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_Abstract _

It is shown how circuits for the addition of
several serial binary numbers can be obtained as a
combination of parallel counters and memory cells.

The various schemes belong to one of three

different classes, characterized by the way in which

carries, produced by parallel counters, are treated.

A comparison is made between the various sche-
mes, in terms of speed and complexity.

Introduction

The addition of several binary numbers as a
single operation 1is desirable in many cases in
order to increase the spesd of computation.

The

cation, obtained through the addition of the mul-

most important case is given by the multipli-

tiplicand, logically anded by the bits of the mul-
tiplier and suitably shifted. A number of schemes
based on such principle have been proposed and are
well known.

In a recent paper 1
have shown how a complex computing unit capable of

,Swartzlander,Gilbert and Reed
performing the addition of several products would
be necessary in some applications. Such a computing
unit(the "inner product"
conveniently implementable by representing one of

computer) is shown to be

the factors in serial form, and adding in a single
stage all the binary serial numbers composing the
various products: with m product terms and n bits
multipliers, there are mxn numbers to be added.
The purpose of this paper is to show how the addi-

tion of several binary serial numbers could be per-
formed, and to classify and compare the different
possible schemes, in term of speed and complexity.
This problem has been considered in the past, at
the writer's knowledge, mainly for numbers repre-
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sented in parallel.

The case of serial multipliers has been considered
in © by Dadda and Ferrari and by Swartzlander in
Multiple addition for pgrallel numbers has been con-
sidered by Ho and Chen
me "reduction scheme' proposed in L, singh and Wax-

, where they use the sa-

mann ~ proposed a scheme which can be considered as
belonging to one of the classes of schemes (class

3) that will be illustrated.

Logical schemes for multiple adders

Let us consider m binary numbers, each compo-
sed by n bits, each of the bits of the m numbers
having the same weight, appearing simultaneously.
The schemes to be described are intended to produce
their sum, also as a serial number.The sum shall be
composed by
ber of bits necessary to represent the integral part
of : _rr1(1—2--E ). Moreover, the least significant bit
(L.S.B.) of the sum could be delayed by § clock in-
tervalshith respect to the L.S.B. of the addends.
Ideally,it should be = 0, but, due to the com-
plexity of the circuit necessary for obtaining the

n + “E)E“ bits, “EJE. being the num-

sum, the corresponding delay could be larger than
the clock interval. in order also

to obtain the sum as a series of pulses synchroni-
zed with the addends, it could be convenient to im-
plement the adder with intermediate
memory cells, so that the L.S.B. of
layed by some ( )} clock intervals.
of logical sche-

mes shall be illustrated, based on different cri-

teria. Use will be made of (p;q) 'parallel counters”

In such a case,

synchronized
the sum is de-

In the following, a series

(widely used in parallel multipliers 1) they are
combinational circuits having g outputs and p< 29
inputs, the ¢ outputs representing, if interpreted
as a binary number, the number of inputs whose va-
lue is "one" (see fig 1 for their graphic represen-—
tation). More general types of counters can be used,
as the ones in fig 1,b): they can have inputs with
different weights and/or more than one output hav-
ing the same weight.




counters shall
they are said

In the following, "simple
be used, see fig 1,a):

tur ated" if p=29-1.

llsa_

Class 1 adders: feed back-carries schemes.

The simplest adding procedure is re-
presented in fig. 2,a): it is the well
known way of obtaining the addition "by
hand" starting with the leftmost column,
counting the "ones" in it apd writing the
result (as a binary number) on a diagonal,
in order to put the carries under the ap-
then

is treated in the same way (taking into

propriate columns; the second column
account the carry from the first column),
etc.

This procedure can be "mechanized"

by
means of a device performing the counting
"ones", and recording the
result into memory cells as the
L.S5.B. representing the bit of the sum,

the remaining bits (the carries) being re-

of a column's
shown,

corded under the next columns. If the courn
ter is stepped to the left at each clock

signatl,
tained.

the successive sum's bits are ob-

A different and equivalent way of repre-
senting the same procedure is given in
2,b),
inputs by as many shift registers as there
are numbers to be added and carries to be
accounted for.

fig. where the counter is fed at its

Fig 2,c) represents, finally, the circuit,
composed by a parallel counter and a sui-
table number of memory cells,

short shift registers ,

composing
fed by the carries
outputs from the wnarallel
Note that in fig.2, ) =0, since the coun-
ter's delay is assumed to be smaller than
the clock period.Note also that ,after the
last, most significant addend's bits have
been applied, fed
in order to produce the
most significant bits of the sum. These
columns are obtained by repeating the sign
bit (the last, leftmost) of each number,
since negative numbers are assumed to be
represented as 2-complements.

The basic of fig. 2,a) has been
considered for the implementation of pa-
rallel multipliers 1, but it has been no-
ted that a large delay could result due to
the propagation of

counter.

more columny have to be

to the circuit,

scheme

carries
rious counters connected

through the va-
in cascade. This
objection is not valid in a serial adder,
where the carries must be delayed by one

or more clock intervals.
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The fig 2 scheme assumesthat a parallel
counter with a sufficient number of inputs
and a sufficiently small delay (as compa-
red to the clock interval) caua be im-
plemented. Note that, being m the number
of the addends, the number of carries, c,
is the smallest integer satisfying the
condition:
2£+1 —13.& + c

and that the counter shall therefore have:

P=m+ c inputs and:
qg=c+1 outputs.
Assume now that parallel counters with a

limited number p<(m + c) of inputs are
Two different solutions are
then possible.

The first is to add the outputs of g (O1)
(p,>q) counters (using a parallel adder) so
that a
a sufficient number of
A less
tained by partitioning

to be used.

composite counter is obtained with

inputs.

expensive and faster circuit is ob-
the m addends into
8 subsets in such a way that with a sin-

gle counter the sum of a subset of addends
is obtained; see fig. 3, where (7;3) coun-
ters are assumed,
In other words,

and g = 3.

the
original set of addends to an equivalent
set of g  numbers. adding
circuit fed by these g numbers one can
then obtain the desired sum (if g is large
enough, more reduction stages would be
necessary). In the example of fig. 3, a
single (53;3) counter is sufficient for the
scope.

the circuit reduces

By using an

Some remarks follow on the fig.3 scheme,

where it has been assumed m = 13 and

with g = 3 are used. It should
be noted that the carries from the coun-
ters (to be delayed by one or two clock
intervals) are applied to the same coun-
ter's they could equally well be
without

A large variety of

counters

inputs:
applied to a different counter,
affecting the result.

equivalent circuits can then be obtained

see in fig. 3,d) an example, where
one counter is fed only by the carries
produced by the other counters.

If the total delay in fig. 3,c)or d) is
too large, one could insert memory ele-
ments at the interface between the two
cascaded stages. This would
ration of the circuit to be
clock intervals,

taining a "pipe-line"

cause the ope-
split into

thus ob-
with a higher clock

two consecutive




frequency. .

A case of particular interest is the one using
(33;2) counters, i.e. full adders, see fig.4.

In such a case the number g of (3;2) counters ne-
cessary in the first reduction stage is:

g =m/2 (m even)

g =(m-1)/2 (m odd).

The set of 5'(9'even) or (gfl) (m odd) numbers

thus obtained can be reduced by a similar circuit,
until a single output, i.e. the desired sum, is
obtained. It can be shown that [log m| -1 reduction
stages are required ( Eﬂ representing the smallest
integer larger than x ).

If memory elements are placed at the interfaces

of adjacent stages, a pipeline structure is ob-
tained with a frequency of operation determined

by the sum of the delay of a full adder and of a
memory element, and §= [logzg - 1.

Note, also, that the structure” is a tree of full
adders, each with a carry memory and another memory
at the sum output. If a delay larger than the one
afforded by a single full adder and memory ele-
ment is tolerated, inter-stage memories can be in-
serted every two or more stages, thus reducing Y
and decreasing the frequency of operation; or, in
order to obtain an equivalent result, counters
with a greater number of inputs can be used, re-
quiring a smaller number of memory cells.

Table A contains some parameters of adders desi-
gned for m = 256, using counters of various size.
It can be shown that if the counters gre implemen-
ted by a network of full adders (see ), the to-
tal numbers of full adders used in the different
solutions are only slightly different. It can be
seen from the Table that the total number of car-
ry memories decreases as the counter's inputs in-
creases.,

Moreover, the total delay (expressed as a multiple
of a full adder delay) increases with the counter's
inputs. Note also that the delay of the least si-
gnificant output bit is smaller than the delay of
the remaining output bits.{ In counters implemen-—
ted bﬂFOMs this is not true. On the other hand,
such counters are suitable only for a small num—
ber of inputs, and if a number of them are combi-
ned in order to obtain a counter of a larger size,
the overall output's delays are again different).
As in all schemes of class 1 and class 2 (but not
in those of class 3) the output bits of weights
2,4,8,etc. have to be delayed by 1,2,3, etc. clock
intervals, respectively, it should be possible to
design counters in such a way that such delays
include those of the combinational part of the
counters, so that the effective delay to be accoun-—
ted for, is the one of the L.S.B. only (i.e. the
minimum) .

Further investigation is necessary to determine
the hest way of designing parallel counters for
this application: for sake of brevity this will
not be done here.

Class 2 adders: feed-forward carries schemes.

In the preceding paragraph, all schemes have in
common the characteristic of being composed by
parallel counters whose carries outputs are fed
back to the counter's inputs via suitable delays.
A second class of schemes can be obtained by not
feeding back the carries to the counter's inputs,
but considering the counter's outputs as a set of
numbers equivalent to the set of addends (this is
the principle on which the reduction schemes used
in parallel multipliers are based, see 1).

This set can be further reduced until a single
number, equivalent to the addend's sum, is obtai-
ned.

The procedure is illustrated by the fig.5,a) exam
ple, where m = 13. In the first stage, a (13;4)
counter is used, obtaining four numbers, whose sum
is&desired sum. The second stage reduces this set
of four numbers to an equivalent set of three num-
bers, using a (43;3) counter; the third stage ob-
tains an equivalent set of two numbers, by means
of a (3;2) counter, and finally a single number,
i.e. the desired sum, is obtained by means of the
last stage, which is the only one requiring a feed-
back carry.

Fig 5,b) is the scheme of the various counters
used, where the first one is fed in parallel by
the m addends, and fig. 5,c) represents the cor-
responding logical scheme; fig.5,d) is an equiva-
lent scheme

It can be seen immediately that this class of ad-
ders compares unfavoraqubly with the preceding class
1 adders.

First of all, while in the class 1 schemes the
operation can in principle be obtained by means

of a single counter, this is not possible, with the
present scheme, as it appears from fig. 5. The com
binational part of the counters is nevertheless not
very different, since, for a given number m of ad-
dends, the single counter necessary in the fig. 2
scheme requires m + ¢ inputs (c is the number of
carries), while in fig. 5 requires m inputs only.
On the other hand, in fig. 5 some more cascaded
counters are needed, whose complexity decreases
very rapidly through the various stages.

Moreover, the number of memory cells necessary in
fig. 5 schemes is slightly larger than those neces
sary in fig. 2 schemes.

The main drawback of .class 2 schemes in comparison
to class 1 schemes is the larger number of stages
necessary, which gives a larger delay.

As has been done for class 1 schemes, also for class




2 schemes, counters with a limited number of in-
piits can be used. For instance, using (3;2) coun-
ters, each stage has a number of outputs which is
~ 2/3 the number of inputs: note that in class 1
schemes (fig. 4) the outputs of a stage are ~1/2
the number of the inputs.

For the preceding reasons, the class 2 schemes
shall not be considered any further.

Class 3 adders, with carries summed in parallel

adders.

In class 1 and class 2 schemes, the carries produ-
ced by the counters are delayed (see fig. 2 and 5)
until they appear in the appropriate columms.
Instead of being simply shifted, such carries

can undergo a suitable processing. Adders, which
uses such possibility, are greouped in a new class,
class 3.

Among the various possibilities of handling car-
ries, the following two appear of particular inte-
rest for their simplicity.

The first class 3 scheme is given in fig. 6, where
the g counter's outputs are associated with the
two (q-1) bits numbers, stored in two registers,
and representing the result of the operation of
the circuit in the preceding step.By means of
(g-1) full adders the three numbers are reduced
to a two-number set. The sum—output of the right-
most full adder represents the bit of the sum,
while the remaining output bits of the full adders
(and the leftmost bit of the main (p;q) counter)
represent the new carries, to be stored as shown
in the registers by means of the clock pulse.

With reference to fig.5, a) the above procedure
corresponds to adding, with a carry-save adder ,
the successive outputs of the main counter, repre-
senting the contribution to the sum from the va-
rious columns.

A second scheme is given in fig. 7, which is based
on the same principle of the fig. 6 scheme, with
the difference that the addition of the successive
counter's outputs is performed through an ordina-
ry parallel adder (possibly with carry look-ahead),
The "lenght" X of the adder is related to m, the
number of addends , by: -

A= Eog2m]
while in fig. 6 scheme one stage less is required.
Fig. 8, a) and b), represents, by an equivalent
logical circuit, the same schemes in fig. 6 and 7,
respectively. Similar zircuits have been already
proposed in “ fop multipliers with a parallel multi
plicand and a serial multiplier.
As far as the complexity is concerned, classs 3
adders are generally better than class 1 (and, of
course, class 2) adders.
If counters are implemented as a network of full

adders, class 3 schemes require (for the same m)
a slightly smaller number of ‘full adders than class
1 schemes.

The number of memory cells in class 3 schemes is
considerably smaller than for class 1 schemes »
even if for the latter a solution requiring the
smallest number of memory cells is considered.

For the Table A example (m = 256) 34 is such num-
ber for a class I scheme, while for the same m a
class 3 scheme of the type given in fig. 7 requires
only 9 memory cells, and 16 are needed for a fig.6
scheme.

As far as the effect of the delays in the counters
is concerned, it has been noted that in counters
implemented with full-adders they increase from
the L.S.B. to the M.S.B. outputs.

In both fig. 6 and fig. 7 schemes, the bit sum ap-
pears with a further full-adder delay with respect
to the L.S5.B. of the counter. The clock necessary
to store the new carries must be applied after the
M.S.B. has appeared: note that this clock could

be suitably delayed with respect to the clock used
to store the sum bit, in order to increase the
overall operating frequency of the adder.

Concluding remarks

The problem of adding several binary serial numbers
has been consiaered;, with the purpose of identi-
fying and comparing different schemes. Three clas-
ses of schemes have been proposed, all being based
on parallel counters used to sum simultaneous bits
(column summing).
In the first class of schemes the carries genera-
ted by a single counter are delayed and associated
with the following columns for counting. The single
countedcan be partitioned in a set of smaller coun-
ters, and if (3;2) counters or full-adders are con-
sidered, a very simple and straightforward scheme
is obtained.
In the second class of schemes, the set of coun-
ter's outputs(being equivalent to the original set
of addends and composed of a smaller number of
elements) is first obtained. This set can be fur—
ther reduced by more counters, until the final sum
is reached. This class of schemes is shown not
offering any advantage over the other two.
In the third class, the counter outputs are imme-
diately summed, in a carry-save adder or in a car-
ry-look~ahead adder, with the carries from the pre-—
ceding column.
It is interesting to compare the above schemes for
multiple serial addends with those used for paral-
lel addends !.In the last case, minimum delay is
achieved by using reduction schemes (used for
class 2 adders) not requiring any carry propaga-
tion, which takes place only at a final stage con-
sisting of a carry-look-ahead adder. Carry propa-
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Table A: Feed-back-carries adders for m = 256, using counters of different size

counter's n.° of n.° of carries | n.° of counters composed by full adders
size counters | feedback memories stages max. number of number of full adder
full adder delays | delays for the L.S.B.
(3;2) 255 255 8 8 8
(733) 64 192 | 4 12 8
4 (15;4) 23 141 3 13 8
g (5;3) 1
3 (31;5) 10 100 2 14 8
; (63;6) 4 75 2 18 8
1 (32;6) 1
1 (12737) 2
: (16;5) 1 52 2 17 9
1 (255;8) 1
] (9;4) 1 34 2 18 9
! (262;9) 1 36 1 14 6
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