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INTRODUCTION

This paper presents the results of one phase
study concerning methods for addition of P>2
(digit

of a
numbers, each encoded as a vector of digits

vector) of length N. Such multi-operand addition
has been studied most often in the context of
reducing a set of partial products to a single
result in the implementation of multiplicat:ion.
More generalized multi-operand addition, most
notably in the form of inner product calculations
is, however, central to numerous scientific

applications of digital computers. Although multi-
operand addition is trivially accomplished by
accumulation (iteration in time) in any general
purpose machine, demands for very high-speed
computation, typified by 2- and 3-D signal
processing prompf implementation of dedicated,
hardware-intensive structures for multi-operand
addition. This study, for example, is motivated in
part by requirements for rapid simultaneous
addition of up to 100, 16-bit operands in the
design of a dedicated processor for real-time
reconstruction of 3-D images of the beating heart
and breathing lungs [1].

The variety of tradeoffs between iteration in
time and hardware, the application of the
commutative and transitive properties of addition,
and the possibility of using redundant encoding of
numbers which restrict carry propagation give rise

to numerous published schemes for multi-operand
addition. Examples of time-intensive sequential
schemes are discussed in [(2-8]1, and arrays of
carry-save adders (deferrec carry assimililation

structures) are cited in [9-15]. If we consider the
rows of digit vectors to be reduced by addition to
be a matrix of digits, the columns of the matrix
may be simultaneously compressed from P digits to a
vector of about length log P digits. Subsequent
column compressions will lead to a single digit
vector representation of the sum of the P operands.
These "column compression"” ideas are included in
{3,10,11,16,17,18]. References [19-21]  describe
schemes which fall in the middle ground with
respect to a time-hardware tradeoff.

Our broad goal is to revisit (especially the
elegant work of Dadda [10]) and perhaps extend this
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literature in light of advances in LSI technology,
demands for increased arithmetic computation speed,
and innovations in parallel computer architecture.
We also intend to study the time-hardware
complexity of multi-operand addition across a broad
set of finite number representation systems [22],

including as a special case, variations in radix.
In this paper, however, we restrict ourselves to
the specific topic of a cost and performance
comparison of nulti-operand adders for unsigned,
binary encoded operands implemented in the
following two ways suggested by commercially
available MSI components:

(1) As a tree of (nonredundant, carry-

propagate) adders which accept two digit-

vectors and produce a one digit-vector
result;
(2) As a tree of "carry-save" adders which

accept three digit vectors and produce a
two digit-vector result.

The analysis will be conducted assuming three
variables, namely: number of operands P, length of
the operands N (all uniform length), and the
maximum fan-in of the device gates, FANIN.

Informally the problem is as follows: carry-
save adders produce a result rapidly since they
avoid "solving" the carry-propagation recurrence at
the expense of reduced operand compression (3-to-2
instead of 2-to-1). Adders which assimilate all
carries yield a 2-to-1 operand compression but

require auxiliary logic (carry-lookahead logie) in
order to "solve" the carry recurrence. Which is
"better" for nulti-operand addition? Carry-ripple

adders avoid the "lookahead" logic but, in general,

would be so much slower than a carry-save adder
that a comparison would be uninteresting.

In the next section we derive cost and
performance measures for a tree of 2~to-1, carry-

lookahead structures. 1In subsequent sections, we
perform the analogous task for a tree of 3-to-2
carry-save structures, compare the results, and
then recompare with the introduction of
restrictions on packaging and chip pin-outs. Since
for most of the cost and performance functions we
Science
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have not found a closed form expression, APL I

versions of the cost and performance functions are A. B. A B A. B,
used. A review of the principles of binary carry- J ] J ‘7 J 3
lookahead and carry-save addders may be found in l
(23,24]. |

COST AND PERFORMANCE OF TWO-TO-ONE STRUCTURZIS

In this section we first develop a cost and
performance function for carry-lookahead adder
which accepts two N-bit operands and produces a
N+1-bit result. We then apply these results to the
analysis of a tree structure which accepts P, N-bit
operands to produce one N+logQP-bit result.

b

Iwo operand garry-lookahead adder

? Consider the block diagram in Figure 1 which

4 combines two N-bit operands, A and B, to form a sum
S using so-called carry-lookahead techniques to
compute the carry vector in the CL box. Assuming
that the delay through a logic gate 1is a wuniform
time t, then it requires time t to produce carry
transmission (T) and generate terms (G). Assuming
that an inverter also requires time t, it
furthermore requires at best 2t to produce carries
C in the CL and 3t more to develop S. For each
operand bit, it requires one gate for T, one for G,
3 for P and 4 for S as shown in Figure 2.

Figure 2. One position of the carry-lookahead adder.
Ag~Aa B ~B

J[ NUMBIT = FANIN-1 (1)
Pedzl G«4ANB  T<AVB

where FANIN is the maximum number of inputs to a
primitive gate. In the following equations, for
convenience, we use "NUMBIT" as an implicit

function of "FANIN".

CLAs [—CIN

The number of gates required to implement a CL
¢ structure of the type shown in Figure 3 across
NUMBIT bits, is the sum of NUMBIT OR gates and a

iy
couT«14C geometric series of AND gates, namely

A
G1'(FANIN) = .SX(NUMBIT2 + 3xNUMBIT), (2)
S«T=z1+C
where NUMBIT is defined in terms of FANIN in
JL Equation (1).
In general, the operand length, N, is greater
Figure 1. Block diagram of a carry-lookahead adder. than NUMBIT and consequently, multi-level carry-
lookahead across groups of first level units may be
] employed. The number of levels of NUMBIT-wide CL :
4 The structure of a CL network which produces U units required to produce the carry vector of |
: carry bits plus a group generate and a group length N is given by
1 propagate is shown in Figure 3. The dotted lines ;
§ show a slight variation which is used to produce a L1(FANIN,N) = [ 108 umprr N 1 (3
. true group carry-out at certain boundary positions : j
] of both the balanced and optimized adder trees to ' !
; be presented snhortly. The number of positions where f{x] is the ceiling function, 1i.e. the !
3 across which lookahead takes place (i.e. the length smallest integer 2x.
1 of the carry vector produced) is restricted by the
. fan-in of the <constituent gates assuming that It follows, under these assumptions, that the i
; operation time does not exceed 2t. If we further time required to produce the sum of two operands of !
9 impose the restriction that the true group carry N bits each is
é must be formed without introducing more delay, then
| the number of bit positions across which first- T1(L1(FANIN,N)) = 2 x (2 x L1(FANIN,N)+1) x t. (4)

level lookahead takes place (NUMBIT) is given by
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GG =
(couT) Tj_3 G, T,

|
F

Figure 3. Carry lookahead

The number of CL units is given by L1 terms of the
following

UT(N,FANIN) = |N/NUMBIT}+[([N/NUMBIT))/NUMBIT]+...
(5)

where [x] floor

integer <x.

is the function, i.e. greateat

The number of gates required to implement the two

N-bit operand carry-lookahead adder is

G1(N,FANIN) = 9 x N + UT(N,FANIN) x G1'(FANIN) (6)
As an example, the structure consisting of

both the solid and dashed nodes shown in Figure 4

is the tree for the case N=z32, FANIN=3. In this

case, 31 CL units of width 2 are required and the
structure produces the final sum in time 22t. The
balanced tree of CL units does not, in general,
yield the smallest propagation delay. At some point
toward the root of the tree it becomes faster to
propagate the carries laterally rather than forward
and back down from a higher level CL.

Figure 4, minus the dashed boxes together with
the lateral carry inter-connections, yields higher
performance with 1less hardware than the full
balanced tree. The pruning cf the tree is reasoned
as follows:

with NUMBIT=4.

(CL) unit

(1) It takes Ut more delay and 1 more CL unit
to add a level to the tree, but only 2t
more, without increasing the number of CL
units, to form the group carry-out. (See
Figure 3). Thus the propagation route
from module C to B in Figure 4 saves 2t
in time and 1 CL in hardware compared to
the C to A to B route.

(2) The routes G-F-E-D
require delay 6t. However,
saves two CL units.

and G-C-B-D both
the former

(3) It takes the same delay, Ut, for both E~
I-H and E-D-H but the former saves 1 CL
unit. Similarly, H can be deleted by
connecting the carry-out term from I to
the carry-in of K.

(4) We need 5t in K to form the sum of the
most significant bit, either 2t in the CL
plus 3t to form S(sum), or 2t for carry-

ripple and 3t for 3. In other words, in
some parts of the structure, carry-
lookahead had no speed advantage over

carry ripple.

Following these principles, the minimal gate
delay and number of CL units required were computed
constructively in the form of APL functions,
DELAYNUM and UNIT. These are listed in Figure 5.
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Figure 4. Tree of CL units to produce (N+1)-bit carry vector.
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7«

+>(12N)/0

7+6
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Figure 5. Listing of APL functions DELAYNUM and UNIT.




[60] +(02TN«TN-1)/0 [951 TN«TN+NUMBIT

(61 2Z+z+1 [96] A2:2+2+1
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] {94l z<o0 v

Figure 5 (cont.). Listing of APL functions DELAYNUM and UNIT.

Figures 6 and 7 are graphs of the results for <60 that

and 3< FANIN <9. These results are up to 20% Jess

than values predicted by Equations (4) and (5) I21(P,1) = J21(P,i~1)+I21(P,i-1)-2xJ21(P,i-1) (8)
which assume a balanced full tree, and are up to

50% 1less than the upper bounds on component count with I21(P,1) = P,

and speed for carry-lookahead adders given by Kuck

in [8]. J21(p,1)=121(P,1)/2] (9)

Multi-operand carry-lookahead adder

We are now in the position to analyze a multi=-

The total number of CLA units is [25]

operand structure realized as a tree of two-operand u2'(p) = p-1. (10)
adders each of which employes multi-level carry-
lookahead techniques as shown in Figure 8. Note Upper bounds on performance and number of
that the operand lengths are N+i-1 at the ith gates may be derived from Equations (1-9). 1In
level. The number of levels of 2-to=-1] adders to particular, the total time to compute the P, N-bit
combined P22 operands is given by operand sum is the total of the delay at each
level, namely
L2(P) = [log F1, (7)
2 L2(P)
where [x] is the ceiling function, i.e. the T2(N,FANIN,P) ::E:}W(L1(FANIN,N+1-1)). (11)
smallest integer greater than or equal to x.
i=1

Now let I21(P,i) and JZ1(P,i) be the number of
input operands ard the number of carry-lookahesad A bound on the number of CL units required is the
adders (CLA's), respectively, at the 1ith level. sum of the number of CLA groups times the number of
I21(P,i) equals tke number of operand outputs from CL units per CLA for each level.

level i-1 plus the number of operands which have
not been combined at a previous level. It follows
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Figure 8. Example of 2-to-1 tree for P=7.

L2(?)
U2(N,FANIN,P) = E J21(P,i) x UT(N+i-1,FANIN). (12)
i=1

The total number of gates required for the entire
structure is bounded by

L2(P)
G2(N,FANIN,P) = E J21(P,1i) x G1(N+i~1,FANIN). (13)

i=1

Our numerical results are based, not upon
these bounds, but rather upon the optimized CLA
structures described previously. The functions
analogous to T2, U2 and G2 for these optimized
structures are denoted 2", uen, and Gz",
respectively. These functions are evaluated using
the APL functions TIME21, <(LA21, and GATE21 as
listed in Figure 9.

COST AND PERFORMANCE OF THREE-TO-TWO STRUCTURES

Three operand carry-save adder

By '"carry-save adder" (CSA) we refer to a
logic network which accepts three digit vector
operands and produces two, the sum of which is

equal to the sum of the three. The truth table for
the specific version assumed here is shown in Table
1. This structure is a special case of the carry-
save/ borrow-save networks studied by Robertson in
(26]. Figure 10 shows a gate- level realization of
one position of a CSA for FANIN=U4., If FANIN=3 then
four levels are required, i.e.

T3(FANIN) = 3t for FANINDY (14)
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and the number of gates is given by

G3(N) = 12 x N with FANIN>A. (15)

ABC___PC PS
000 0 0
001 0 1
010 0 1
011 1 0
100 0 1
101 1 0
110 1 0
11 1 1

Table 1. Truth table for carry-save adder.

Multi-operand carry-save adder

We now consider a 3-to-2 array sometimes
called a Wallace adder tree as shown in Figure 11,
Let 132(P,i) be the number of input operands to the
ith level and 1let J32(P,i) be the number of CSA
groups required at the ith level. It follows that

I32(P,i) = J32(P,i-1)x2+I32(P,i-1)-J32(P,i-1)x3

(16)

with

132(P,1) = P.

J32(P,i) = |I32(P,i)/3] (17

The total number of CSA groups is

U3 = p-2 (18)




V Z«TIME21 P;T
(1] # THE NUMBER OF GATE-DELAYS FOR MULTIPLE OPERAND ADDITION
£21 A OF TWO-TO-ONE TREFE STRUCTURE
(3] " WORDS LENGTH N, FANIN ARE DEFINED EXTERNALLY
[4] I«<([28P)-1
[5] Z+0
[6] Z<Z+DELAYNUM N+T
[71  ~+(0<I«I-1)/6

V Z«CLA21 P3I;d
{13 A THE NUMBER OF UNITS FOR MULTIPLE OPERAND ADDITION
[21] [} OF TW0-TO-ONE TREE STRUCTURE
[31] R WORD LENGTH N, FANIN ARE DEFINED EXTERNALLY
4] Z<I+0
5] J<L P32
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[8] I«I+1
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[81] I«I+1
91 >(P>1)/5

Figure 9. Listing of APL functions TIME21, CLA21, and GATE21.
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Figure 10. One position of a carry-save adder.
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Figure 11. Example of 3-to-2 tree for P=7.

The number of levels of (SA required, L3(PJ,
1s computed iteratively as described by the APL
function LEVEL32 in Figure 12.

The total time to compute the P operand sum,

including carry assimilation as a final step is
given by

TU(N,FANIN,P) = T1(L1(FANIN,N+L3))+T3(FANIN)XL3(P).
(19)
The number of CSA units required is
L3(P)
N
U4(N,FANIN,P) =§ J32(P,i) x (N+i-1). (20)
)
i=z1
The total number of gates required, including the
N+L3 bit carry-lookahead adder at the output end of
the tree, is given by
G4(N,FANIN,P) = G2(N+L3,FANIN)+G3(N)xU4(N,FANIN,P).

(21)
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Figure 12 is a listing of the APL functions
which compute L3, T4, U4, GUY. These functions are
denoted LEVEL32, TIME32, CSA32, and GATE32,
respectively.

NUMERICAL EVALUATION AND COMPARISON OF
COST/PERFORMANCE FUNCTIONS

Our ultimate concern is with comparison of two
pairs of functions of three variables, namely T2",
G2", T4 and G4. Our approach has been to evaluate
numerical examples and attempt to draw general
conclusions. Figure 13 (a and b) shows a comparison
of the two methods for fixed operand length and
fan-in. In this case the 3-to-2 structure exhibits
greater speed with lower gate count. Figure 14 (a
and b) compares the structures with fixed values of
P and FANIN as N, the operand length, varies. Here
the 3-to-2 case is always faster but requires
slightly more gates for N<14,

Tabtles 2 and 3 display some conclusions from
trial computations. For FANIN values of 3 through
9, Table 2 lists the lower bound on N such that the
time delay and gate count are smaller for the 3-to-
2 structures than the 2-to-1 structures for any P
in the range 3 < P < 40. For example, if FANIN = 8,
then for operand lengths of 10 bits or more, a
carry-save adder tree is faster and requires fewer
gates than a tree of carry-lookahead adders. If
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v
Figure 12. Listing of APL functions LEVEL32, TIME32, CSA32, and GATE32.
N = 9 the delay is less but the gate count may not It requires NUMBIT x 3 + 2 pins for each CL
be. If N 1is less than 8 we cannot make a general unit and 5 pins for each CSA unit and therefore
statement about the relative cost and performance,
but of course these could be computed for specific (PIN - 2) > H1 x (NUMBIT x 3 + 2) for CLA and, (22)
choices of N, P, and FANIN.
(PIN - 2) 2 H2x 5 for CSA, (23)
Table 3 lists the lower bound on P such that
the time delay and gate count are smaller for the
3-to-2 structures that the 2-to-1 structures. Again where H1 and H2 are the number of CLA and CSA units
if P is less than the bound, we cannot make a per packaze {chips) with PIN external connections.
general statement. Two pins are assumed to be used for power and
ground. Figure 15 is an APL function to calculate
COST COMPARISONS UNDER PACKAGING CONSTRAINTS the number of chips required for both the CLA and

CSA based schemes under restrictions of gate fan-in
and package pin-outs., Figure 16 depicts some

Our measure of cost or complexity has so far results from this function. Figure 17 summaries
been in terms of number of gates assuming a given results from multiple evaluations of of the
limit of fan~in. One of our reasons for function CHIP. Notice that for a given value of
concentrating on structures based wupon carry- FANIN (a column in Figure 17), the chip count for
lookahead and carry-save addsers was the fact that the 3-to-2 schemes are the smallest for larger
off-the-shelf integrated circuit components are values of N. In general the CSA structures do not
available to implement these devices, At this point appear to offer advantage over the CLA structures
we revise of cost measure to be the number of for as many choices of design parameters when we
circuit packages required under various add the packaging restriction.

restrictions on pin-outs.
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Required number of gates vs. number of operands for 2-to-1 and 3-to-2 structures with
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2-to~1 and 3-to-2




FANIN FANIN __ TIME-DELAY _GATES

OPERAND 34 56789 3 25 N251
LENGTH it N>Y N>2U
8 LLLLXXX 5 N25 N>14
1 16 LSLLXXX PIN=20 6 N>H N>1T
| 32 SSLLXXX 7 N7 N> 14
64 SSLLXXX 8 N>8 N>10
9 N>9 N>10
8 LLLLLLL
16 ?2L7?7LSLL PIN=U40 Table 2. Operand length such that 3-to~2 scheme 1is
32 SL8LSSS faster and/or requires fewer gates than 2-to-1
64 SSSLSSL (4KN<OL, 3<P<HO).
8 LLLLLLL
16 LLLLLL? PIN=U48
32 LLLLLLS FANIN _ TIME-DELAY = GATES
64 SLSLLLS
3 P25 -
8 LLLLLLL y P>3 -
16 LLLLLLL PIN=60 5 P25 -
32 SLLLSLL ) P29 -
6L SLLLSLL 7 P17 -
8 P>33 pP>21
9 P>33 P29
L. denotes that the carry-Lookahead scheme requires
fewer chips. U." denotes that the 3-to-2 case may not require
S denotes that the carry-Save scheme requires fewer less gates.
chips.
? Denotes that the relative costs cross over Table 3. Number of operands such that 3-to-2 scheme
depending upon P. is faster and/or requires fewer gates than 2-to~1
X indicates that the gate fan-in is limited by (4<N<hL, 3<P<li0).

number of package connections.

Figure 17. Comparison of package counts for 3-to-2
versus 2-to-1 schemes under fanin and package
connection constraints.
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