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1l. Introduction

Ir this paper we are consicering problems of
divisicn and multiplication in a computational
envirorment in which all basic arithmetic algorithms
satisfy "on-line' property: to generate jth digit
of the result it is necessary and sufficient to have
argumert(s) available up to the (j+8)th digit, where
the incex difference 8 is a small positive constant.

Such an environment, due to its potential to perform

a sequence of operations in an overlapped fashion,
could conveniently speed up an arithmetic multi- ;

processor structure or it could be useful in certain

real-time applications, with inherent on-line
properties. The on-line property implies a left-to-
right digit-by-cigit type of algorithm and consequent-
ly, a rzdundant representation, at least, of the
results. For addition and subtraction such algorithms,
satisfying on-line property, car be easily specified.
Multiplication requires = somewhat more elaborate
approaca and there are several possible ways of
defining an on-line algorithm. However, the existence
of an on-line division algorithm is not obvious and
its analysis appears interesting.

Af=er introductory remarks, an analysis of the
on-line division problem is given in Section 2. The
radix-2 case with non-redundant operands is
considered first and a feasible on-line algorithm is
defined. Later, a generalization of this on-line
algorithm for redundently rapresented operands and
higher radices is given. 1In Section 3, a compatible
on-line multiplication algorithm is considered, while
in the concluding section certain aspects of

implementation and performance are discussed.

2. Division
Let us denote the dividend, the divisor and the

quotient by N, D and Q respectively, such that
mn . m m

N=cfnr ,D=zIdr",Q=72qr >, andaa=N/D
. iR N 1 . 1
i=1 i=1 i=1

to m digit precision.




If all the digits of the operands N and D are
known in advance then the division can be carried
out by the following well known algorithm DI1.
Algorithm D1:

Step 1 [Initializel: P, « N j <« O,

0

Step 2 [Selection J: 7.

o1 © Select (er,D);

Step 3 [Basic Recursion]:
Pj+l < rP
Step 4 [Test]:

37 4P
If §j < m=1 then j <« j+1; and

go to step 23
End D1;
Pj is known as the jED-partial remainder and rP,
is known as the jzg-shifted partial remainder. The
procedure Select obtains the new quotient digit qj+1
such that Pj+l satisfies certain range restrictions
[11. This process requires the comparison of rP,
against some constant multiples of D. The use of
redundancy in the representation of each digital.
position of the gquotient allows us to select qj+1
based on the inspection of a limited number of
{leading) digits of er and D(1]. Furthermore,
these methods can also be extended to the case when
both the partial remainder and the divisor are in
redundant form [2]. It is clear that without the
use of redundancy it is not possible to avoid a set
¢f full precision comparisons.

The present probtlem is that the digits of the
dividend and the divisor are no® known in advance
but are available on line, digi® by digit, most
significant digit first. It should be clear at the
outset that in the abtsence of redundancy the problem
can not be solved.

Let us assume that the first digit (ql) of the
quotient can be obtained after ¢ leading digits of
the dividend and the diviscr are known. Thereafter
one new digit of the quotient can be obtained upon
receiving one digit each of the dividend and the divi-

gor. We can then specify the following algorithm D2,
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Algorithm D2:

. § .
Step 1 [Initializel: P <« T n.r_l;
[CR i
i=1
S5
DO «»Z dir y J o« 0y
i= F
Step 2 [Selection]: qj+l +Selectl (er’DJ);
Step 3 [Basic Recursionsl:
. - _j=6-1
LT I PP
. R s R
Pogp €77 # Biegr1” T 4301054
J .
-1 )
-(z or ) dj+6+l r

i=]1
Step 4 [Test]:

I j < m-1 then J « J+1 and go to step 2;
End D2,
Ncte that, we have assumed that the dividend

and the divisor are padded with & zero digits to

the right.
From the recursions of algorithm D2, we have,
. . J+6 i 3 B j+8 -
P.=rl Zn,r - (Zaqr )zIdr )] (2.1)
.1 . i 1
i=2 i=1 i=1

wkich implies,

ﬁm =" 7w -qp 1.

Therefore, if we can devise a selection procedure

such tkat !le < alD| where % < o £ 1 is a small

constart then @ = N/D to m digit precision [1].

Insteac of doing this directly, we will specify a

selection procedure which guarantees that |P | < af

o
P PJ\.

first discuss a simple case in which the radix is

D|

and we will also obtain a bound on [P We will
two and the divisor and the partial remainders are in
nonredundant form. Later, we will generalize to an

arbitrary radix and all operands being redundant.

2.1 Binary Division with Nonredundant Operands

From the recursions of algorithm D1, we have,

jpo© - R RO
Py = Pl Inr - (1 gr )z ar ™l (2.2)
i=1 i=1 i=1
From equations (2.1) and (2.2), we have,
5 T -1 I S -i
P, -P, =1t nrt-(c% qr M arT))
d i=j+6+1 i=1 i=j+841
(2.3)
Note that n, e {0,171, di € {0,1}s




r =2, and 9 ¢ {E;O,l}, therefore,

R mo_ 3 s mo .
Py~ P s drzet e (Tl o M3
i=)+8+1 i=1 i=J+8+1
and
. TP R S Y
PJ =P, 220z 277)( £ 27)].
J i=1  i=j+e+1
From which, we have,
2% cp L P <0078 (2.4)

J J

We will assume that % < D < 1, From the digit
set {0,1,1} of quotient digits, we obtain the range

restriction on P

J’
D < pJ <D (2.5)
From (2.4) and (2.5), we get,
D+2% < ﬁj <D - 2278 (2.6)

Applying the range restriction (2.5) on PJ+1’ and
using the recursion of algorithm D1, we can

determine the range of 2Pj for each possible value

of qj+l' Thus,

if o < 2PJ < 2D then qj+1 =1,

if -D < QPJ < -D then qJ+l = 0, and
if -2D < 2Pj < 0 then qj+l =-1.

Using inequality (2.k4), we get the corresponding

selection regions for 2P,:

J
-8 - -8 .
If 2:27° < ZPJ < 2D - ko2 then 41 = 1,
. -8 - -8
if ~D 4+ 2:27° < 2PJ <D - L2 then U, = 0,
-8 - -8 -
and if -2p + 2.27° < 2PJ <0 - k2 then 4 = -1,

These conditions can be graphically described by

means of a P-D plot [21, as in Figure 2.1. The

difference between this P-D plot and the conventional

P-D plot is that the ordinate is EPJ instead of

2PJ.

The value of & is determined by requiring that
the lower bound for qj+l = 1 region and the upper
bound for qJ+l = 0 region intersect at a value of

D <% This means 6 2 b, We choose § = 4. And

two selection lines that we choose are 2P

3 = % and

-

2PJ = <%. Thus selection rules are:

P = v
Ir 2PJ > %  then Uy = i,

2P, < -¥%  then

if 3 qj+l

= -l’
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FIGURE 2.1
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otherwise

q’j*‘l = 0.

To satisfy the range restriction on PO, we may

have tc shift it to the right by at most two bits.

Thus we have completed the specification of algorithm

D2, It is elear that the same treatment can be




extended to higher radix division with nonredundant
operands.

An example of the method now follows:

Let m = 24,
N = 0.1010001101101011100101.01
and D = 0.111101100101100011110011.

We note that negative values of PJ are represented

in two's complement nctation.

2.2 Division with Redundant Operands

We assume that the digits of the dividend,
the divisor and the quotient are all chosen from
the symmetric redundant digit set,

31,0,1,...0} and £ ¢

D = {-p,... 5

< r-l.
o p r

We will denote the degree of redundancy, o/r-1, by K.

From equation (2.3) we have,

~ j r-J—S -1 I‘-m_l
|PJ —PJI < rY[p” T +
-1 =-J-1 -J=8=1 _ -m-l

P e T )

= (K + Iﬁe)r—5 - (K + 1{2)1'“m+J - Kzr_J_6 + Kgr_m

which implies

-(x + Icz)r“S < Pj - PJ s (K + 1(2)1»"S (2.7)
The range restriction on Pj is given by,
KD < PJ < KD (2.8)
From {2.7) and (2.8), we get the range restriction
on P,°
J

-KD + (X + Ke)r'dS < 13J < KD - (K + 1{2)r'6 (2.9)

Applying the renge restriction (2.8) on PJ+l

and using the recursion of algorithm D1, we can

determine the seleetion region of rPJ for each

= i such that

possible value of qj+l' Let qj+l

- ps i £ p, then i-selection region is given by,
< (K + i)D

(X + 1i)D < rPJ (2.10).

Corresponding i-selection region for rPJ is obtained
using (2.7) and (2.10) as,

(K + 1D + (kK + K°)p~ 0+ ¢ TP, < (K + 1)D - (K + g2)r-8+1

(2.11)
A
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FIGURE 2,2

In Figure 2.2, we have represented these regions
by means of P-D plot of er vs. D. If we want to

avoid full precision comparisons of rP. with multiples

J

of D, we have to use the estimates of the full
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precision er and D. Let us assume that we use § maximal redundancy, cannot be used.

most significant digits of Pj as its estimate Rj and As an example, for r = 10, p=6, and K = 2/3,
A PR . -8+ L —-R+
8 most significant digits of the divisor D as its we have (4/3 + 4/9)107%%2 4 2/3(16/3)107 P < %. %_,
estimate D. Note that only § + j digits of the or
divisor are known at step j. Therefore, 8 < §. From 3200 10"(S + 6u010_8 < 1.
this point on, we can follow the analysis in Atkins's If we let § = 8 + 1 then
Ph.D. thesis [2] substituting the P-D plot of rF (320 + 640)107™% < 1 or
vs. D for the original P-D plot. The condition for 823, 8 24,
determining § and 8 can now be stated. A rectangle We can continue further and obtair the selection
of height 24p, width 24d and whose center is at Dmin rules but we omit the details here.
should be completely contained in <he (i,i-1) seiecfion
overlap region. Where, Ap and Ad are defined by, 3. Multipl:cation
!er - erV < Ap and An on-line algorithm for multiplication,
' D - DI <ad. compatible to the previously considered on-line
The above condition is equivalent o the condition, division algorithm, can be cenveniently derived
-8+ - , .
Ap + (24 - 1) ad + (K + Kz)r L < (2K - l)Dmirl . following the well-known technique of incremented
Note that the worst case occurs when i = p, therefore multiplication, as used in the digital differential
we get the condition, analyzers [E,h], combined with the use of redundant
~&+ iy L
ap + (p - L) ad + (K + K2)r &+l < (K - %)Dmin (2.12) number systems.
We can easily obtain, Let
P -8+ m 1
APST—_—_LrGland X=in'rl
o - i=1
Ad < —r 8 m . (3.1)
r -1 -i
Y = I yi-r
Therefore, the inequality (2.12) reduces to i=1
~8+1 - 2y =8+1 2
Kr + (P~ )Kr £y (K + K)r < (K - %)Dmin- be the radix r representations of the positive
or multiplicand and multiplier respectively. Define
-8+ - - J - (35~ -
ek + K™ e - e (WD L (2a13) L R (s S
i=1 o
* (3.2)
If we assume that the divisor D is standardized, ) J . . .
(3 _ -1, 03-1) oo
Y =ZLy.'r =Y t y,'r
i.e. d # 0, then i=1 * J
- 1 p 1o B
min - P B to be the J digit representations of the operands
~f+1
2Ll _ e 1= " X and Y, available at the J~th step by definition
r r r -1
! -B+1 of an on-line algorithm. The corresponding partial
= H1-K(1-r ))
product is, then,
Therefore, the condition (2.13) reduces to ( 3 - I {4 5 -3
, , 9y oG- ), (X\J).yj Ly 1>.xj)r J
- - - B+ .
(2x + k%)t 4 Klo - %) ® < ik -3y - k(1 - ¢ 53
r (3.3)
or, (3) . :
Let P be the scaled partial product, i.e.
~84D —B+
(2K + K)r™8C 4 k(o - gy BT

< - I In s
< (1 ~ X)X - %) (2.1h) p(3) L (D) 4 (3.1)

Once r, and K are decided, we can determine 8 and § .
so that the recursion of the multiplication algorithm

from this condition. Note that X = 1, or equivalently
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can be expressed as fo lows:

) G-, (), YU-U.XJ (3.5)

J

(:
Pl = pp + X

(0)

) ) mn
With P

= XYr

0, the scaled product P(m
can be generated in m steps (3.5). 1If a non-redun-
dant number system is used in representing the partial
products, the digits of the desired product appear

in a right-to-left fashion, as determined by the
conventiel carry propagation requirements. If,
however, a redundant number representation system
is adopted, the desired left-to-right generation of
the product digits, as required by the on-line
property, can be easily provided. Moreover, the
redundancy in number representaticn can make the
time required to perform the recursive step
independent of the operand precision.

Let a symmetric redundant digit set be defined

as

where

rofrs

and r is the radix.
Following the general ccmputational method, described
in [53, the basic recursion (3.5) of the multiplica-

tion algorithm is redefined in the following way:

(3-1) _ 401y, g o Y(J—l)_xj

(3.7)

w(j> = r(w

where the digits {dj}, d_e'Dp, can be determined by

J

the following selection function:

d S(W(J)) = sign w
which, clearly, corresponds to a rcunding procedure.,

Then, by definition,

. J-1 /.. .
3o el % S -0 (3.9)
i=1
Therefore,
m-1 .
P(m) = Xy = ™ g d(l)x_l + w(m)
=t (3.10)
or n
ry =3 a bty )y
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By definition of the selection function S(w(J>),
m .

(m) (m)) L, so that 1 gli)
i=1

the redundant representation of the most significant

-4 r " is indeed

lw

half of ths product X'Y.

In order to preserve the consistency of the
recursion (3.7), the bounds on size of the operands
must be satisfied. For simplicity, no attempt is
made here o establish the necessary operand
range conditions, since the following sufficient
conditions appear reasonable, simple and practical.

The given cigit set Dp and the selection function

S(w<j)) imply that

PRI g (3.11)

must hold for j = 1, 2, -» m. Consequently,
a sufficient condition cn operand bound is

R %} ’
for a minimally redundant number system with p = 5 .
or,

IXl <%
for a maximally redundant number system with =r -

It can be easily found that these bounds can be

improved: for r S % is g valid operand
range.

As discussed in detail elsewhere {57, it is
a simple matter to make the time requaired for
computation of w(j> independent of the precision

of the corresponding operands.

() _ )

Namely, by allowing

L o< |w 1

I <
& carry propagation free addition can be utilized
in (3.7).

The following example illustrates the on-line

multiplication algorithm for r = 2:
X = 0.01101001
Y = 0.01110011




1 0.0 0.0 0 0.0 (3]
2 o0.01 0.01 o 0.1
3 0.101 1.001 1 0.0l
|

L 0.0110 0.1010 1 -0.11 (a]
5 0.0111 ~0.0101 0 -0.101
6 0.0 ~0.101 -1 011
7 0.0110100 1.0010100 1 0.010100
8  0.11011011 1.00101011 1 0.0101011

[5]
S (5)-3 . ,-8,.(8) (8)
a2 e 270 %2 @'Yy 2 gl 0010111100101011
J=1

= XY [N

4. Concluding Remarks

Two compatible algorithms For on-line division and
multiplication, based on the redundant number systems,
have been presented. Besides an obvious usefulness
in real-time applications, these on-line algorithms
provide an effective way of speeding up the
execution of sequences of the basic arithmetic
operations by minimizing the delay between
successive operations in an overlapped mode of
operation., The described algorithms can be seen
to have rather simple implementstion requirements
and properties which are compatible with the
desirable modularity in implementation and

variable precision operations,
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