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SUMMARY

A common requirement accompanying high-speed Alternat:ve expressions for zero—s%pzﬁetection

parallel addition is the early detection that make use of the fast carry network “’~ that

the sum is equal to zero. Normally, this accompan:es high-speed addition. The out-

condition is detected from the sum, generally put carry and some intermediate carries from

at least two logic gate levels after the sum. a fast carry network are generally also avail-
able pricr to the sum, so that zero-sum de-

This paper derives expressions for detecting tection can still be achieved earlier than

a zero-sum condition concurrently with or from the sum digits, vet with greater economy.

even earlier than the determination of the The use of the output carry or some inter-

sum digits proper. As a result, a branch mediate carry for zero-sum detection is re-

operation based on cdetecting a zero-sum can stricted to binary.

be executed earlier.

The expressions for zero-sum detection will
For example, a zero-sum condition, labeled be derived first for a 32-bit adder, then
ZEROS, during addition of two n-bit binary extended to n-digit adders of higher integer
numbers A and B, can be expressed by: radices, with special emphasis on binary-

coded decimal.

ZEROS = @0+Gl+....+Gn_l]or%o+§iJ°...° The methods of deriving expressions for zero-
- sum detection are also applied to the detec-
[ﬁn—2+§n~l ]0 [Hn—l_EEn tiqn of a string of l'siin a binary sum.

This 1is similarly extended to detecting a
where H;,G;, and P, are the individual bit s?ring of qiminished—radix sum digits for
position functions: higher radices, with special emphasis to de-

tecting a string of nines for decimal.

Hi = AiV Bi for i=0,....,n-l;
Gi = Aje By Aigh ~to-low-order bit
P} = Aj+ B} positions ZERC-SUM DETECTION OF A 32-BIT SUM
and Cin = input carry to the adder Let A=(A0,Al,...,A3l) = addend of a 32-bit
adder
Dther expressions for ZEROS are derived that B=(BO,B1,.--,B31) = augend
make use of the output carry (CO) or a carry
from an intermediate bit position (Cy). where the subscripts refer to the bit posi-
Zero-sum detection is also extended to higher tions, 0-31, high-to-low order, respectively,

radices, notably decimal.
The following functions of individual bit

Similar expressions are also derived for de~ positions will be used in the description:
tecting a binary sum of all 1's and general- o _
ized to a sum with diminished-radix digits. Hy = Ap ¥ By = Ay ®B + Ap By = half-sum of
position k
INTEODUCTION G = Ak ® B, = carry generate of bit position k
High-speed addition is usually accompanied by Py = Ay + By = carry propagate of bit
high-speed detection of certain sum conditions position k

that critically determine the timing of the
executiocn of the next operaticon. One of these It follows that:
conditions is that the sum digits or a string

of consecutive sum digits are zero. Hg = Py ® 5p ﬁk = Py + Gy

A zero-sum condition can be detected directly Gk = ﬁk ® Py 5% = H + Py

from the adder inputs without first generating _ _ _

the sum digits. 1In general, a string of con- Px = Hyp + Gy Pk = H) ® Gk

secutive zero-sum digits can be shown to be a

simple function of the corresponding addend

and augend input digits and the input carry In addition, an input carry, Cin, is included
to the string. If the string includes all among the :nputs.

sum digits, or the low-order truncated por-

tion of the sum, the input carry is generally The conditions for generating a sum of all
available concurrently with the input digits, Z€ros are enumerated /in Eq, (1). 1In words,
so that the zero-sum condition can be detected a zero-sum labeled ZEROS is present if one of
in the earliest possible manner. The expres-~ the three conditions is satisfied:

sions derived here are more general_ and eco- . - -

nomical than one described earlier, 1. All irputs are zeros (P and Cin).
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2, In one and only one bit position both
addend and augend are 1(G), producing
a carry. At the same time, the trailing
bit positions produce P, Cinp = 0, and
the leading bit positions produce H to
propagate the generated carry through
them and leaving zeros in its wake.

3. Cin = 1, which generates a carry, and
all bit positions prcduce H to propagate
the carry through them and leave zeros
in its wake.

ZEROS = §o°§1'P2""'§3l'Ein

+ Go°§l'§2' ..eP31eC;

(1)

+ Hp®Hj®Hpe.. '.G31.E:-jLn

+ Ho.Hl'Hz. <. .®H31%C:

The first two terms of Eq.
to yield Eg. (2).

(1) are combined

since (PO + Gp) = HO .

ZEROS = Hy e Py e EZ * ... % P31 7y,
+HQ . Gl ° 2 *¢ ... ® P3l ° Ein

. (2)

.

+Hp ®© Hy ® Hy ® ..., ® G3] ® Cin

+Hg ® Hy ® Hy ® ... ® H3) ® Cip

The first two terms of Egq.
to yield Eqg.

(2) are combined
(3) ynoting that HO'HO GleP1=0

ZEROS = (Hg + Gy)e® (Ho+PBy)eP,e ... 0P, T
+ Hp®H eGoe . .. .‘531’3éinln
. (3)
+ Ho®Hl®Ha® ... .9G319Cyn
+ Ho®H1®Hp® ... . ®H31®C

The process of combining the first two terms
is repeated until only a single term remains,
as shown in Eq. (4.

ZEROS = (HO+G1+...+G31+C 0)® (Hg+P1)e (01 +D,)e
c o ® (Hyg+P31)® (Hy+Tsip) (4)

The iteration can be proved by induction by
showing that

(§O+Gl+. «++Gy+Gx41)® (Hg+Pp)o . . @ (Hx_1+B))e
(H+Py ) = (§0+Gl+...+Gk)«(HO+§l)0...-

(Hk-1¥Py) # Py, +Hot H]® . . @ HK® Gyepp

Eg. (5)
to:

is proved by expanding the left side

(Hg*G1+...+Gy )@ (Ho+Pp)e. ..o (H_1+By) oy,

+( J e ( )

MR )ePyiy
+ Grs1de( ). .e )@ Hy
+ Gr+1)® ( o, ..o }oPy 41

The first term of the expansion is equal to
0, as shown by multiplying through, as
follows:
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(HgtGy+. .. +Gy)® (HptPp)e. ..o (Hy 1 +Py ) #Hy

= ye ( )o .. .8 H_1oH,

Eince
Pi'Hi-’—‘O

( )OHQ® .. . OH) _®H

=0 sirce GiOHi=§0°HO=O

The second term of the expansion corresponds
to the first term of the right side of Eqg. (5).
The thizd term of the expansion reduces to the
second term of the right side of Eg. (5), as
follows:

Gx+1® (Hg + 1—51)‘. .

CORCTE BT

Lo (Hy_1+Py) e Hy

Hyp.1®Hyg

since Pi'Hi=

= Gyy1%Hg®...®Hp_1®Hk

The fourth term of the expansion is also

equal to 0 since
Ck+1°Pr+1 = O

Eq. (5) also applies to the last iteration

where

Prs1 = Cip and Gy g = Cyp
0.E.D

An alternate implementation makes use of the
output carry of the adder, Cout, to replace
the expression, (G3 + ... + G31 + Cin). The
output carry can be generated early, i.e.,
prior to the sum, so that ZEROS is available
concurrently with or earlier than the sum.
The alternate equation is:

ZEROS = (Cout+Pg)® (Hy+P1)®...® (H3o+P31)®
(H3l+ain) (6)

It is derived as follows:
pressed as in Eq. (7).

Cout <an be ex-

Cout = Gg
+HO.G1

. (7}

+H ¢ H
0 l 3l
+H0 Hl . ’H31’C

Eq. (7)
Eq. (1)
tion of
ing

is now substituted for each Gy in
to yield Eg. (8). For each substitu-
a Gy with a Cout

ZEROS =

+tHyoH oHye .. .8C *Cin

out

+H0.H10H2....0H31.C0ut

term in Eq.(7) (i.e., the term containing

only the correspond-




Gx) 1is relevant; the other terms drop out be- EXTENSION TQO RADICES >2
cause Hy, Py, and Gy are mutually exclusive.

The zero-sum detect method can be generalized

Eg. (8) is now reduced iteratively by combin- to radices »2. It is particularly useful
ing the first two terms. for decinal.
ZEROS = (CouptP )0510520,,,053195. Let r = integer radix > 2
! 0 n A = (Ag, +.., Ap_])=addend
+ HO'Cout'ﬁz'-w-°§3l°Ein of an
+o.. n-digit
= (C_ o 4Fg)® (EgtDy)eb,e. . 05, 08, adder
out 0 s 31" ~in B = (BO’ «++, By_1)=augend
+ H0°Hl°cout°'""53l'cin Cin = 1nput carry to adder
+..,

where the subscripts, 0 through n-1, refer
. to digit positions high~-to-low-order,
. respectively.
(Coue*Po)® (Hp+P1)® (E{+D,)e ., .o
out™0 071 1702 The following functions of a digit position,

(H3O+§31).(H31+Ein) (9) k, will ke used:
The first two reductions are obvious. The (k) -1 = the normalized algebraic sum,
remaining iterations can be proved by induc- Ak+Byr, of digit position k equals
tion by showing that: to r-1 (the weight of digit posi-
tion k is normalized to r0=1)
(CouttPg)® (Ho+Py)e. ..o (Hy _,+B,)e (4, +F +1)=
outTro ol k=1""k kTTkHL (k) = the normalized algebraic sum,
(Cout+§o).(H0+El)."'.(Hk-l+§k).§k+l Ax+Bx, of digit position k equals
(10) to r.
+  Hy®H ®...%H *C,
0l k- mout (k) o = the normalized algebraic sum,
the left side of Eg.(10) is expanded to: Ak+Bk, of digit position k equals
to 0.
(C t+§o)' (H0+§l).. .. ® <Hk_ +§- ).§k+l
ou l Lk For binary (r=2), the functions_(k)y_1, (k) p,
+( ‘ ye ( )L I N ) @ Hy and (k)o correspond to Hy, Gy, Py,

respectively.
The first term of the expansion corresponds
to the first term of the right side of Eg.(10). The conditions for generating a sum of all
The second term of the expansion is multipliec  2€ros are enumerated in Eq. (14).
out to yield the second term of the right side

of Eq.(10), since P{*H;=0. Again, for the ZEROS = 1‘0)0‘(l)Q'(2)0°---'(n‘l)O'gj_n
last iteration, P35 = Cip. Q.E.D. +10)p® (1) '(2)00...‘(n~l)0‘Cin
' +(o)r_lo(g)ro(2)00...°(n-l)o'Cln

Since Cgyt includes Gp as a term according .

to Eg.(7), . (14)
(Cout+Po) = (Cout+Go+Po) = (Cout+EO) +(O)r—l.(1)1'—1.(2)1*-1.“'.(m"l)r.ain

F{0) 1% (1) 1% (2) . _7%...®(n=-1) C.
o that r-1 r-1 r-1 r“~in

— - - In words, the zero-sum labeled ZEROS is gen-
ZEROS=(Cout+H0)'(HO+P1)'---"(H30+P3l)' erated if one of the three conditions is
satisfied:

(H37+C4p) (11)
1. The algebraic sum of each addend/augend
Generally, an adder design produces the single- pair is 0 and Cin=0.
bit functions, H, P, and G, earlier than 2., The normalized algebraic sum of one and
Sout. EQ.(1l) may therefore be restated as only one addend/augend pair is r that gen-
ir Eg.(12) to permit a single level of delay erates a carry in the respective digit
between Cout and ZEROS. position. In each trailing digit position,

the addend/augend pair produces a normal-
ized algebraic sum of 0 and C:,.=0. In each
leading digit position, the aégend/augend
pair produces a normalized algebraic sum of
r-1 that permits the generated carry to pass
through leaving 0's in its wake.

3. Cin is Ll which produces a carry. In each
digit position the addend/augend pair pro-
duces a normalized algebraic sum of r-1
that permits the generated carry to pass
through leaving 0's in its wake.

ZEROS = cQuto(HO+§l)0...'(H3o+§31)0(H31+Ein)
tHp el ] e )e ( )

(12)

ZEROS may also be expressed as a function of
some intermediate carry, Cy, as follows:

ZERos=(§0+Gl+...+Gk_l+ck)-(Ho+§l)-...o

(Hyp+P31)® (H31+Cip) (13)

The proof is similar to those for Egs. (4) The first “wo terms of Eq.(14) are combined
and (11). to yield Eq. (15).
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(0)o,r® (1)g® (2) g»...® (n~1) ge Ty,

+(0) =10 (1) p® (2) 0. .

.

.®(n-1)9*Cin
(15)

+<0>r—1’<1)r—1'<2)r—1‘---‘(n‘1)r'ain

(0 p=10 (1) .10 (2)

r-1%-.-% (n-1) Cy

where (O)O,r means that the normalized alge-

braic sum, (AO+BO), is equal to 0 or r.

The ﬁirst two terms of E¢. {15) are combined
to yield Eq. (16), noting that

(00,r* (0)p_1 = (1),*(1), = o.
ZEROS = [(0)g,r+ (1) ]0[(0) . _1+(1)ple(2)¢ge...®
(n-1) 4oC;
+ (0)pq® (1) p-10(2)y® ... 0
(n-1) Ty,
: (16)
+ (O r-19(L)r-10(2)p_1°...0
(n-1),C;
+

<O)r--1_. (l)r_l. (2)]’.'—.]. L
(n—lj) r_l.cin
The process of combining the first two terms

is repeated until only a gingle term remains,
as shown in Eq. (17).

ZEROS = [(0) g y+(l)r+...+(n-1)p+Ci,]e
[(0)p-1+(1)pl®...®[(n-2)r=1+(n-1)g]e
[{(n-1)p-14Cin]

(17)

The iteration can be proved by induction by
showing that:

[00) g, r+ (1) gt v o4 () p# (k+1) p]® [ (0) p_q+ (1) o)

‘-.-‘[(k—l)r-1+(k)o]‘[(k)r_l+(k+l)ol

[(0) g p+(1) +.

pte et (K10 [(0) poy+ (1) gle. ..o
[(k=1)p_1+ (k) gl® (k+1) g+ (0) 1@ (1) ._1®...®
(k) p_p®(k+1), (1€)

The left side of Eq. (18) is expanded to:

(00) g, (L) ptee ot () L]®[(0) L1+ (1) gle...o®

[(k-l)r-1+(k)o]°(k}r_l

FLO) g, # (1) e+ k) L]0 [(0) py+ (L) gle. ..o
[k=1) L1+ (k) gle (k+1)

k1)@ [0 p-1+ (1) gle .. @ [(k-1) .1+ (k) g]®

(k)r-l

*(k+1) O [(0) g+ (1) gle. @ [(k-1) 1+ (k) g]e

(k+1) g
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The first term of the expansion is shown to
be equal to 0, as follows:

[€0) g (+(L)p+e st (K)L]O[(0)pg+ (L) gle.. o
[(k-1) p_q+ (k) gl® (k) _p

A (K) (19 [(0)pp

8 (k=1) 18 (K) g

since (i)g
2 ®(i)r-1=0
SL00) g o+ (1) pHu .k (K) -l

cle(0) e e
ST i

0 since (0)0 r'(O)r_l =

(1)p®(i)p_y = 0
The second term of the expansion corresponds

to the first term of the right side of Eq. (18).
The third term of the expansion reduces to

the second term of the right side of Eq. (18),

as follows:
(k+l)r°[(O)r_l+(l)o]‘.--'[(k-l)r-1+(k)0]°
1 - ( )r-l
]'---'(k-l)r_l'(k)r—l

(k+1) o [

(k+1)p® (0) p1® .. .® (k=1) 1@ (K) .,

since (i)o‘(i)r—1=0

The fourth term of the expansion is also
equal to 0, since (k+l),® (k+1l)g =0.

Eg. (18) also applies to the last iteration
where (<+l)rzcin and (k+1) g = Cin Q.E.D.

The alternate implementation that makes use
of the output carry, Cgout, to replace the
expression:

[(1)p+.. .+ (n=1) +Cyp]

The reason is
For r=2,

is not applicable to r>2.
apparent from Eq. (19).
(k)=y=(k)y, while for r>2, (k)>¢# (k)

e
Cout = (O)yr
(D) p_1® L)or
: (19)
H(0) 10 (1) ... (n-1)>p
(D) po1* (M) -1 .. (n-1).1°C;,
Note that (k)2, means that the normalized

algebra:c sum, (Ax+Bgk), is equal to or
larger than r with a maximum possible value
of 2(r-1).

ZERO-HUM DETECT OF AN n-DIGIT DECIMAL SUM

For decimal (r=10), Eg.(l17) becomes:
ZEROS = [(0)0,10+(l)10+°"+(n"l)10+cin]'
[(O)9+(l)o]'...0[(n—2)9+(n—l)0]'

[(n-1) g+Cy ) (20)




Let (As,A4,A2,Al) and (B +B4,By,B1) be the
BCD (binary-coded decima%) representation
of the decimal addend and augend, respec-
tively. The subscripts, §,4,2, and 1
refer to the weight of the respective bits
of the decimal digit.
Then,
(k)0=(X8'§8)°(K4°§4)'(_2'§2)“(Ki°§l) (21)
(k) g = [(ABVBS)'(X4°§4)+(54°B4)]'(XZ.EZ)(23)
+(A4¥B4)® (A3®B3) | (A1VB])
(k) 10= {[(Ag¥Bg)® (R4®B4)+(Ag0B,) ] (E,9E,)
+(A4¥By)® (A2®B)) °® (A1°B1)
+ [(Ag¥Bg)® (A4®By)+ (Ag®Ryg) ]

* (A)¥B3)* (A;* B ] (23)
Egs. (21),(22), and !23) are the individual
digit functions that are readily derived
from a truth table. It is assumed that an
input digit has a range of values 0-9 while
values 10-15 are don't-care conditions.

DETECTION OF A SUM WITH
DIMINISHED-RADIX DIGITS

The methods of deriving expressions for zero-
sum detection are now applied to deriving
comparable expressicns for detecting a sum
with diminished-radix digits (digits of
radix-less-one). For binary it means detect-
ing a string of ones, for decimal a string of
nines, etc..

The corresponding equations will be numbered
identically to the equations for zero-sum
detection with the letter A appended.,

Again, we begin with a 32-hit adder. The
conditions for generating a sum are enumer-
ated in Eg. (1A). 1In words, a sum of all
ones labeled ONES is present if one of the
three conditions is satisfied:

1. All inputs are ones (G and Cin) so that
every bit position generates” and accepts
a carry to produce a sum equal to one,

2. In one and only one bit position are both
addend and augend equal to zero (F) con-
verting a carry into this bit position
into a sum bit equal to one and preclud-
ing a carry from this bit position. At
the same time, the trailing bit position
inputs as well as the input carry are all
ones, so that they produce trailing sum
bits of ones and ea_carry into the bit posi-
tion of condition P. Als0o, each of the
leading bit positions produces a half-sum
H that becomes a sum bit of one in the
absence of a carry.

3. All bit positions produce H and Cip=0 so
that no carries are produced and sums re-
main one.
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ONES = 3(®G;®G2®...9G319Ci,
+2*G1°Gye .. .*G310Cyy
+1g@P19Gpe ... 9G319C;

: (1a)
;Ho'Hl’HZ'-'-'§3l'Cin
+Ho®H1®Hy® ... ®H 0Cip

The first two terms of Eqg. (1A4) are_com=
bined to yield Eqg. (2a), since (Gg+Pg) =Hp

ONES = ﬁo’Gl'Gz'---°G3l'Cin
+HQ®P19Gy® .. .0G3 0C,

: (2)
;HO'H1°H2°...0531'Cin
+H00H10H2°...'H3I°Ein

The first two terms of Eq. (2A) _are combined
to yield Eq. (3A), noting that Hp®Hp=P9G1=0.

ONES = (Fp+Pp)e (Hg+G1)®Goe...9G519Cip
+ HO®H1*P2 ®...¢G310C;
: (3a)
+ Ho®Hj®H2 ®...eP5 eC,
+ Ho®H®Hy ®...eH3 eC,

The process of combining the first two terms
is repeated until only a single term remains,
as shown in Eqg. (42).

ONES = (E0+Fl+...+§3l+Ein)-(HO+Gl)-...-
(H3p+G31)® (H31+C; ) (4a)

The iteration can be proved by induction by
showing that

(ﬁo+§1+-"+§k+§k+1)'(H0+Gl)'-~-°(Hk—1+Gk)
® (H+Gy 1) = (Ho+Pi+. .. +P))® (Hy+Gy)e. . @

(He-1+GK)®Gx41 + HO."“.Hk.Fk+1 (58)

Eqg. (5A) 1is proved in a manner similar to
Eqg. (5). Eq.(SA)“also_applies to the last
iteration where Pk+lfcin and Gk+lfcin 0B D

An alternate implementation makes use of the
output carry of the adder, Cout: to replace
the expression,

(51+m--+§31+5in)'
The output carry can be generated early;
i.e., pricr to the sum, so that ONES is avail-
able concurrently with or earlier than the
sum. The alternate equation is:
ONES= (Cout+Gg)® (Hy+Gy)e, . @

(H3p+G3y)e® (H3;+Cyp) (6A)




It is derived as follows:

c can be ex-
pressed as in Eq. (72). out

Cout = Po

+HO. .lsl

. (78)
+HooH e . . 0B,

+HoeH1®. . eH31eC,

Eg. (7A) is now substituted for each P in
Eq. (1A) to_yield Eg.(8A). For each substitu-

tion of a Pk with Coutr only the
ONES = G@®G1®Gy®...®G31eC,
+Cout®G1®G2® .. .9G31%C;

+HO.6OL1t. G2. e .2G319C4in

: (8A)
+H®H]®H® .. . 9Cout®Cip
+HQ®H{®Hp® .. .9H319Cq ¢

corresponding term in Eq. (7A), (i.e., the
term containing ?k) is relevant; the other
terms drop out because Hy, Pk, and Gk are
mutually exclusive.

Eq. (8A) is now reduced iteratively by com-
bining the first twc terms.

ONES = (Cout+Go)®G19G®...9G319Cin

+ Ho'ébut'Gz‘--w‘G3l'Cin

+.o00

=(CouttGg)® (Ho+G1)®Gye . ..9G31°Cyiy

+ Hp®H3®Copp* .+ . #G31%Cip

+on (9n)

=(Coyup*+Go)® (Hp+Gy)® . ..® (H30+G3;)
* (H31+Cin)

The first two reductions are obvious. The
remaining iterations can be proved by in-
duction by showing that:

(Cout+Gp)® (Hg+G1)®. . .® (Hy _1+Cxk)® (Hx+Gyy)

=(Cout+G0)‘(H0+Gl)'...'(Hk_l+Gk)‘Gk+l

+ Ho®Hy®...®H, ®Cy + (10a)
The left side of Eq.(10A) is expanded to:

(Cout*Gg)® (Hp+G1)®...® (Hk_1+Gy)®Gk41

+( ye ( )o...8 | )on
The first term of the expansion corresponds
to the first term of the right side of Eq.
(10A). The second term of the expansion is
multiplied out to yield the second term of
the right side of Eg. (10A), since

Gk®Hyx = 0. Again, for the last iteration,
G325Cin. : Q.E.D.

i

Since EEut includes Fo as a term according
to Eq. (74),

(Cout*Co)= (Cout+Po+Gol = (Cout+Hg)

so that

ONES = (T, e+Hg)® (Hg+G)e. ..o

(L1A)
(H30+G31)® (H31+Cip)

or
ONES = Cout® (Hg+G1)®...® (H3p+G31)® (Hy1+C;p)
+Hg @ ( Yo .0 e ( )
(123) :

ONES may also be expressed as a function of
some intermediate carry, Cy:, as follows:

ONES = (Hy+Py+...+By_1+Ty)® (Hp+Gy) i

®...%(H35+G37)® (H31+Cyp) (133) .
The proof is similar to those for Eqgs. (4A), “%
and (11lAa).

The method for detecting a sum of all ones
is now generalized to integer radices 2.
The corresponding condition is for each sum
digit to be equal to radix-less-one when
normaliz=d to the lowest integer position
(radixO=1).

The following functions of a digit position,
will be ased:

(k)z(r_l)=the normalized algebraic sum,

(Ax+By), is equal to 2(r-1) #
t
(K)yp-2 =the normalized algebraic sum,
(Ax+Bxk), is equal to r-2
(K)p-1 =the normalized algebraic sum,

(Ay+By), is equal to r-1

For binary (r=2), the functions (k}2(r-1),
(k)r-2, and (k)r-1 correspond to Gk, Py, Hk,
respectively. )

The conditions for generating a sum of
diminished-radix digits are enumerated in
Eq. (14A). The function will be referred to
as DRD,

DRD = (0

)2 (r=-11° 1) 2 (r=11* (2) 2 (r=1
--45“};2(r-1§fcig b
4

(0 g% (1) 5 (po1)® (2) 2 fomt
-..T-<n-1>§§§_i§-cin (e=1)

(0 po1® (1) 0@ (2) 5,
RIS L

. (14A)
+ (C‘)r—lo (l)r_l° (z)r—l' e ® (n—l)r_2°Cin
+(O)r—]_. (l)r—l. (2)r_l.....(n"l)r“l.6in

In words DRD is generated if one of the three
conditions is satisfied:

l. In each digit position, the normalized
algebraic sum (Ag+By) is 2(r-1) and Cjip=1.




Each digit position generates a carry
with a remainder of r-2 which combined
with the carry entering the digit produces
a final sum of r-1.

2. The normalized algebraic sum in one and
only one digit position (Ak+Bk) is r-2,
In each trailing digit position (i>k) the
normalized algebralc sum is 2 (r-1) that
produces a carry; Cip=l; and in each lead-
ing digit position (i<k) the normalized
algebraic sum is r-1. Therefore, the re-
spective carry that enters a trailing digit
position as well as the digit position k
produces a sum digit of r-1. Since no
carry is generated in digit position k,
the leading digit positions retain sums
of r-1.

3. Cjp is 0 and the normalized algebralc sum
in each digit position (Ap+By) is r-1.

The first two terms of Eqg.(14A) are combined
to yield Egq. (15a).

DRD = [(0)2 (r=1)* (0021 (1) 5 (x_1)® (2) 5 (y-1)
‘---’(n“l)z(r—l)'cin

0o ()20 (2) 5
*...0(n=1)p (r1°Cjp

(15a)
+ (0)p 10 (L)y 19 (2),
®...¢(n-1)r-20Cyip
(010 (L) pr-12(2)
*...¢(n-1),_1T;,

The first two terms of Eq. (157A) are combined
to yield Eg. (16A) noting that

[(O)Z(r-l)+(0)r_2]'(O)r_l=(l)r_2'(1)2(r_l)=0
DRD= [(O)Z(r—l)+(0)r—2+(l)r-2]

'[(O)r_1+(1)2(r_l)]°(2)2(r_l)'...°

(n_l)z(r—l).cin
{03 (L) 1% (2) 0.

&

L X

(n—l)Z(r—l) “in
(16A)
+ (O)I—l.(l)r-l.(2)r—l"".

(n-1)y_pec;

+ (O)r—l°(l)r—l.(2)r—l"
(n=1)y_1°Cip
The process of combining the first two terms

is repeated until only a single term re-
mains, as shown in Eq. (17A).

DRD = [(0)p (ro1)*(C)y_p*ev ¥ (n-1)p_p+T;,]
'[(O)r—l+(l)2(r—l)]'~--' (17a)
[(“‘z)r—1+(n'l)2(r-l)]'[(n'l)r-l+cin]
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The iteration can be proved by induction by
showing that:

[00) g gy +(0) p otevt (k) oot (K¥1) p_p]e

[0t (Mg (ra1y)®

[(=1) g+ (k) g (p1) 1@ (KD p_q+ (k41D 2 (p-1y ]
=000 (pogy #O) p oot () ]
b [(O)r-l+(1)2(r—1)1' .®

[(k_l)r—l+(k)2(r—l))“(k+l)2(r—l)

(0 %1 g % oK) *(k¥l)pon (18A)

The proof is similar to that for Eqg.(18).

Eg. (18A) also_applies to the last iteration
where (n),._»=Cin and (n)2(r-1)=Cip-.

Q.E.D.

The alternate implementation that makes use

of the output carry, C,,¢, to replace the

expression,
[(0)pog*eeet(n-1)y_5+Cin]

is not applicable to r>2. The reason is

apparent from Eg. (194). For r= 2, (k )<(r 1)

=(k)r_2, while for r>2, (k)<(r -1) # (k) 5

COut = (0)<(r—l)

+(0)py (L) poq,

(19a)

H(0) 10 (1) 8. ..o (n-1)

<(r-1)
+(D)r_l'(l)r_10....°(n—l)r 1 Cin
Note tha: (k) r-1) Means that the normal-
ized algebraic sum’of a digit position
(Ak+B ) is less than r~1 with a minimum
value“of 0,

For decimal (r=10), eq.(17A) becomes:

NINES = [(0)18+(0)g+...+(n-1)g+Cip]

(0 g+ (1) 181 ..o [(n-2) g+ (n-1) ]

0{(n—l)9+cin] (20A)
Let (A8, ) and (Bg, By, By, Bj) be
the BCD \blnary coéed dec1mal) representatlon
of the decimal addend and augend dlglts
respectively. The subscripts (8,4,2,1) refer
to the weight of the respective bltS com-~
prising a decimal digit.

Then,

(k) g = {[(Ag¥Bg)® (B,0B,)+ (A 0B,)]

o(Xzo§2)+(A4vs4)o(Azosz)}o(Alvsl) (21A)




(k)g = {[(Ag¥Bg)® (B40B,)+(Agony) ]
.(i2.§2)+(A4VB4).(AZ.BZ)}O(Xi
+(X8 Es)‘(A4VB4)'(A2VBz)°(Al Bl) (222)

oﬁi)

(k)1g = (AgeBg)® (ap B)) (23a)

Egs:(ZlA),(ZZA), and (23A) are the individual
digit functions that are readily derived
from a truth table.
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