation,

1. Introduction

In this study, we have investigated the possi-
bility of using continued fractions to evaluate
elementary functions in hardware. A continued fraction
is represented by:

where P, is known as a partial numerator and a4 is

known as a partial denominator. The recursions to

evaluate such a continued fraction sre given by [1]:
Fg=Q, =0, 9y=P =1
Plap S Py By "0 By (1.1)
Ui T Pien S T % & .J

In order to reduce the four multiplications in the
above recursions to shifts, we require that the partial
numerators and denominators be integral powers of two.

As a result of this restriction we are not able to use
well known continued fraction expansions of the functions
to be evaluated. For example, to evaluate tan h x, we
may not use the expansion:
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The first step in this direction was taken by deriving
a method of expansion for the sclution to a quadratic
equation [2]. We present a method of expansion for
%gb bo in this paper. The class of Ricecati differ-
-1
ential equations is closed under a bilinear transforma-
tion [3]. In this paper we show that using this
approach, a large number of elementary functions can
be expanded into a continued fraction.

We would like to keep the set of allowable values
of the partial numerators and denominators small,
Once these two sets of allowable values are chossn, the
range of numbers representable as continued fractions
is fixed and finite. This introduces a restriction on
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the possible values of pi and 9 at an iterative step.

Furthermore, since the value of the function to be
evaluated is known only implicitly through some
coefficients, the selection of Py and 9y is a non-

trivial problem. It is also desirable that the
selection procedure be computationally simple in the
sense that it may use add, subtract and shift opera-
tiocns only. In general, this requires the use of an
approximation in the selection procedure [2].

A selection procedure was obtained for the solution
of a quadravic equation {21, This was later extended
to higher degree polynomials [4]. 1In this paper, we
show that for functions expandable using the Riccati
equation approach and for the algorithm for evaluating
%gb . bO’ a simple selection procedure does not exist.
More explicitly, we show thaet the maximum error
allowable in the selecticn procedure is of the same
order of magnitude as the error in the solution.

In section 2, we derive the expansions of functiong
into continued fractions. In section 3, we investigate
the selection problem.

2. Methods of Expansion

Let the function to be expanded into a continued

fraction be denoted by f(go) where 24 is a vector of

arguments., We expand f(gi) (for i=0,1,2,...) using
the following bilinear transformation:

p

f(é) = ————%-5'—‘—‘? &21\/
T %n 2301/
It is required that the vector of coefficients Ei+l be
obtainable from 85 P390 G5q0 85y 1 and a; by

means of simple recursions. A recursion is said to be
simple if it uses shift, addition and subtraction
operations only. Let us denote this system of
recursions by:

a. = Gla,,a
=i+l —(—1’~

o1 F P9y, Gy
Next we show that many functions fall in this category.

2,1 golution of a Quadratic Equation (2]

c.
— - _l__ pe (
Let Ei = (bi’ci>} f(ij_) = bi+:)( and x = CO/kb()fC)
o
then f(@c) is a solution to the quadratic x - box - <

= 0. In reference [2], a system of simple recursions
G is derived, which may be written as:

b = - .
i1~ %1 ST Y G Y

c. =g

i+l <bi_b'

i+l 1*l>
In reference [4], this method has been extended to
higher degree polynomials.

Another method of expansion for the solution of a

quadratic equation bO a + co XO - dO = 0 is obtained
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by l;ttlng a; (bi,ci,di), f(gi, x5 where

b, ¥/ + ¢, x, - d, = 0, Applying the transformation
1 1 1 1 1

(2.1), the system G can be written as:

i = 4 /p“rl
e, . _pg ami %
i+1 i 2

Py il
N W1 (?i+1)
LA S| P

2.2 Expansion of Logarithm

Let a, = (bi,b l) and f‘ii> = %gb'_ bi' Applying
the transformation (2.1), we have [5],
(b )Pi+l
i-1
b s =2 2.2)
. (b ) i+1

1

However, we note that this recursion is not simple. To
solve this problem we can easily establish by induction
that [6],

CI
-1 ,
bi = d:« (2.3)
(b,)
where j = 1 if 1 is odd, j = -1 if i is even and the
recursions for c, and d, are:
i+l i+l
\.
1= do =1, €y d_L =0
Ci+l p1+l ) qi+1 i (@.4)
Q341 T Pipn G0) Yy

Comparing the recursion (1.1) ard (2.k4), we see that

¢ = Pi and di = Qi for all i, Therefore, if we let

g = (Pi,Qi), we have, f(go) = &gb IPO.

2.3 The Riccati Equation [3,7]

Consider the first order differential equation:

T o(a). ¥ -0 (2.5)
J=-m

We apply the bilinear transformation

AR SIRVAC TR

)

i+l

to equation (2.5) and require that yi+l satisfy a
similar differential equation, i.e.,

n

‘o= D (a,

Yiv1 .
j=-m

) y1+L'

After some tedious algebra, it is easily shown that
m=0 and n=2. Now equetion (2.5) is seen to be the
well known Riccati Equation. Let

2 . ,
[ . . -
MR ICHI A c;) (2.6)

where =1 if 1 is even, j=-1 if i is odd and the

initial conditions are, yi(O) = t;. Applying the
bilinear transformation, we obtain the system of

recursions [7]:

By 7 Sy /p1+i ~
Piay TPy ey 9y,/P
2

Cier 7% Pin TP 94y 70 9,/ Py (2.7

Y1 T P/t -y
Now if we let 3 = (ai,bi,ci,ti,x) and f(g.) = y.(x)
then we have a method of expansion of yo(x) = (90)
The system G is given by the set of recursions (2.7).
We note that the recursions for a, 141’ bi+l and c ‘1

are simple since we have assumed that I7RY and qi+l are

integral powers of two. However, the recursion for

ti+l is not simple. This problem can be solved by
letting t, = di/ei, dy = £y €y = 1 and
G kP e -y 9
(2.8)
i1 = By (ey)

We adjoln the recursions (2.8) to (2.7) after removing

the recursion for ti+l' Also, the vector ii is

redefined so that & = (ai,bi,c.,di,ei,x).

1 By choosing

o o S 9o and e
appropriately, many different functions can be expanded
using this approach.

the initial coefficients a

Let L denote the set of all Riccati equations and
LO be a subset of L formed by the set of all Riccati

equations with constant coefficients. Consider ZO ¢ L

¢

2 .

o Vo * bO Vo e Depending on the
. :r__) >

sign of & = by ha ¢, the solution yo(x) of EO

can be written as,

given by, yé = a
3

b
rol) = 2 (tanflslx 4 4 ) - 29
O o

J-a

if A< 0 and 2, #£ 03

1 bO
yo(x) =T Egg + Ay if A= 0, aq £ 03
A %o
va(x) = tanh{—% x + A.) - —=)
0 2 +2 Vcﬁ
if A >0 £ 0
bcg
yo(x) = AO e * ey X if 8y = 0.
Depending on the values of the ccefficients ay bo, 4

and the initial condition ty = yO(O), many different

functions may be expanded as shown in the following
table,
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2, bo y A tO | yotx)

1 1 -h 0 tan x

-1 -1 4 0 cot x

-1 0 0 ] % 1/x
-1 0 1 b B ‘cot h x
-1 0 1 L | 9 |tan hx

l 0 | s 0 >0 ! 1 e *

Table 2.1

Next consider a subset Ll of L such that,

L o= {y =alx) y2

+o(x) y v clx)alx) = k(x) &,
b(x) = k(x) b, e(x) = k(x) ¢, and &, b, ¢
are constants).

Recursions for a, ., b, and c, . can be derived from
1+1 i-1 i+1

the recursions (2.7) and are as follows:

= ~
2,07 /P i
b _ 2c 2
Piel TPy TR0 A/, (2.9]
< = a _ LT /
Ciel T % Pin TP Y0 TGy 9300/ Pige
. i e
Depending on the sign of Ab S bo - 4ao Sy the
solution to fo € Ll is given by:
E A 5
o) = =2 (tan(—2 fulx) wx + 4) - ~)
2a ) 7 NN
O 0]
if Zio <0, EO £ 03
b
1 0
YO(X) = - e
a [k(x) dx 2a,
o]
if by = 05 ag £ 0;
JEi; ~ﬁ26 b,
Ya(x) = = — (tan h{— jk(x} dx + A ) - —)
0] 53 2 0 e
aO \A%

and

yo(x) = <4 j%(x) ax + A 0 '
Clearly, a large class of functions can be expanded

with this method.

We will now consider a subset Ll

Llo = {L ¢ Ly Any £ e L

0 of Ll such that,

1o €30 be rewrlﬁfen
; 2 =
as: y' = k(x)(a¥y+b*)" where, a* -+a, b - a*(gé).
. ~a

Z% = 0},

a¥ . = b¥ND

i+l i i+l
(2.10)
. I
% - * 3 !y
Py = @y bt gy N
The solution to ﬁo c LlO is given by,
b"',('
1 C .
yalx) = - X if ax* ,'é 0,
© (a5)° (4, - fk<x) ax) &b 0

2
Vo= (% if ax =
yo(x, (oo) ./k(x) ax + A if ax = 0.
Note that we can integrate the given function k(x) by
this method by setting as = O and bg =1,

We conclude this section by presenting a schema for
the evaluation of a function using continued fractions.
The problem of selection, which is hidden in the pro-
cedure "select' of the schema, will be discussed in
the next section.

Schema A:

Step 1 [Initialize]:
PO - Q-l « O P-l - QO « 1; 1 <0

Initialize the coefficient vector a . depending

0
on the function to be evaluated;

Step 2 [Selection]:

(pi+l’qi+l> « select <2i’ function to be

evaluated);

Step 3 [Recursions]:

A
é’.*—l - g(éj’éi—l’pi’ pi+ll qi’ qi%l/ 3

P - D P, +

141 Py

141 Ti-1 %41 i
U1 7 Pier %t G Y
Step 4 [Test]:

After a sufficient number of iterations GOTO
Step 5; otherwise set i « i+l and return to
Step 23

Step 5 [Evaluate]:
Pi+l

) 5

i+1

fla

)~

0

End Aj

3. The Selection Problem

Let the set of allowable values of partial numer-
ators be denoted by Sp and the set of allowable values
of partial cenominators be denoted by Sq' We will
assume that both Sp and Sq are finite subsets of

positive reals, Let Proin = min S

= min 8§ q = SN
Uip = Bin g and max %q
numbers representable as infinite continued fractions
(i.c.f.) using the sets SD and Sq be denoted by

R(S ,S5 ). lLet
(8,5,

o’ Prax
Let the set of

= max S_,
P




min
Prax

qma.x+q_min+m

m
and

let

'%IS.X

. pmin
qmin qmax + M

M

It is clear that,

m = inf (B(Spﬁsq)))
M = sup (R(Sp;sq>>; and
R<Sp’sq> < [m,M] .

We would like to impose some conditicns on the sets Sp
and Sq s0 that R(Sp,Sq) = [mM]. As a result, any

mumber in the interval [m,M] can be represented as an

i . P : —
teef. Let mip,q) = oim, M(p, o) gm0 U(psa)
= [m(p,9),M(p,q)] and I(Sp,Sﬁ) = U I(p,q). DNote
= pes
I:)
es
€4

that, I(p,q) is a closed interval of the positive real
numbers, It can be shown that the fcllowing theorem
holds [6]:

Theorem 1:

R(S8 ,8 )

= [m,M] ifF I(8 ,8 ) = [mM
EA [m,M] (p,q> {m, M)

Given the sets S and 8,, if the

are satisfied thén we say that R(Sp,Sq) is a number

system (NS). Given an foe[m,M} we can expand it into
an i.c.f. by letting
Pi

a3+t

£ 4 1=1,2,3, ...

The method of selection of the pair (

.>9.) is as
follows: e

Search for a pair (pi,qi) such that

. €

o
1€ S g e Sq and fi—l € I(pi,qi) .

Note that this search will always succeed provided
R(SP,S ) is an N.S. Furthermore the definition of
I(p,q) guarantees that fi e [m,M]; therefore, the above

procedure can be applied repetitively.

As an example, let Sp = {1} and Sq = {L2). In

this case a simple computation reveals that the con-
ditions of Theorem 1 are not satisfied and R(Sp,Sq) is

L1)
shown by the

not an N.S. The gap between selection intervals I(
and I(1,2) is the reason for trouble ag
following figure:

(1(1,2)] ____ [1(1,1)]
- R A
(&) = 7

conditions of Theorem 1

As another example, let Sp = {1} and Sq = [l,L/E].

In this case there are no gaps as shown by the
following figure:

[1(L,1) T 1(1,1/2))
m=1/2 2/3 M=1

Therefore, R(Sp,s )

q forms an N.S,

In this case, the

selection procedure can be specified as follows:
(a) If il—l € {1/2,2/3) then p; = 1, 9 = L
(b) 1If £;_, € (2/3,1] then p; =1, q = 1/2,
) - 2/3 - -
(c) 1If g 2/2 then p, = 1 and ay 1/2 or 1.

Note that two choices are possible for 9 if fi-l = 2/3.

Let an interval I(p,q) be known as a selection interval.
The reason for multiple choice is seen to be the nor-
null intersection of adjacent selection intervals. As
& result of this, some numbers in [m,M] will have
multiple i.c.f. representations. TLet us define an

N S. R(Sp,Sq) to be nonredundant provided for any two

daistinet pairs (p,q) and (p',q9'),1(p,q) NI(p',q') is
either null or is a singleton. In such a case it is
easy to see that multiple choice of (pi,qi) results

- [m,M]. We
{1,1/23, R(Sp

nonredundant N, S. An example of a redundant N.S. is
obtained by letting sp = (1) and sq = (1,1/2,1/4y.

this case we note that [8)

for only a finite number of points fi

35

see that for Sp = (1) and Sq ) is a

In

2

I{,1/2) n (1,1} = [0.485, 0.72] and

{1, 1/2) nI{1,1/h) = [0.533, 1.124]

Thus far, we have outlined s selection procedure
when the number to be expanded is known explicitly,
However, when using the schema of section 2, the
number to be expanded at the it? step (i.e., f(gi)) is

known only implicitly via the coefficient vector ii'
Therefore, we should specify the selection procedure
in terms of 8;. Recall that in temms of f(gi), the
condition for selecting (p.+l,qi+1) = (p,q) is that
f(gi) ¢ I(p,q). This condition must, somehow, be

translated in terms of gim Even after such a trang-

formation, it turns out that prchibitive amount of
computation is needed in the seleczion procedure, We
may, however, reduce the computation by use of an
approximation, By using a redundant N.S., we hope
that the error introduced in the selection due to the
use of an approximation will be corrected by the
redundancy of the N,S.

3.1 gSelection for the Quadratic f2,8]

The (p,q) selection condition can be written as:

C.
1
n(p,q) < by < M(psa)
or (by+x) m(p,a) < ¢; < (b,+x) M(p,q) (3.1)

Note that f( ¥ is the unknown to be expanded,

&) =

therefore, we must use an approximation to x. Let us
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assume that three adJacent selection intervals I(p,q),
I(p',q') and I(p",q") are ac shown in the following
figure:

{

vl)I l’ ﬁ——_ I(p )q )-—-}i

k—~—4-— I p,q>?———~—*

tI?Zﬂ ’ZZ{ZCj
IR Ié

«=I(p",q
i

Thus, IL and IR are selection intersection intervals.
Let us assume that we have an approximation X of x
(and X is simple to compute from b and c ), and zf
and zr are properly chosen constanis such that zf ¢ IL
and zr ¢ IR. We may now use the following (p,q)
selection rule:

< (1* +X) * zr
i =

(3.2)

(bi+§) * 72l < ¢,

It is clear that the selection rule (3.2) may only be
used provided the interval of ¢, specified by (3.2) is

contained in the interval specified by (3.1). 1In
other words,

(bi+x) * m(p,q) < (bi+;) * oz
and

(bl+§) X zr < (bi+x) * M(p,q)

Thus we have a restriction on the maximum error
allowable in approx1mat1ng X by X. In references
(2,8], an approximation = satisfying these conditions
was derived. Thus we have an algorithm for the solu-
tion of a quadratic equation. This was later
extended to higher degree polynomials,

Selection for the second method of the solution
to a quadratic is even simpler. Since the (p,q)

selection rule in terms of X is that Xi e I(p,q).
An approximation Ei to X, can easily be obtained from

the coefficients b., ¢, and 4d..
i i i

3.2 Belection for Logarithm [6]

The (p,q) selection conditior in terms of f(gi)
is given by:

m(p,q) < g b, < M(p,q)
bi_l i

or

bm(P) a) <b

M(p,q)
< b s
i_l p—

i 1 1
However, this selection rule requires exponentiation
and it is in terms of b and b o1 A desirable

selection rule will be s1mple and will be in terms of

Pi’ Qi’ Pi-l and Qi-l This can be done by rewriting

the selection condition as:

Next we claim that %gb bi 1 > 0 since O < m < %gb b,
-1 -7

i-1
< Mwhichimplies

1

i+l i+l
il o Mo .M
S e T L
which implies
o <'ml+l < log b < M1+l
- b_l i-

We can, therefore, rewrite the selection condition as,

n(p,q) bgb_lbi_l < %gb"lbi < M(p,q) %gb_lbi_l

Now from equation (2.3) we have,

E"‘h)_lbi =3 [x %9b_lb-1 "4 i

J(i) (B; - u ]

and j(i) = 1 if i is odd and -1

where u = &gb_lbo

otherwise. Now the selection condition is,
J-1);_~uq, ;] m(p,q) < 3(1) P, -ua, ]

< J(E-10; _-uq; 4] M(p,q).
Noting that j(i-1) = - j(i) and transposing, we have,

M{p,q) P gt

P
‘Y‘"‘7 Q Q

m(p,q) Pi_l + Py
mlp,a) @)+

u J(i) < i

Slnce U is the unknown to be evaluated, we cannot use
this as our selection rule. Since b‘] is a monotone

increasing function of x (note b > 1), we can

-1
rewrite the selection condition as:

ARG (M(pya))

j{iy b 1 < J(i) bo <v g
where
s P + P
i-1 i
ARGi(.: =37 Q,i_ Q—

To reduce the computation, we use an approximation
ARG, (s)

-1
I(p",q") are three selection intervals as in section
3.1. Then using Ti(s), z{ and zr, (p,q) selection

Ti(s) of b Assume that I(p,q), I(p',q') and

rule can ve specified as:

J() T, (zr) < 3(1) by < 3() T, (22)
This selection rule is valid proviced

31) %, M(p,a)) < (1) T, (2r)

1
and
38) Ty (24) < 3(1) x, (mlpyq))
where
ARGi(s)
xi(x) =b_)

This implies that the max1mum error allowable in the
approximation T, (s) to X, (s) is of the form

fxl l) - % 82)| for some sl£s2 and S0 8, € [m,M].

Note that,




ARGi(sg) ARui(sl) - ARGi(sg)

b (b_l - 1].

X -1

i(sl) - xing)

it is sufficient

In

Since ARGi(s) and b_, are both finite,

to study the difference ARGi(s,) - ARGi(sg).
particular, if this difference approaches zero thern

the difference xi(sl) - Xi(s°) also approaches zero.

After some algebra, it can be shown tnat [6],
P P
i-1 i
. I(Sl 82>| (Q. . - Q;)
|aRG(s,) - ARG(s,)| = =
1 2 Q. Q.
(s - =) (s, 55+ 1)
i-1 1
sy -l op
< s, IQ T A
1 i-1 i

P'—l Pi
The quantity | o= ——[ is a measure of the rate of

Q.1 @
convergence of the continued fraction u = %gb bo. Let

. -1
us assume that it ie E'a-l for some & > 1, Then
)
[ARG, (s.) - ARG, (s,)] <a™ —2— . But this means
il ive 5

that the maximum error allowable in approximating xi(s)

by Ti(s) rapidly approaches zero.
approximation can be allowed in the selection rule.

In other words, no

3.3 Selection for the Riccati-Approach [9]

We have seen that the form of the solution to a
Riccati equation depends on the sign of the discrimi-
nant A. It is also clear that the selection procedure
will be different for different forms of the solution,
i.e., depending on the sign of A. Therefore, if A
remains invariant under the bilinear transformation
then hopefully the same selecticn procedure can be
used consistently during the iterative evaluation of a
function. It can be easily shown that [7] this is
indeed the case, i.e., Aﬁ = Ai_ = = Ab.

1 cen

In section 3.3.1 we consider selection procedures
for Riccati equations with constant coefficients, and
in section 3.3.2, we consider the more general case of
variable coefficients.

3.3.1 Constant Coefficients

We will consider two subcases separately depending
upon the value of the discriminant A.

3.3.1.1 The Case with A < 0O

Consider £ such that y{

+c,)

Ty
’ o
jla, vy, + b, y.
Ji i y1 i )1 i

1if i is even and -1 otherwise.

where 2y £ 0 and j

The solution to this equation is given by,

i r g jb.
v, (%) = %‘% Ltan <J;A X+ 8) I—ZJ (3.3)

If we let the initial condition be, yi(O) = di/ei then
we can evaluate the arbitrary constant‘Ai by substi-

tuting the initial condition in equation (3.3). Thus,

d

. r
A
e, J

N =A Jb, ,r .
§§; (tan (Ai) - “TiN=A) from which,

=

142

2a, d. - b, e,
i i

A, = 3 arctan ( — )
* e, N=A
i
Substituting in (3.3), we get,
- Pa,d +b. e,
=N . i TiTi
ntl g g ]
oo e JlA | b,
(x) = 3 522 -5
Iy 2a., 2e.d.+b. e, 2a,
i . =A 11 1731 1
1 -3 tan == X J————=
e. -
i
. (A
C[__ - 2 - d
) j tan 5 x)[ e, L+ bi(caidi+biei)]‘+~[ A(Eai i)
; @[:Q :
Edi[ei Jen - j tan 5 x)(aaidibiei)]
Jr, u+ W-a)d.
i i
- (3.4)
éf;A) e; = J hi u
_ N
where r, = 2c.e,+b.d,, h, = 2a,d.+b.e, and u= tan —_ X
1 11 11 € i1 11 Yt
It is clear that the process of selection will involve
T, hj, di and e but not as, bi’ and c, - Therefore,

if we could obtain recursions for ry and hi which are
free of ag, bi and ci then we will avoid the computa-
tion of g, bi and e, The recursions for r, and hi

can be easily derived [9] and are given by:

i1 T R Ty
Tiop = %y,(py By v AY,p Ty
(3.5)
Aipy 7 E (R ey - gy d;)
841 T8 4y

The condition for the selection of a (p,q) pair is
given by: yi(x) ¢ I(p,q). 1In other words, the selec-
Jr.,u+~-A
If m(p,q) < —=

-5 e, - F hu
i i

tion condition is: < M(p,q)

then choose (p,q). Note that we cannot use this con-
dition directly since u is an unknown, therefore, we
would like to rewrite the selection condition as
follows:

arc tan(ARGim(p,q)) S"{;%QE.S arc tan(ARGiM(p,q)) (3.6)

where
J—A e, s -\f-A d.
i i

ARGi(s) =

r, +

i i

Note that such a rewriting is valid if both of the
following conditions are satisfied: (1) ARGi(s) is a

monotone-inereasing function of s, and (2) arc tan(z)
is a monotone-increasing function of z. Since condi-
tion (2) is already known to be satisfied, we only

have to verify condition (1). To do this, note that,

JARG, (s)
i
os

(ri+his)6f;Aei) - h{f;A(eis-di)

2
(ri+hi5)

I

J;A(riei+hidi)/(ri+his)2 .

) 4




Now
Tivl 841 Pygn Gi4p = By (Py bty gTe) KA -
k2 r,(p, ,e.- d.)
i+l TP ®im G %y
2
= ki+l(P¢+lh 4+ p1+l i “)
= Pi 1+l(r s +h d )
Therefore,

P) r.e +h d ) .

I‘.E."‘h.d.:(H(P 00 00

i i i i 5=1 373

Therefore, ARGi(s) is a montone-increasing function of
s provided r, e, + h. 4 > 0, Observe that there is no

00 0 0
loss of generality in assuming that To eyt ho do >0,

Since if Ty &y * ho do <X 0 then nRJi(s) will be a
monotone-decreasing function of s and we can turn the
inequality (3.6) around and follow very similar

arguments, Also note that the condition Ty & + ho do

= 0 will not ocecur, since this implies Shat either to

(the initial condition) is complex or do = eo = 0 or
a., = O,
0

In theory, the selection condition (3.6) can be
used to select the (p,q) pair during each iterative
step, but the amount of computation involved is clearly
excessive. It is, therefore, clear that we would like
to use an approximastion to arc tan (ARGi(s)) which is

"easy" enough to compute from the available coefficients

hi’ Ty di, e, and the known value of s. We note that

the use of an approximation in the selection procedure
implies the use of redundancy in the digit sets since
otherwise we cannot guarantee correct selection. Let
us denote the approximate value of arc tan (ARGi(s)) by

ATi(s) and let z{ and zr have the same meaning as in
section 3.1, then the selection rule to be used can be
specified by:

If ATi(zﬁ) S‘igé Jx< ATi(zr) then choose (p,q) (3.7)

In order to guarantee correct selection using condition
(3.7), we have to show that the region specified by
condition (3.7) is a subset of the region specified by
the condition (3.6). From this, we can say that the
maximum error allowable in the computation of are tan
(ARGi(s)), denoted by E;, is given by:

E, <arc tan(ARGi(se)) - arc tan(ARGi(sl))

for some s, < s

1 2
such that s,, s, € [m,M]. Now we note that, arc tan(z)
sabtisfies the Lipschitz condition, i.e.,
|arc tan(z,) - arc tan(z;)| <Lz, - 7|
for L > 0 and L < 1. Therefore,
E; < L(ARG (s,) - ARGy (s,)) . (3.8)

Now let,

H o= ARGi(se) - ARGi(sl)

. - [ .
N A(eis2 qi) N [ﬂeisl di)
(ri+hisg) (ri+hisl)
( N Y
i \rlel+h sl)® a) (s, l)
) (slh +r, )(s h T )

Using an expression derived for ri e, + hi di earlier,
we have

leﬂs oy )(ﬁ?lpgkg)(roeo+hodo)

5= (s h T )(s h Ty (3.9)

We are now interested in eliminating hi and Ty from the

expression of Hi' Towards this end, we will show that,

Ty T T Ky 8t hg Ky Ry

where

We proceed to prove this result by induction on i.

Since PO =0, QO = 1 and KO = 1, we have Ty = rO-l-l

+ ho-l-O =Ty Now from recursions (3.5), we have,

1y = Ry (roythopy ) = o Ky Q) + By K)oy

Now assume that the required result is true for r, for
J <i. Agein from recursions (3.5), J

(py ;h.+q. .r.)

Tior T R (Py gyt

=k, .(p )

i+1 4

1015475017 5

ks, 1 (p; (roky 19 P

1+l i 11" O i-1

+ Q. (rOKiQi+hoKiPi))

i+l

Pk o1 Py Qg9 1% )

* bk, (e

141710174y

ToRie1% 1 T Bk P -

Thus, we have the required result., It follows from
this that

By o=k Ty 7 Ky (g gl )

Now substituting these expressions for h and rs in the
equation (3.9), we have,

i
('Elpj( K?\JO O+hOd JIVNG sg-sl)

K§[51<roQ1 1RgPy 1 PR HgPy ¥, (r Qs g +hgPy )
+roQ; +h P, 1.

Substituting thie in the expression (3.8), we have,

i
[ apnls -
(jﬁlp.) L(roeo+h CIOIN Asyms)

E <
1= Loy (rgQy #hgPy 3 1+rg@+hoP TTs, (r Q1 +hoFy 1)

+rOQi+hOPi].
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Now we consider two cases, depending upon the value of
r If r, # O then we have,

o
i
(m pj)
j=1
E. <B — (3.10)
+ L Qi Ql-l
since Pi’ Qi’ Pi--l’ Qi-l’ sy, 8, are all greater than

zero and where

r.e +h d ss

By = L) () Vs s 0,
1 2 55
o
On the other hand if ro = C
; foa
4 \
\jlj,lpj, L ho do Jo=A SE‘-S]_)
B, < -2=
i- 2
ho(slPi_l+Pi)(s2Pi_l+Pi)
i
(m P ) 4
ct (B, 0 (3.11)
i 1—1 2 e

We will now obtain a bound on Pi P, in tems of

i-1

Qi Qi 7 A well known property of the convergents of
an infinite continued fraction, f, can be written as
[1]:
P P, P P
LSg S STS..s@4sE
0 2 3 1
Pi
Therefore, if 1 is odd, N zm. If 1 >2 is even,
1
P, 2 P .
Q—l Q_2 > —mn . Therefore,
+ 2 9t Prax
ax qmin
=]
"1 Pi- N n pmin
(. -
. Qi-l . pma.x

C .
min

i
(mp.)
=g (3.12)
E, < — .
PTG, 2
5.-8, d mp .
where B, = e Son o 2 min From (3,11)
s h P
2 0 qm max
ax qmin
and (3.12), we have,
i
Ip,
g=19
Ei <E Q o
1-1
where B = Bl if Ty # 0 and B2 otherwise, Note that B

is a fixed, finite and bou_né‘.ed cc»nsta.nt independent of

the value of i. The factor ( II p

JlJ/Q G, can be

interpreted as the error in the solution, since it
equals the difference in values of the successive

) N .
convergents Ii-l/Qi—l and P:i,/Qi [1]. Therefore, if we

demand linear convergence then we must have,

=L ° corstant - o *

for a small positive constant and some & > 1. As a
result, we have,

But this implies that the computation of arc tan

(ARG, (s)) must be carried out to nearly the same pre-
cisidn as that of the desired precision of the function
being evaluated. Thus we conclude that we cannot
obtain a computationally szimple selection procedure

for the functions that can be evaluated using the
Riccati equation with constant coefficients and A < O,

3.3.1.2 The Case with A > C

Consider the following Riccati equation:

()]
. o
Jlayy by, vey)

o=
i ©
such that A = Ai >0and j = 1if i is even and -1
otherwise, The solution to this equation can be

written as,

ixwfé o
3

coth ( (3.13)

where A; i1s an arbitrary constant of integration.
Using the initial condition yi(O) = ti = di/ei’ we

Le,
obtain tanh A. = - ;)—————3'—-— For the sake of
i c,aidi+bie

brevity, we let h, = 2a, d, + b, e, and after substi-
i i7i i 71

tuting for A.l in (3.13), we get,

o L joe tanh(5%) - jb h tanh(*5X) \L\éaidi>
Vi® = o, - )
* ;]h tanh(\/ \/Ae
From which, we get,
- Valy. e -d. )
j tanh(“—f-"- N (3.14)

V= Eyihiﬂ”i5

vhere r; = b, di + E‘ci e;- Trom equation (3.13), we
note that if ej = 1, d) = 0, by = O and r = A then
N x -
yo(x) = tan h(—2—) If e hy = =~N4 and
ry = O then yO(x) = coth(—=— 0 and 8, = 0

bozi
then we have yo(x) = Age

From the form of the equation (3.14) and the
definitions of r, and hi’ it is clear that we can

follow the same arguments as in section 3.3.1.1 and
prove that a camputationally simple selection procedure

cannot be obtained in the case that A > 0 or an = 0.

Thus we have shown the negative results for the Riceati
equation with constant coefficients, i.e., for the

subset Lo of L.
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3.3.2 Variable Coefficients

We will only consider the case with AO =0, i,e.,

we consider the subset Llo of L. <Consider the equation
y! = 3 k(x)(a,y b, (3.15)
i ivi Tic
where j = 1 if i is even and -1 otherwise. Iet g(x) =

k(x) dx. We will assume that g(0) = 0, the function

g—l(z) exists, is a monotone in z and is Lipschitz
continuous with a "small" value of the ILipschitz con-
stant L. We will use the following set of recursions
for ai, bi’ di and ei:

a, =

i+1 i i+l
- e
Py = 8 Vg v By AR
\/’ S (316)
Ay = e VPyyq - 9y A ND Ly
Civ1 T diﬁfpi+l
The solution to this equation is given by:
d, + j(eg(x)-g(0)) b, (a.b.+d,e.
yi(x) - ;l - ?Egzx;-g(oii al<jlbl+dle1§ (3.17)
|y T JNBAE/-EL 1081717 % %

1

To simplify the equation (3.17), we can easily prove by
induction on i, that

Ay
¢ " To-

Note that (using the recursions 3.16),

ai bi + di ei = ao bO + d

+ d e

%101 P51t di40 C5an

)
- bi%fbi+l<efjpi+l_diqi+l/fbi+l) *

(ain

i+l+biqi+l%fpi+1) di/fbi+l

Using this, we get

d; + 3(alx)-g(0)) b, r
v.(x) =

1 S
1

0
+ i(e(x)-g(0)) a; v,

The selection condition can now be written as:
d,+j -

3 1+3(8(x)-8(0))o, v

= e, +3{g(x)-g(0))a;r,

If

n(p,q) < M(p,q) then choose (p,q).

Since g(x) is the unknown we want %o transform the
selection condition to:

.1 3 Mp,a)e -d +5 M(p,q)e(0)a, ry) s
birO+M(p,q)airO =

. 3 et i e la (o),
S j mlp,a)e;-d,+3 m(p,q)g(0)a,ry) 5180
= v, (o, m(p,q)a, )

But this transformation is valid provided, ARGi(s) is a

. . . , -1 .
montone-increasing function of s and g {z) is a monotone-
increasing function of z. Note that,

.~ d, + J s )
sey - d + ] gl{0) a; Ty

ro(bi+sai)

BARGi(s)

Therefore,

ro(biJrsai)(ei+3g(0)airc)-(sei—di+gsg(0)airo)r0ai

I

Jds

2. 2
roﬁbi+sai)

. 1+ 3 g(0) a; by

2
(bi+sai)

Since by assumption, g(0) = O then ARGi(s) is a

monotone-increasing function of s. Observe that there
is no loss of generality in assuming that g-1(z) is a
monotone-increasing function of z, Since if it is
monotcne~decreasing then we can turn the inequality
(3.18) around and follow very similar arguments.

The inequality (3.18) can te split up into two
parts depending upon the value of i. We will only
consider the case when 1 is even, the other case being
very similar. Then the selection condition is:

-1 1,
g (ARG, m(p,q)) < x < g (ARG, M(p,q)) .

Now since g—l(ARGi(S)) is difficult to compute in

general, therefore, we would like to use an approxima-
tion. The maximum error allowable in such an approxi-
mation can be written as,

. -1 - Rl N,
B = g "(ARG;(s,)) - g (ARG, (s,))
. . -1
where m < 8y < S5 < M, Since by assumption, g
satisfies the Lipschitz condition with the Lipschitz
constant L. Then
E, < L[ARGi(sg) - ARGi(sl)] (3.19)
Let
H = ARGi(sg) - ARGi(sl)
5% m Y S -y
ro(bi+sgai) ro(bi+slai)
5, = 8y

- )
(bi+52ai,(bi+slai)
From this point onwards, we can follow a pro-
cedure similar to section 3.3.1 to obtain a similar

negative result.

I, Conclusion and Further Remarks

Recently, there has been some interest in the use
of continued fractions for digital hardware calcula-
tions. We require that the coefficients of the con-
tinued fractions be integral powers of two. As a
result well known continued fraction expansions of
functions cannot be used. We have presented methods
of expansion of a large number of functions into
continued fractions.

Selection of coefficients of the continued
fractions is, however, a difficult problem, We have
shown that the selection problem can be solved for
the solution of a quadratic and higher degree poly-
nomial equations. However, this is the only class of
problems for which the selection problem has been solved,
We have shown that for most of the remaining functions
discussed in this paper no simple selection procedure
can be found. Expressions to prove this claim were
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derived in section 3. We now outline an intuitive but
less rigorous argument to explain this behavior,

We have seen that while evaluating a function f,
the selection procedure involves the computation of
the inverse function f~1, Since the computation of

f—l is generally as complex as the computation of f,

we require that an approximation of f-l be used in the
selection procedure. Thus the whole process of
evaluating f may be looked upon as an attempt to
obtain a good_approximation to f given a crude approx-
imation of £7~. Let us split the coefficient vector
2y into two vectors so tha‘cg“.l = Ozi,g). Thus the

vector gi consists of all the coefficients which vary

with index 1 and § consists of invariant coefficients.
As an example, in the case of the quadratic, gi =

(bi,ci) and g is null. As another example, for the
Riccati-approach, a, = (ai,bi)ci,di,ei) and g = (x).

We say that the initial coefficient vector go

with the system of recursions G determine the function
to be evaluated and B is the vector of true arguments
for which the function is to be evaluated. Note that
£ will play a role in the selection procedure, Since

together

we have assumed that an approximation to f_l is used
in the selection procedure, we can find two values of
8, namely g, and £, such that 8, # B, but the

corresponding approximation of f'l yields the same
value, Note that since (go)1 = (gO)E’ we have that

(pl, ql)l = (pl, ql)g. With this condition we can prove
(3,905
for all i. Therefore, f(@o,gl) = (@yB,). Thus f is

by induction that (gi/l = (gi)2 and (pi,qi)l =

not able to resolve g values if the approximation to

f-l is not able to resolve the same g values. It is
therefore clear that for our procedure to work, we
must require that the g vector be null. Indeed, in
the case of the solution to volynomial equations B
vector is null, In the Riccati-Approach, B vector is
always nonull. In the unmodified expansion of %gb bo,
-1

Q. = (b,,b, ) and £ is null. But since the system

-i i774-1
G was not simple, we applied a transformation. As a
result, we had a = (Pi,Qi) and g = (bo,b_l) thus

making the problem unsolvable,
Finally, we conjecture that the solution of a

polynomial equation (which includes the quadratic) is
the only problem that can be solved in our formulation,

&:knowled@@_n_t

The author wishes to thank Professor James E.
Robertson for introducing him to the subject and for
continued support and encouragement. Thanks are also
due to Mrs. June Wingler for typing this paper.

References

[1] wall, H. S., Analytic Theory of Continued Fractions,

Van Nostrand, New Jersey, 1950,

[2] Robertson, J. E. and K. S, Trivedi, "The Status of
Investigations into Computer Hardware Design Based
on the use of Continued Fractions,' IEEE Trans-
actions on Computers, Vol. C-22, No. 6, June,
1973, pp. 555-560.

(3]

(4]

[51]

[6]

(71

[8]

2

Wynn, P., "On Some Recent Developments in the
Theory and Application of Continued Fractions, "
Journal SIAM on Numerical Analysis, Vol. 1, 196k,
pp. 177-197.

Bracha, A., "A Method for Solving Polynomial
Equations by Continued Fractions," IEEE Trans-
actions on Computers, Vol., C-23, No, 10, October,
1974, p, 1093.

Iyusternik, L. A., et al., Handbook for Computing
Elementary Functions, Permagon Press, New York,
1965.

Trivedi, K. S., "On a Negative Result Regarding the
Jse of Continued Fractions for Digital Computer
Arithmetic, " University cf Illinois, Department of
Computer Science Report UTUCDCS~R-75-693, January,
1975.

Trivedi, K. S., "The Use of Riccati Equation in
Digital Computer Arithmetic, " University of
Illinois, Department of Computer Science Report
UTUCDCS-R-74-67h, August, 197k,

Trivedi, K. 8., "An Algorithm for the Solution of
a Quadratic Equation using CGontinued Fractions, "
M.S. Thesis, University of Illinois, Urbana,

June, 1972; also Department of Computer Science
Feport 525,

Trivedi, K. S., "Further Kegative Results
Regarding the Use of Continued Fractions for
Digital Computer Arithmetic, " University of
Illinois, Department of Computer Science Report
UIUCDCS-R-75-721, May, 1975,




