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Abstract

A novel format for representing modulo (2n+l)
numbers, is shown to be helpful in achieving modu-
lar addition and complementation. Logic for fast
addition using carry-look-ahead and modular
complementation is also presented.

Introduction

Application of modular arithmetic in error
diagnosis_and residue computers is well estab-n
lished.l=> The residue number system modulo 2

and (2“-1) are beneficial if they are prime pair-

wise. The addition modulo 2% or (2“—1) can be
accomplished by n-bit binary adder. The carry
overflow is thrown away in the first case while end~

around-carry is used for mod 2n—l. Recently,

increased interest has been shown in moduli of the
form (2n+l).6’7 The logic implementation of

modulo (2"+1) addition is not that simple and in
the past the necessity of more complex design
approach has discouraged its use. The inclusion of

mod (2n+1) provides more flexibility to the system
design. This paper introduces a novel way of

representing mod (2n+l) numbers and of reducing
the design complexity considerably, thereby making

n . .
(2°+1) as a serious candidate for modular opera-
tions.

Number Representation

Let Zm denote the set of integers {0,1,2,
m-1} called here the number system of modulus m.
For m = 2n+l, numbers in Zm cannot be represented
as binary n-tuples. Therefore XeZ is represented

by a binary (ntl)-tuple X of the £0rm

X = (x seex e x , L) (1.a)

n~1 o

.
Where Xy has the usual weight of 2 and IX has a
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weight of 1, the same as X s Ix is called the zero

indicator and equals zero iff X = 0,

n-1 1
Hence X=1 Z2ox.,27 4+ 1 (1.b)
x{ i=0 "i
Setting
n-1 5
X = IX i£0 x12 ,
(l.c)
for o £ x < m-2 = 27-1
We have X = IX.(x+1) (2)

This representation is utilized throughout this
paper.

Modular Addition

Let S be the addition modulo m of two numbers
X and YeZm. To find s, let us define Q and Cn as

Q=1 iff x+ty 2 m-1 (3.a)

and
C_ =1 iff x+y+I I 2 m-1 (3.b)
n X'y

It is worth mentioning that Q can be obtained as
an overflow when x and y are acdded by n-bit

parallel adder. Similarity, C_is detectable by
the overflow of n-bit adder wifh "hot input” IXIy

adder to x and y as a carry-in to the lowest-
significant bit (l.s.b.) position.

At this point, s and I fer different numeri-
cal range of X and Y can be computed as is
illustrated in Table 1. The arithmetic expres-—
sions for (IX + Iy) and S can be easily obtained
as

I +I1 =11 +1 V1 (4.2)
X y xy x y
and S =1 (s+l) = |x+v]
S m
= ]x+y+1x + 1y|m
= (I v Iy)|x+y+IX,[y+1[m (4.b)




It may be noted that v represents a logical OR
operation while + denotes an arithmetic addition
and aim represents the smallest non-negative

integer congruent to a modulo m.

The expression (4.b) can be utilized to form-
ulate s and Is for the different cases shown in

Table 1 and can be given as:

Cases i, ii s = |x+y+I I
X ylm=-1
= X+y+Iny (5.a)
and I =1 v I
s X y
Cases iii s = x+y+IxI |m—1=0
- (5.b)
and I = C =0
s n
Case iv s = ix+y]m_l = x+y+l-m
(5.¢)

and I =1 v I
s

It can be readily seen that relations (5) can
be represented by a flow diagram shown in Fig. 1.
In this diagram lal represents the integer part
of a. Figure 2 illustrates a straightforward
scheme utilizing an n-bit fast carry-look-ahead
binary adder. Initially, the carry-in to l.s.b.
(least significant bit) is kept zero by setting
the D-Flip Flop. Once the carry-overflow is
available, its value is stored in D-Flip Flop and
a second ADD cycle time is allowed. We obtain a
logical expression for Is as follows:

I, = (Qan)(IXva) (6)

where Q and C_ have been defined by relations 4.a
and 4.b.

The technique suggested in the reference (6)
needs larger number of bits to allow the needed
redundancy. Different alternatives proposed by
Chinal’ requires binary addition (or G and P-term
generation) followed by one or more stages of out-
put correction networks. This way, the scheme
given here in Fig. 2 is much simpler than those
available in the literature®: Moreover it can
be implemented by off-the-shelf integrated
circuits.

Carry-Look-Ahead (CLA) Adder

As already pointed out, the scheme of Fig. 2
requires two cycles of addition operations plus a
D-Flip Flop and a properly delayed clock pulse.
One way to perform addition in one step is to
compute two conditional sums; the first one as the
addition of x and y and second as the sum of X, ¥
and the "hot bit" IXIy as carry-in at the 1l.s.b.

position. Then the signals Q and Cn can be

utilized to dictate a proper choice between them.
Such an arrangement requires 2-sets of n-bit
adders and n-multiplexers. Another alternative is

They are also indicated in Figs. 1 and 2.
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to design carry lookahead circuits for direct

modular arithmetic. The design procedure for such
a direct addition scheme is given below.

To achieve look-ahead, first of all, carry
generate and propagate terms have to be computed.
For a binary adder, let Gi and Pi respectively

denote the carry generate and propagate terms at

the ith bit position when two numbers a and b are
added.

Then G, =a; ;b (7.a)
Py s 81 ® b (7.b)
so that C, = G, v P_.C,
i i ii-1
=G, VPG | VPPE G
V PP, jeetePPICy (Tuc)
and
;=P a®@c (7.4

where v and (:) are Logical-OR and Exclusive-OR
operations respectively and CO is the carry-in at
the l.s.b. position.

As clear from the discussions in the previous
sections, modular C.L.A. logical relations can be

obtained by first computing Cn with C0 = 0 and

then evaluating CO = leyﬁh' This substitution
and a little manipulation gives Cj as Ci = Gi v
[N eseP
PiPir v PiPi 18,V VEPia 21
VP Pioytt Bo P A IO P VG Gy By e (Ba)
TV G GhaCan tt CigsCipaPie Y 68y
.. 6. )
i+27i4+1

and I =GG .G , LPET AU A SR

(8.b)

Logical implementation of these relations give the
modular carry-look-ahead unit,

Modular Complementation

Let Y be the modulo m complement of X. Then

by definition

n
Y= T |mex-1] =1 |2 x| = Iy(y+l) (9.a)
Hence vy =1 [2“—1—x[ (9.b)
x m
and I =1 (9.c)
y X
When IX = 1, the relation (9.b) is nothing but 1's

complement of x and can be obtained simply by com-
plementing individual bits of x. This leads to
an obvious simple circuit implementation of
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Table 1
s and IS for different range of X and Y
Case Value of I.,1I xty Identification I S
X+HY oy s
(1) 0 0,0 0 Q=0,C_=0,I.V Iy—O 0 0
*
(ii) {1,m-1] not both [0,m-2] Q=O,Cn=0 1 x+y+Iny
zero
(ii1) m 1,1 m-2 Q=0,C =1 0 0
(iv) |[m+1,2m-2]) 1,1 [m-1,2m-4] Q=l,Cn=1 1 (x+y+1l)-m

* The square bracket [ ]

indicates the

range.
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Fig. 1. Flow Diagram for Mod 2™1 Addition
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Fig. 1.b Logic diagram for Mod 2"+l addition.
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Fig 2. Modulo 2™l complementation.




