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Abstract

This paper investigates the logical
design of a redundant binary adder with
two input digits and one output digit, all
in the digit set {1, 0, 1}. Redundant
binary arithmetic structures in which all
digit sets are {1, 0, 1} were first dis-
cussed by Avizienis in 1961. Borovec
studied the logical design of a class of
such binary adders and subtracters in 1968.
At that time, a variation of the adder/sub-
tracter was overlooked. This paper studies
the logical design of this variation. The
sum digit is still a function only of the
digits in three adjacent digital positions
of the operands. "Coupled don't cares" are
encountered, but have not introduced too
much difficulty. The nine distinct formats
(under permutation and negation) of repre-
senting three values with two bits given by
Robertson are used. The simplest adder/
subtracter designs from this variation are
less complex than the simplest designs pre-
viously known.

Background

This paper investigates the logical
design of a redundant binary adder with two
inputs a?d one output, all in the digit set
{1, o, 1}.

The available hardware technologies
have certainly made the implementation of
redundant arithmetic algorithms practical.
The redundant binary adder is a basic
building unit in redundant® arithmetic
structures whether they perform fast digit
parallel operations without propagating
transfers or most-significant-digit-first

digit serial operationsl’z. The redundant
binary adder is heavily used in Goyal's LSI

implementable arithmetic unitlm Goyal also

showed that radix—Zk operations can be
easily implemented with redundant binary
adders. Although LSI technologies have
made logic design minimization less urgent,
the redundant binary adder which may be
used hundred of times even in a modest
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arithmetic unit deserves to be studied in
detail. With the advent of digit pipe-
lining algorithms which inevitably require
a redundant number representation, the
authors are convinced that the redundant
binary adder will be a fundamental
structure in the future.

A redundant arithmetic structure in
which all digit sets are {1, 0, 1} was

first discussed by Avizienis.3 He showed
that the requirements of a totally parallel
operation and a unique representation of
zero dictate a three-level structure for
the signed-digit binary adder/subtracter.
The result digit depends only on digits in
three adjacent digital positions of the
operands. Borovec investigated the logical

design of this structure. One of his two
approaches (Figure 1) is to split the sum

of the operand digits in the ith position,

2} K:, i N t
; end k;, into a; ;, and m; such tha

i
¥* *- I*

Lyt ki = Z'ai—l + my

and input these to adder/subtracter
structures which operate on one redundant
digit and one nonredundant digit.

(An asterisk beside a symbol denotes

a redundant binary digit. (i-1) is the
position of the left neighboring unit.)
His second approach consists of combining
the two lower levels so that the format of

This
paper studies the structures resulting from
having different outputs from the lowest

level. The sum of the pair of operand

digits in the it}

*
a; need not be considered (Figure 2).

position is expressed as
¥*
(2'mi_l + ai) as illustrated in Figure 3.

The Adder Structure

Since it is not trivial to negate
a numbgr expressed in the normalized redun-
dant binary digit set, the operands digits

* *
Ri and ki are restricted to the symmetric

digit set {1, 0, 1}. The structure shown
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Redundant binary adder/
subtracter structure with
three separate levels
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Combining the two lower
levels

Figure 2
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in Figure 3 can again be built either in
three separate levels or with the two lower
levels combined. However, the arrangement
with three separate levels is not very use-
ful in this case because the valid groups

¥*
and d- are not

1 *
and ki

1he digit sets for

of digit sets for my

practical. The sum of 9 equals

(2 mg_q o+ a ) Hence,

m. and a must be from one of the follow-

i-1
ing combinations:

1. e {1, o}, a. € {o,

¢ {2,

m. 1, 2},

2. € {0, 1), a. 1, 0}, or

5
i
¥*
M1 i
3. 2 m; e {1, 1}, a:..L € {1, o, 1}.

For the design with three separate levels,
one would like to use the same digit set
for the redundant transfer digit, the two

operand digits and the sum digit
* ¥* #*
(ai’ Q‘i: kiy

have m;_, as a conventional binary digit.

Failing to satisfy these, the three-
separate-levels arrangement needs no
further attention.

*
and s; respectively) and to

Combining the two lower levels does
result in relatively simple logic designs
(Figure 4). For the symmetric adder, the
algebraic relationships are

*
1. d. + bi = g

3 for the upper block, and

2. L
f

#*
+ ki + mi = 2'mi_l + 2°'b. + d.

r the lower block.
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Figure 3 Variation of the three

level structure
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Inspite of the above equation, mi
The final
sum digit s; is still a function only of

can be made independent of m, .

the digits in three adjacent digital
positions of the operands. The chosen sets
for my, by, d; are {0, 1}, {I, 0}, {0, 1}

i
respectively. Before actually designing
the logic circuit, one has to fix the

representation of the redundant binary

digit. Robertson5 has shown that there
exist only nine distinct ways, under
permutation and negation, of representing
three values with two bits. The nine
formats are shown in Table 1, Since it is
sometimes necessary to feed the output from
an adder back as an operand, the sum digit

+*
s should have the same format as the

operand digits 2; and k?.

Details
Some rather interesting details are
encountered in the logic designing of this
* *
adder. Whenever (mi + Qi + ki) is
algebraically 0 or 1, (—bi_l) and m; 1 can

be both 0 or both 1. This results in b, _

1
and m. 1 having "coupled don't cares" in
the truth tables. As an example, Table 2

# * *
Si1 Sy Si+1
upper
block
141 141
5 M +1
T~
) ¥
3141
2* k*
i+1 i+1

Combining the two
lower levels of
Figure 3
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shows the truth table for the lower block
of the adder using format 2 from Table 1.

* *
li' ki and s; are represented by pairs of
bits (Ai, Qi)f (Ki, ki) and (oi, Si)

respectively. The horizontal pairs of c's

PN distinet formats
4 6 8

51
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Table 1 Nine PN (permutation-negation)
distinct formats of representing
a redundant binary digit with

two bits

value 1-1 bi-l di

e c
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PHEER PRPHEE BRRR PHRE OO0 O CO00 OO0 OO
PHEPR HHEBe o000 COO0 MR RRF RHRREe OCOO0OO COoOoo
HHEHHE O000 RPRHEE 0000 HMPH cooo PHRPRHE OcoO0
HHOO RFPOO OO HHEFOO RPROO RHOO PHOO RPHrOO
HOF,O PORO FHOMHO HOHO HPORO RORO HPOF,O HORFRO
Haro paa Fawn o R NLROoKH AL CanE RAako
HAHEO A0QAQ PO OQOKF OROK QoA OQLOK HQARFEO

HFRAO0O0O ARAAR 0QRO0O0 000 HAO

CACO WO OQAFH 0RO O

Table 2 Truth table for the lower

block of format 2




across m.
i-1

cares”. A horizontal pair of c¢'s can be
both 0 or both 1.

and bi—l are the "coupled don't

The complexity introduced by the
rcoupled don't cares" is greatly reduced by
the important constraint that the transfers
mi_q and bi-l be non-propagating. This

means that m;_; must be independent of m;

and fixes the values of most of the
"coupled don't cares”. In Table 2, the
"coupled don't cares" for minterms 1, 4, 19
and 28 must have the values 1, 1, 0, and O
respectively because the upper 16 function
values of m; _; must match the lower 16

function values of m; Figure 5 shows

IR
the Karnaugh maps for m; _;, from Table 2.
Besides the coupled relationship between

my_q and bi—l’ the "coupled don't cares”

are also coupled across the maps corres-
ponding to my = 0 and m, = 1 as indicated

by the dotted lines in Figure 5. For this
particular format, there remain only

8 possible assignments of the values of
m; ;- The simplest design for this format

is given in Table 3.
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Figure 5 Karnaugh maps for m, _ for

1
the adder with format 2

The ‘other formats for the redundant
binary digit are similarly studied. The
criterion used for choosing a design for
each format is that the boolean functions
yield a minimal total number of literals
when they are expressed as sums of products
or products of sums.

If the chosen digit sets for ms b.l

and d.l are negated, the resulting

combination of digit sets is still wvalid.
However, there is no need to investigate
the logic designs of the negated digit sets

because they are similar in complexity to
the designs of the original digit sets. For
each of the nine formats, the truth table
for the negated digit sets can be obtained
from the truth table.of the chosen digit
sets by changing my to ﬁl and switching the

output functions b; , and m,

1 -1

Table 4 shows the designs for the
symmetric subtracter. For the symmetric
subtracter, the algebraic relationship for
the lower block of Figure 4 is

#* *

m. o+ Qi - ki = 2-mi_l + 2-bi_l + di'
The upper block is the same as that of the
adder. The nine formats are again used to
yield the designs shown in Table 4.

The simplest designs both for the adder
and the subtracter are those corresponding
to formats 2, 4 and 5. These designs are
gsimpler than the best designs given in
reference 4 (the appendix).

1.dy = mlJQMXi S, &, &K
m. = A.K, V L.k,
1-1 i1 ivi
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di = dibi
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Table 3(a)

Boolean equations for
symmetric adders with
formats 1 to 4




5. di = mi_elgi @Lki
Myo1 T Agky Viky -
byoy = Agky(my Vo) vomge K,
g, = aﬁ\w b
s, = di ® b
6. a, = m e, @k
Miop T Ageg Vv dgkg vigky
Piog T 4Ry (M Vi IG) vome Ky
ViEAgey
93 % Yy
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bi_p = Oy V)0, Voey ViKy Voky)
el N - m N/
(Vg V ok )y Vg Vvoey)
Oy =45 vy
8; dibi
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bi_ = (Qi\/Kl\/ki)()l\/zl\/Kl\/k]}
'(mi Vioky v’kl)(mi‘v Ay V/Ql)
oy = di\/ bi
Sy = di @ bi
-
Table 3(b) Boolean equations for
symmetric adders with
formats 5 to 9
@ denotes "exclusive or'";
v denotes "or'";

Juxtaposition or denotes

"and".
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1. di = m ® Ai & 2 ® Ky ] ki
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Table 4(a) Boolean equations for

Qymmetrlo subtracters
with formats 1 to §
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Table 4(b) Boolean equations for
symmetric subtracters 5 =k @
with formats 7 to 9 ' i 1

1-1 7 Mg (kg ALy v X vie
v mi_lﬁKiliv’KiA 1
Kok, A
174

TV ET)
1ty VKK 1y
i)

b =
122 Kikikiliv’mi_l(Kiki\/AiliV’Aini)

A 6 m, = Kiki @ Aili_ _
Appendix d =m, . @ ((x,vV1.)(k, ®k,)
- . i-1 i=1 i i i i
Tables 1 and 2 contain the lower block VE.(L @ 1)V kokor.1.)
designs given by Borovec in reference 4. As i1 i B R A
shown in Figure 2, the inputs to the lower bi—2 = Kikixiliv mi_l(Kikiv Aili
a th .. % BE S S S
f b%ock of the (1) unit are zi-(xi, 11), v Kikikili)
; ki=(Ki, ki) and m, ;; the outputs are my s
] di—l and bi-2' The output value my + 2-di_l 7. m, = klxiziv Eiﬁiia
1 + 4.p is unique in this arrangement. o =T U T v '
i i-? di-l mi_l(KikiAi\/Kilili _Kiki)
For the symmetric adder designs vimg ey & AV K3k, T0)
the digit sets for b,, m,, and d, are {0, 1} T
Z 1 1 ’ Piop = KgAgVmy g (VA3 V ky1y)
{0, 1} and {1, 0} respectively. For the i

symmetric subtracter, the corresponding

sets are {I, 0}, {I, 0} and {0, 1}. Table 1(a)  Lower blocks of

symmetric adders with
formats 1 to 7
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8. m; = Klki P Xi¥i _ L .
= \ P
dyq = myq @ (eyhg VikgAy Vgl
v Kiki‘\ili) X
= ) .V AL
bip T KgKyhglyVmy g (kgkg Vst
VR L)
9. m, = Kiki ® Xili -
d =m P (k. Dk, @A, &1,)
i-1 i-1 i i -1 . ; )
byp = Agly (kg VIV AL (g 't
K, / (h, & 1,
vom (kg & kv (g 5
L _ - —
Table 1(b) Lower blocks of
symmetric adders with
formats 8 and 9
= : ) @
1. m, Ky & kg @ ii_ 1 ~ _ B
= < . AL,
di mi-l ® (5ikiiiv l'iki)\l v kl i7"
v kixiliw/KiKiAili)
- iC . _
by 5 Kifiiili_ mi_l\xiliv KikiVIkili
»/Kikiv Kili)
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Yia1 T Mg @ Gl v T VR
K. k.x.1,)
! _ iTi%id _ _ o
o Pre2 T kMgl vmg g Oy VR K VGRS
’3. my = ki @1
: ( ' K.k, A
C Ay =y g @ (ML VR AL VKRG A
ViRgkiAl) X
e A PELT L L |
K Vk, 1.
J vy g (kv A1 ViR
i
i ' my = Kiki @ Aili _—
4 d; 1 = my 4 ® (kiliV/Kili\;_% %
bi— = klliv m, l(kivlivKi 1
5. m, = ki ® 1
=M kK, 1
Gy =Ty g @ ((x, @ xijvlfi_i:
bi_p = kA V My (e Vv Ay VR T
Table 2(a) Lower blocks of

symmetric subtracters
with formats 1 to 5
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6. m, = 5k, @ 3,1,
dig = myg @ ((ky @ k) (ay @149
vk O @ 1) vk Ti1)
b, = (kg @)y ©1)
vy (O @ 1) vk @k Ivieg)y)
7. m, = E;Ei ® Xiji
dy,=m_ 1 ® (Kixixfk Ay Vkyly
vE&kiigli
Pioo = Kk Rylyvimy Gk v Xyl v §p)
8. m, = KiE; @ Aili
Ay = Ay g€ R vmg Gy ® 4,)
v Kikikili) _
i = RghyVimy g G v Xy vk T
9. my = Kii£ ® )\ T£ _
9i.1 T Mg @ Oyl VOV
(E;—® ki)\/Ki(f;79~T;))
By_p = Kgkghylyvimy o Rk v X 1y
AFLILIRSY
Table 2(b) Lower blocks of
symmetric subtracters
with formats 6 to 9
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