-
§
4
3
A
g
1

pifinmstin o gt S b

MATHEMATICAL APPROACH TO ITERATIVE COMPUTATION NETWORKS

Danny Cohen

USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 98291

ABSTRACT

This paper deals with design
iterative computation networks. Such computation
netuorks are used for performing repetitive
computations which typically are not data-
dependent, Most of the signal processing
algorithms, like FKFFT and filtering, belong to
this class,

principles for

The main idea in this paper is the development of
mathematical notation for expressing such designs.
This notation captures the important features and
properties of these computation networks, and can
be used both for analyzing and for designing
computational networks,

1. INTRODUCTION

The central point of this paper is the application
of a precise mathematical notation to express
computation netuworks, This notation captures the
concepts of arithmetic operations (such as
addition and multiplication}) and of timing (e.g.,
delaying). Once a design is expressed by means of
such a mathematical notation, it can be evaluated
objectively against a pre-defined set of design
objectives, |ike performance and cost.

The next section, section 2, defines the design
objectives which are guiding the examples in this
paper. Obviously, nther sets of design objectives
may be used without deviating from the spirit of
the paper.

Section 3 deals with the implementation of an
FIR-filter, Which is a typical signal
processing problem. In this section, several
designs are suggested and evaluated objectively.
In paralle!, the mathematica! notation to express
them Is developed.

In this section a design uhich follous closely the
mathematical definition of the FIR filter 118
considered first. Later this design is
transformed several times in order to improve it
with respect to the predefined design objective.

CH1412-6/78/0000~0226$00.75 (c) 1978 IEEE

226

In this section the graphic representations of
these designs are the source of intuition, and
their mathematical representations are mainly a
means for verifying the correctness of the various
transformations of the design.

In section 4 the same technique and the same
notation are applied to potuynomial multiplication.
In this section the mathematical representation is
the guiding force, and the graphic representations
are used only for demonstration.

In section § the same technique is used for
polynomial cdivision and for simul taneous
multiplication and division of polynomials. In
this section the mathematicail notation is the only
tool used, and the graphic drauings are used as a
demonstration only.

mathematical
compiementing
conventional

It is our conviction that this
notation is a very pouerful tool,
the intuition which is based on
graphic representation.

2. THE DESIGN GOALS

In order to achieve an optimal design, it is
necessary to define the design objectives, The
following are typically considered to be
Important:

(a) Correctness and accuracy

(b} High computation rate

(¢) Low delay

(d) Low parts count

(e} Modularity, simplicity, etc.
(f) Low pouer

() Smatl size

(h) Low cost

Obviousiy, this is only a partial list., For
different applications the relative weights of
these objectives may vary. It is generaliy
accepted that (a) is the most important, even

though we seem to have evidence that this is not
aluays the case.

the dominant factor, in
In our discussion, in
through (e}, in that

In some cases (k) s
others it is {f} and (g).
this note, ue consider (a)
priority order.

3. THE FIR-FILTER EXAMPLE use only n2B when applying the Z" operator to the
input,

Consider the Finite Impulse Response (FIR) filter

defined by: . . ,
Y The FIR-filter implementation
N
y 5 a. x 1) N
< i ~1 . f . al
n - Poon-i The expression Y, Z’ a, Xn_i (1)
i=1
This is a non-recursive filter of the Nth order.,
Each output (¥Y) is a weighted average of the N ;
previous N inputs (X). may also be written as: Yy, = Z a, zZ x (4)
i=1

Tupically, the X sequence is a time series, and
the (x'.' are available sequentially, starting at

Xy, continuing through *, and x3, up to

by using operator-calculus notation, (4) may be
uritten as:

¥y Where typically M>>N.

N
v (Xa 2t)x (5)

The "edge-effect" at the initialization may be

ignored. It is typical to define X, = 8 i=1
for i < 8. For N=4 this means
2 3 4
Voo (224 8,2% 4 a2 +2,2%) X 6)
The 2 operator 1 2 3 4
Let Z be the delay operator such that: uhich can be implemented by the network shoun in
figure (F1),
Ix, = x, (2)
i i-1
In a system which is controlled by a central The circles in figure (F1) with the a..'s represent
master clock, this Z operator may be implemented the multiplications by the constants which are
by a simple register. uwritten inside them.
Similarly, 2" is defined by: Checking this network against the design
objectives reveals that:
2", = i 3)
n i (a)} Correctnecss: The correct expression e

The Z% can be implemented by an n-stage shift indeed computed since the values at Py, Pq,
register, which is a FIFO (queue). 2 3 4

Py and P are Zx , Z°% , Z°x and Z'x ,

9 18 n n n n
He will use the following properties of the respectively.

Z operator:
(b) Computation rate: The computation rate is

(i) Z"F(x,g) - F(Z"x,Z"g) for Yn, and the reciprocal of the computation period,

which is the time needed for one

tii) if C is a ronstant then Z"C = C for VY. multiplication and for adding N quantities.

Negative values of n mean prediction by |n] steps le) Delay: The delay is one Z-period plus the
into the future. Since prediction of external computation period.

input is not easy to implement, it is advisable to

P P, P P
AR

2 P P '
e
X = Y

P P
P
e 2

Figure {F1): The implementation of 6).

227

%
[
B
;

;
§

It is not simple to quantify the parts count, (d),
and the modularity objective, (o).

Houever, the parts count {d), can be improved!
Note that the values at Pl' P2. P3 and P4 are all

equal to Zx . Therefore these points could be
unified. Similarly, PS' PS and P7 could be
unified, and so can P8 and PS'

This does not change (a), (b} and (c}, but it does

improve (d). The neuw network is shown in figure
(F2),

X

fomm—m ey

Figure (F2}: The improved implementation of (B).

Hence, the parts count, objective (d), is improved
by the elimination of 6 delay operators, or o} in
the general case. The modularity, objective (e},
is also improved, as seen from the repeated
modules, marked by dashed lines in figure (F2).

Improving this design

The N-input summation is the Achilles heel of
this design, mainly because it does not comply
with the modularity requirement,

In addition, the direction of the information flou
from the repeating modules into the summation is
perpendicular to the direction in uhich these
modules are arranged. This may cause problems
with the geometry of the wiring, both in LSI and
discrete (IC's) implementations, and also on and
between printed circuit boards.

In addition, the required number of output lines
from any grouping of a set of several modules is
proportional to their number, and this may pose
severe problems for implementation at any scale.

The way to implement N-input summation is by N-1
additions. Breaking the summation operation into
N-1 additions, and dividing them betueen the
modules, as shown in figure (F3), alieviates this
problem.

The network shoun in figure (F3) is composed of N
identical modules, This is a great improvement
for the design objective (e}, modularity.

Figure (F3): Using sequential addition.

The left-most adder, the one in the first module
fuith n]). docs not perform any real addition
operation, because one of its inputs aluays has
the zero value. The only purpose of including it
in this netuork is to improve the modularity.
Obviously, in discrete implementations, there is
no need to include it, Eliminating it does
improve the performance and the parts count. On
the other hand, in highly integrated
implementations, such as LS/, having it there is a
small price for reducing the number of different
modules which are required,

This implementation is represented by
N i
X i
v=(Zlaiz Jx o ©
|~

In order to improve the delay involved in this
computation notice that

N . -N_-l .
N (Ta)X (a2)x @
i=1 =B

Only non-negative pouers of 7 are used for the

input values (X}). The "prediction") s
applied only to the output (¥). It means that at
the nth cycle (i.e., when ¥, is given) the next Y

value, Ypet is available,
This is easy to observe from reuriting (6) as:

Imel SO0y Fpt o X, tegr, ot x o0 (8)

and reuriting (7) as:

YTw 5% Fpp Y9 T2 v a3 3 P % Yy 9

Both (7) and (3} yield the implementation shoun in
figure (F4),

X — -

o—' H +

Figure (F4): The implementation of (7).

Note that in figure (F4) the left-most adder (in
the first module} is redundant, as mentioned
before. So is the right-most delay (in the last
module) which doecs not tax the performance. It
also may be eliminated in discrete
implementations, but in integrated implementations
it is not advisable to do so.

About notation

First, let us introduce another notation, H(X.\;).
representing the multiplication of X and Y. he
purpose of this notation, compared with the usual

XY notation, is to make the multiplication
operation explicit in the notation, and to
distinguish between it and the application of
operators.
Note the difference betueen the follouing
expressions:
N
uy = 2 11 (o %n-i) (1)
i=1
N .
b i
ve [210 (o0 2')] (5)
i=1
and the following expressions:
N-1
-
Ynel = 41111 (ai+l' xn—i) 7
i
: N-1)
- < ¢
e [0 G)]x 0o
| =

The first ones, which require unnecessary delay,
have the summation range of [1,N], which is the
"standard" way for mathematicians for expressing a

sel of N objects, uWhereas the last two use the
range @, N-11, which seems to be less
"convenient", but yields better delay
characteristics

This ittustrates the need to beuware of

"mental-traps” which may be caused by notation.

Improving the operation rate
The major deficiency of all the netuorks
considered so far is their operation rate,

objective (b). As noted before, the operation
period cannot be shorter than the time required
for multiplication and addition of N guantities.

Even when the multipliers are arranged such that
the multiplication time overlaps the addition
time, there is still the requirement for the
addition to propagate through N (or N-1) stages.

Since N may be very large, it is desirable to
eliminate the necd for this long addition. This
ia easy to achieve, by following the "carry-save"
idea which uses extra delays in order to improve
the data rate. In our problem we introduce delay
units between the modules, which delays the output
by N cycles but improve the rate.

The resulting netuwork is shoun in figure (FS).

Note that the network in figure (F5) s
implemented by using the very same modules as in
figure {F4) and additional delays. Each of these
modules, With the additional delays, is shown in
figure (FB),

delays uere added (for N=4), the
in figure (F4), is delayed
@ ly) - 2%, and ZN-2 in

Since three
result which was Z-IYé
by Z3 and

general.,

is now Z

The rigorous proof that the output is correct, is
Its computation. Let S, denote the output of such

a network, as (F5), uité J modules. The output of
(FS) is therefore S = S4 We will prove that in

general the output of an N-modules network is

N

58 - [=M (5. 222) X

i-]

{11)

From the structurc of the network and the modules,

as shoun in figure (FB), uwe get the follouing
relation
> - 2j-2
J
5, =258, ;4[] (o, 277 x (12)

Figure (F5): Implementing the “carry-save" idea.

229

(11} is proved by induction, starting from SO=B.
Assume that it holds for SN—l' and use (12) to
evaluate SN:

Sy =75 +]] (:aN' ZZN—Z) X -
N-1 , .
.7 [EIZN-I—lw]—l (ai' 221—2)] X+
+ 1 (ay 22V%) x -
N-1
) [5N (o, ZZi—Z) Tl (aN' ZZN—Z) J ‘-

i=l

. [}iz”“ (. 272 | x weon v

[f the proof scems too rigorous, one can obtain
(11} directly by numbering the modules from left
to right. In the ith module, ai is used,

multiplied by 222X (X at module 1, Z2X in

module 2, ZQX in module 3 and ZGX_in moduie 4},
the product is then delayed by N {here, 23 for
module 1, Z° {for module 2, etc.). Henceé. the
output, §, is the sum of these products %Z ex,

each delayed by ZN_a as indicated by (11).

Direct methods, compared with rigorous proofs, are
simpler and more intuitive, but require caution.
Intuition is knoun to have been misleading, on
occasions.

(11} can be simplified to yield:

N
S [%EIZN—i [] (ai' ZZI»Z)] X =
N .
S0) I

-[z”'zgﬂ(ai.z')]x,-z“"zv (14)
-1

Check this network against the design objectives:

{a) Correctness: The correct expression is
computed indeed, as shoun by (14).

{b) Computation rate: The computation period is
nou the time required for a single
multiplication followed by an addition,
independent of the magnitude of N. Since
it is easy to overlap the execution of the
multiplication and the addition we do not
attempt to separate them even though this
may improve slightly the computation period
and the computation rate.

(e} Delay: The computation delay is equal to
(N-2} computation cycles, as is shoun
by (14).

(d} Parts Count: The same number of adders and
multipliers, as before, is needed.
Houever, 3 delays are needed in each
module, Hence, the total parts count is

higher (i,e, worse) than before,

(e} Modularity: The modularity is not as good
as it used to be in the network shoun in
figure (F4), uwhich includes only components
uhich are included in the repeated modules.

In order to improve the modutarity, ue merge the
necu delays into the old modules. In order not to
introduce additional delays, we include in each
module the delay which is on its right on the
"upper" line, and the delay which is on its left
on the "lowmer"” line. Hence, the network
implementation now is composed of N modules, each
as shoun in fiqure (FB), without the need for any
additional components.

TTmmmTTETTT T a
2212 E —e 721

Figure (FE): The ith module.

By using a network which consists of N modules as
shoun in figure (FB), the rate is the best which
can be achieved (Wi thout separating the
multipiication from the addition) and the delay is
proportional to N.

Another look

At this time ue would like to ask if the reader
has noticed that a very important design decision
was made without any justification or even
discussion. Please take a moment and recall what
has been done so far, and look for that important
design choice which was made as if no alternative
existed.

This design decision is the sequentialization of
the summation-operator. HWe introduced it as a
lteft-to-right sequence of adders Hithout
considering other possibilities.

We can use a tree-structure, with IogZN depth.
Here the carry chain is only logzN long, which is
better than N, but still might be too long. The
same "carry-save" approach may be used again, by
using the detay operation, Z, betueen every pair
of successive adders.

Hou does thie design check against the objectives?

(a) Correctnecss: The correct expression is
computed indeed, as shown before.

(b) Computation rate: The rate is optimal. As
before ue do not wish to split the addition
from the multiplications,

{e) Delay: The delay is oniy logzN.

(d) Parts count: The total number of adders
required for adding N numbers is N-1,
whether they are arranged in |linear order
or in a tree structure. Hence no change in
the number of adders is needed. Houever,
the number of the required delay elements
is improved.

(e} Modularity: The adders' binary tree is
again perpendicular to the data flow and
imposes a severe geometrical problem.

By using the modules shown in figure (F7},
one can build this netuork, by having N
type-A modules arranged in a |inear order,
and (N-1) tuype-B modules arranged in a
binary trec structure.

Type A Type B

Figure (F7): Modules for the tree implementation

And another look

le have considered the left-to-right and the
binary trec arrangements. Let us consider next
the right-to-left option. At first, it does not
appear to be different from the left-to-right, but
it is worth verifying.

Let's look at the network shoun in figure (F4),
with the direction of the addition reserved. The
resulting network is shown in figure (F8).

Figure (F3): Right-to-left addition with delays.

Figure (F8): The right-to-left addition.

Note that the networks shoun in figures (F4) and
(F8) are identical, and therefore the latter
suffers from the same problem that the former
does,

The very same "carry-save" idea can be used again,
by adding delays. This results in the network
shoun in figure (F39).

This new netuork, of figure (F9) has also to be
checked against the design objectives.

Starting from (a}, the correctness, we compute the
valuc of the output §, by using the same technique
of numbering the modules from left to right. Nou
we get:

s - [ZNZ“" [(2. 2%72)] x (15)

i=l

Note that this is very similar to (11), except
that the output of the ith module is delayed nou

by Z'_1 instead of by 2N g before, when it was
added to the riaght.

The simplification of (15) yields:

s - [£ 2] (a0 227°2)] x
irl

(S0 (o 29 -

el

-[273 'ZN IM (s, 227)] x (16)

irl

JEH -

O—HZHO-—-

Which obviously is not the desired Y. Therefore,
the netuwork shoun in figure (F9), does not perform
the correct computation.

What is the reason that the very same approach
uhich wWorked so wuell in the network shoun in
figure (FS), fails now?

The reason is very simple indeed, In both cases
the delays betueen the adders (on the "lower"
line) are needed in order to make the computation
period independent of N. The purpose of the
other delays f(on the "upper" fine)l is to
conpensate for the delays on the "lower" line,
such that the addition is performed coherently.

Since in the left-to-right network (FS) data flous
on both lines (the “lower" and the "upper") in the
same direction, the same delays have to be
introduced in both, to keep the data "in-step”.

Houever, in the right-to-left network (F9) data

flous on these lines in opposite directions,
Hence, in order to compensate for a delay on the
"louwer" line, data should be accelerated on the
"upper" line. Since Z is used on the "lower", Z~

should be used on the "upper",

It is unfortunate that the Z"1 operation is a
prediction which we cannot implement in the
general case. However, in this case each 7~
happens to follow a Z, such that each cancels the
effect of the other.

Let wus replace on the "upper" line all the

inter-module Z operators by Z°°. This cancels the
effect of the intra-module Z operators, such that
no delays are needed on this |ine.

Figure (F10) shows the modified network.

Again, the neu design has to be checked against
all the design objectives.

Starting with (a), thec correctness, we get:

N

s- 52"] (a5, %) = 27 :%z‘ (e %) -

i=l

L gxn (w0 2') Jx -2t an

This proves the correctness and also shous that
there is no delay whatsoever. We also know that
the computation period is minimal since it is
equal to the longest “atomic" operation. The
parts count is lower than in any other design, and
the network is modular,

Based on the above, this design is optimal with
respect to correctness, (a), computation rate,
(h), and delay, (c), and it also scores
highly in the parts count, (d), and modularity,
(e}, categories.

An alterpative way to draw this netuork is shoun
in figure (F11). Note that the addition is
performed, again, in the left-to-right direction,
because the order of the u"a is reversed.

Applying the 2Z-notation lo design evaluation

We will show that the Z-notation can be used for
the evaluation of all the networks shoun before,
from figure (F1}), to figure (F18}, We also claim
that this transformation can (and should) be
performed without the aid of figures and
intuition,

(@ @

s~ {2

))
+)—-—[ﬂ—- +— 0

Figure (F1B): The modified right-to-left netuork.

0
NG

Figure (F11}: An alternative drauing of figure (F18)

Let us review the systems which we had so far.

Sustem (A) is the one which resulted directly
from the definition, and is shoun in figure (F1),
through figure (F3). 1ts representation is

Sustem (A): Y « [ZN:H (ai. zi)] X
iel

Using our experience with this kind of network, we
noted that one delay could be saved and ue
transformed this network into system (B) which is
the one shoun in figure (F4), Its representation

182

N-
Susten B): V- |z Zlﬂ (3,0 2')]x a9
-0

Then, in order to improve the rate, we further
transformed the netuwork into system (C), the one
shoun in figure (FS), whose representation is:

(18)

System (C):

v [z N2 ZNZN—i M (s, 222] x

i=]

(28)

Then ue introduced the right-to-left addition, and
were able to transform this system into
system (D), the one shoun in figure (F10),
uhoso representation is:

System (D):

N |
vez3 27] (5. %) @n

i=1

Next, uwe compare and evaluate these systems, by
using their representations, wWithout referring to
the figures.

{a) Correctncss: From the representation above
it is evident that all of these systems
per form the correct computation.

(6) Rate: Both (M and (B) require adding N
quantities at once. Therefore, their

computation period is equal to the time

required for a multiplication folloued by
the addition of N numbers, where (C) and
(D} require only the time needed for a

multiplication and a single addition.

(e) Delay: in (A) Y
cycle as X, Ue

is available in the same
this delay
reference, and denote it as zero delay.

use for

In (B) the entire expression, on the right
hand side, is multiplied by Z. This means
that the output of the netuwork which
computes this expression has to be delayed
one cycle, in order to have the same delay
as in (a), the zero delay. Hence, without
this additional delay, the output, Y, is
advanced by one cycle, and is equal to
minus one cycle. This means it is earlier
by one cucle than (A4).

233

z-(N-Z)
Since
the Y
is delayed by
(N-2) cycles, compared with (A4),

On the other hand,
order to achieve the
this is not feasible to

computed by this netuork

(C) requires
same delay.
implement,

(D) has, obviously, the same delay as (B).
Thus, (D} also is earlier by one cycle
than (A).
In summary, in the general case, the delays
are:

System implementation A B C D

Detay (in cycles) g -1 N-2 -1

Houwever, even though both (B) and (D) have
the same delay in cycles, (D} has a
smaller delay since its cycle is shorter.
Hence, in this implementation, LA is

available a shorter time after x, is given,
compared with (B).

{d) Parts count: The modular implementations,
including the additional delays and the
additional adders (which may be required on
either end of the network in order to
achieve the modularity)}, are compared uith
each other,

A four implementations require N
multipliers, and N adders (or N
multiply-8-add units). They differ only in
the delay requirements.

(A} and

Both (B) require N delays for X.

{C) requires 2N delays for X, and N delays

for the partial sum of the products. These
delay wunits require, in general, more
capacity (bits} than for delaying X,
especially if fixed point arithmetics is
used.
(D) requires N detays, also for the
partial sum of the products.

(e) HModularity and simplicity: All four
implementations are equally modular, wuith

the same levet of complexity.

The rating of thcse systems is summarized in the

following table. § > T means that § is better
than T.

(a) Correctness (A) = (B) = (C) « (D)

() Data rate (C) = (n) > (4) = (B)

(e} Delay (D) > (B) > (A) = ()

(d}) Part count {A) = (B} > (D) > (C)

(e) Modularity (A} = (B) = (C) = (D)

This shous that (D) is the best, if performance

is the major objective, but (B) is the best if

the parts count is the major one.

4. APPLICATIONS FOR POLYNOMIALS
MULTIPLICATION

The previous example, the FIR filter, wuas
designed by wusing intuition to operate on
computation networks represented by drawings. The
Z-notation could be used, but is less intuitive.

Next we compute mubtiplication and division of
polynomials, and design computation netuorks to
implement these operations. Houwever, now we use
the Z-notation for the design of the netuworks, and
use diagrams only to demonstrate the design.

The problem of polynomials multiplication

Let A(t) and X(1) be polynomials in t, of degrees ¢
and m, respectively

C m
A =3 a t! X() = 5 x; t' (22)
i=1 i=B

Let ¥(1) be the product polynomial of A(t) and X(i).

m+c c m i
Yio = Syt (T V) (T t) @
1=8 i=0 i =0

By equating the coefficients of ¢ we get

C
Uy = 23 % (x; =8 for i <Bandi>m) (24)
0

We are interested in finding the coefficient set
of the polynomial Y@), from the given coefficient
sets of A1) and X(1). UWe are not interested in
evaluating any of these polynomials for particular
values of .

In many applications A(t) is a fixed polynomial,
and X(1) is a variable one. The computation
problem is to compute the m+c coefficients of
Y(), from the given m coefficients of X(1),
and the fixed ¢ coefficients of A(t).

Since (24) is identical to (1), except for the
boundary condition and the range, the same
netuworks which compute the KIR filter, can also
per form this polynomial multiplication.

Since (24) contains e . one more stage is needed,
and the computation is performed such that . is
available in the cuycle when x, is given. In other

words, the delay now is B, instead of the -1 cycle
as we had before.

Figure (F12) shows the netuwork for this
computation. Note that it starts with a,
{compared wuith o in the previous network) and

that its output is Y (compared uith Z_lY before).
Because of the boundary conditions it is important
to clear al!l the delay units before starting the
operation, and to provide x = B for i = m+l,
m42.....mic. When these values are given,
the last ¢ values of Y are obtained. Since there
are m+c values of Y, and only m values of X,
this "runout" operation is indeed expected.

The initial clearing can be performed, just like
the runout operation, by proving the netuork with
¢ zero-values for X, During this period the
obtained Y values are invalid.

Obviously, this network is represented by:

Y- i 2" 1] (a0 %) (25)

i-@
Reversing the order of X

In scveral applications it is preferred that %, is
avaitable before X, 1t In these cases X is
feading and x, trailing.

If this order is used then the operator Z has a
predicting role, and 7l is a detay, Since (25)
is impiemented uith positive powers of Z, another
implementation uhich uses only negative pouwers of
Z is needed.

Multiply (25) by Z7° and get

eV - i 211 (a0 %) = iaz"c'” I (a0 %) -

i=0

(26)

—~OFH®

Figure (F12): Polynomials multiplication,

Since this has the same structure as (25) the same

netuork can be used to perform this operation,
except that () Z~l is used instead of Z.
Houcver. since 7 mecant a delay before, and 2~
means a delau now, this is no real change of
function, only of labeling, (ii} the order of the
ni's is reversed, because we have nou arj

nhere we had a; before, and ({iii) the output now is

7Y instead of Y, as before. This means that
uhen ¥, is given to the netuork, Ynie is
available, Therefore, when x the leading
cocfficient of X, is made avajlable to the

nctuork, then LA the leading coefficient of Y,

is computed. The resulting network is shoun in
figure (F13).

Computing sum of polynomials products
Consider the problem of computing W(t), which is
defined by:

Wa) < Aw)X(t) + B)Y@) (27)
Where A(1) and B(1) are of degree ¢, and X(i) and
Y1) are of degree m. Obviously, W() is of

degree mee.

By using (26} we may get:
c c

7 S (a0 X) ¢ 3 7 (bg_;01) (28
i@ j=0

for ¢=3, the netuork shoun in figure
(28) may be uwritten also as:

This yields,
{F14). Houever,

7. i@z‘j“‘](ac_j,x) + ﬂ(bc_j,Y)] (29)

vhich yields the combined network shown
(F15),

in figure

5. DIVISION OF POLYNOMIALS

Polynomial division is obviousiy the inverse of
the potynomial multiplication. The division is
defined in the usual way, by the relation:

Y(t)= ACt) X1) (nc e B) (38)
vhere A() and Y(1), are given polynomials of
degrec e and mee respectively. X(1) which is to
be determined is a polynomial of degree m.

Division, unlike multiplication can be performed
only by starting with the most significant
(highest power) of Y. This non-symmetry is due

to requiring only that the leading coefficient of
A(1) must not be zero.

Therefore, we use (26) and not (25) in order to

invert the multiplication.

Equation (26) states:

c
v -3 7] (o X) (26)
i@

Since the operation has to be performed from the
most significant to the least significant term, at
any stage in the computation of X(1), the higher
order terms of X(1) must already be knoun.

Thyrefore, Hwe seek to express X by using A, Y and

% for positive values of i, but not including
i-0.

Extract 2°X from (26) and get:

c

78y - [(o0 X)+ 2 [(s x) ta0)
i=1

lsolate it and get:

[T (ace X) = 2% v+ Zc 7] (-oppe X) 1322

i=1

In order to share the Z'° operation, this can be
transformed into:

M (s %) = ilz“‘ [T (recei X) + & oY] 133
s

where € =8 if iee and € =1,
ie ¢,c

Ny

Since a, * B, X can be expressed explicitiy by:
1 o i
- < -1 -
X = a_ f>—'1z [T (2 X) 46 ¥] @0
je

The network for per forming
shoun in Figure (F16)

this computation is

X
B ®
0—={+ z"»—- z"!

9 @

4

z7ly

F-O-E-C

Figure (F13): Polynomials multipiication (most signijficant term leading).

W

+ — 1 -]

o

2

Figure (F14): Sum of polynomials products.

O—H - 771 0 27 e+ vl + }=zcw
° ° b2 b3>
Y

Figure (F15): Sum of polynomials products, combined.

_00 °
-1 -1 -1
Y - VA ‘ Z —|>Cp- Z

Figure (F18}: Polynomial division, for ¢ = 3

(?‘Q‘

sunchronized with Y, . is computed
the same cycle when y, is
Since the first coefficient of ¥ is y

Since X is

and is available at

aiven, mee’

and the first coefficient of X is % during the
firet ¢ cycles no ¥, is output.

Brfore starting this operation all the Z units are
cteared. Then the Y coefficients are given, one
at a time (i.e., one per cycle). The first ¢
cycles are initialization cycles, and no output is
expected, During the next m+l cyclies ali the
coefficients of X, with x . leading ~ and ¥,

trailing are available.
At this point the Z units include the same data
which uwas present in the Z units of the network
shoun in Fiqure (F13), just before the
multiplication process started.

the Z units in this network were cleared
the Z-units shoutld

Since all
before the multiplication, all

contain zeroes after the division, If they are
discovered to contain any non-zero value, then
Y1) uas not a product of A1) by any

poiynomial.

in the ¢ delay-units are the
polynomial, R(),
This polynomial is

In fact, the values
cocfficients of the remainder
uhose degree is less then m.
defined by

R(t) = Y1) - A(t) X(¢) (35)

Checking the Mulliplication and the Division

In order to check (uwhich is weaker than "verify")
these operations we prove that if we use these
netuorks first to perform the multiplication of
any arbitrary polynomial, X(), by the given
polynomial, Ai), and then to perform the division

Let ¥(1) be the result of the multiplication of

let S(t) be the result of the
We will prove that

X(1)
division of
SG) = X(1).

From (32)

by A@t), and
Y) by At

st [y Zc: 7 T (-0 8) | -

i=1

S =

substitute (26}

o | iz;z---. M (oci0 %) -
- Zc 7' 1 (20 5)] -

i=1

- ac'1 [a. X+ Zc rak ” (aac_i,)() -

i=l

ST (o 9)] -

i=l

=X+ a ! zc: 271 (ag.;» %-8) =

i=]

=S 4+ ac"1 a, ()(-s),+

+ ac_l zc 7 n (ac--i' X—S) =

el
c v
-s+at S] (5, %8) (36)
-8
C .
Hence 2] (o X-8) =8 @D

i=8

Since the polynomial A(t) is knoun not to be the
» @, the polynomial S(1)

of this product by the same given polynomial,
Alt), then the same arbitrary polynomial zero polynomial because e,
X(t), results. must be equal to X(1). Q.E.D.
X
<OO 02>
<+ z-! 7 e+] 7]

(o

Figure (F17):

The §=(AX)/ B

237

implementation, for ¢ = 3.

Simultaneous Multiplication and Division of Polynomials

Define S(1) to be the polynomial which is obtained
by multiplying the arbitrary polynomial X(t) by
the given polynomial A(), and then by dividing
this product by another given polynomial, B@),
also of degreec ¢, such that bc » B,

By following (36} e get

| }E 27 1 (agoir X) #

i@

2T (o 8)]

i=1

- bc'1 { a_ X+ Zc: z7 [ﬂ (‘ac_i. X) +

i=1

+I] (—bc_i. s)] } (38)

The network which performs this computation is
shoun in figure (F17).

6. SUMMARY AND CONCLUSIONS

Ue shouwed that the mathematical notation which is
commonly used for the specification of a
computation may implicitly suggest some design
features uwhich are not necessarily desired.

We suggest that the mathematical definition be
transformed into the computational netuork

representation notation, uhich can be evaluated
according to the important design objectives.

Furthermore, this representation can be
symbolically transformed in order to generate
other alternative netuworks, which should aiso be
evaluated according to the design objectives.

These transformations should continue until no
further improvement is achieved.

Furthermore, we suggest that it is feasible to
implement an automatic system for performing these
symbolic transformations and evaluations, and
highly recommend it.

7. ACKNOWLEDGMENTS

I am grateful to Bob Sproull ({of CHMU) for
encouraging me to write this note, to Bob Kahn
(ARPA) for suggesting the application of this
technique to polynomial multiplication and
division, and to Chuck Seitz (Caltech) for his
critical review of the draft of this paper.

I would tike to thank Ms. Lisa Moses for her
skillful typing of this note, and especially the
mathematical formulae. I would like to thank

Ms. Debe Hays for her help, and Mr. Nelson Lucas
for his help in preparing the many drauings which
are an integral part of this paper.

