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Abstract

An on-line algorithm for computing square
roots in a radix 2, normalized floating-point
number system with the redundant digit set
{-1, 0, 1} is described. The algorithm has on-lire
delay of one and it is amenable for modular imple-
mentation. A systematic approach, used in deriving
this algorithm, is presented in detail.

1. Introduction

We present here an on-line algorithm for
computing square roots in radix 2 number represen-
tation system with a redundant digit set
(-1, 0, 13. An on-line algorithm is characterized
by the following properties:

i) The result is computed in a digit-by-
digit fashion, beginning with the most significant
digit.

i1) The j-th digit of the result is computed
as soon as (j+8) digits of the operands are avail-
able. The on-Tine delay & is a small positive
integer.

The on-Tine algorithms for the basic arith-
metic operations are discussed in [1] and [2].
These algorithms provide an effective way of
speeding up sequences of operations by maximizing
their overlap. Moreover, the on-line algorithms
minimize the required interconnection bandwidth
and the number of input/output connections per
module. The system implications and organization
of on-Tine computational structures are discussed
in [2] and [3].

In Section 2 the square root algorithm for
normalized fractions is derived. The implemen-
tation and performance are discussed in Section 3.
2. Derivation of the Algorithn

2.1

The argument

Definitions
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is in the range [27P, 2-p+1) where the range sca-
ling factor p is a positive integer to be deter-
mined later. The argument x is represented in
the redundant binary system with the symmetric
digit set {-1 =T, 0, 1}. 1Its on-line represen-
tation is defined as follows:

X, = X, 4 +x,,.2°873,

J 3-1 (1)

i = 2
§+j J 1, 2,...,m

where

§ 2 0 is the on-line delay,

. 277, and

Xe = 0 for k >m - 8.

Clearly Xm = x. The result

m 2_1'
Yy =1ryYy.
i=1"1

is in the range [2_p/2, 2(1-p)/2) and satisfies

| V- y | < 2™ (2)
Its on-Tine representation in the redundant
binary system with the symmetric digit set
{-1, 0, 1} is defined as:

=¥, oty d 5=, 2,
Y57 Yyt g2
and (3)
YO =0

In order to facilitate computation of the
result digits, a scaled remainder is introduced:
j 2
R, = 20 (x,-¥¢ (4
J (XJ J) )

The error condition (2) and the digit-by
digit computation of on-line algorithms imply
that the remainders should be bounded as follows:

(5)




The remainders can be determined recursively:

-3 2.-3

R. = 2R, + 2 -2Y. L Yi-Yo
5 5-1 X6+J ZYJ_] j yJZ

- ) ry

= 2RJ._] + Xs+j 27" - uj’ 1t Yj)yJ,
j =1a 29---9 m, (6)
where
R0 = XO.

At each step one result digit is obtained as
a function of the remainder, i.e.,

= S(R_)

The selection function S (the selection rule)
should be the same in all steps. Since the redun-
dant number representation system is used, it is
expected that the selection can be performed using

Y5

the estimates ﬁj of the remainders [4, 5, 6]. Con-

sequently the remainders can be computed in a re-
dundant representation in time independent of the
Tength of the oparands. They can be used for the
selection without performing the full-precision
conversion to the conventional form, i.e.,

. = S(R,
¥y = SRyy)
2.2 Selection Function

In order to determine the selection furnction
yj = S(Rj_]) we first establish three intervals
I, = la, b1, k=-1,0, 1, in the range of Fio
such that if Rj_1e I, then Yy < k is a valid digit
choice. In general, these intervals must satisfy

the following conditions:

i)

The continuity condition

Ik n Ik+1 #0,k=-1,0 (7)

i.e., the intervals may not be disjoint. Alterna-

tively,

a < bk-]’ k =0, 1 (8)
ji) The containment condition:

Rj € I_] u IO u I], (9)

i.e., the remainders must always be contained in

the selection intervals. Alternatively,

ay s -1

and (10)
b, = 1.

1

These conditions and the selection intervals
are illustrated in the next figure:
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Figure 1: Selection Intervals

The intervals Ik are directly obtained by
evaluating

- _ -5-1 2,-3-1
Rj-] = Rj Xj+62 2

| —

YL Ly ty.
i-1737;

for R, =
J

approach
notation

+1 and yj = -1, 0, and 1, following t

used in [7].
let

-§-1

In order to simplify

u = X6+j2

- -j-1
v = Yj-] + 2

oy, o+ 273
J-1

the selection intervals are:

Since Xg 4 {T, 0, 1}, these conditions
imply, in the worst case when x6+j = T, that:

-6 -2 g

2 i1

< 2Y

The continuity condition (8) requires that the
overlaps A between the selection intervals are
positive:

=b, - a

0 =1 -v>0

501

410

1

a, =1 +w>0

=by - g

(1)

he

(12)




Assuming that a = Z't, the condition (8) becomes
in the worst case:

-t e ‘
hen-v -2 (19)
Combining (16) and (19) we obtain:

278 4 27t Vi -2 (20)
From (19) and (20):

R A AL Vi =1 -2t (21)
Since ye [2-p/2, 2(1-p)/2)

2(1-p)/2 gt i1 (22)

which implies that the range scale factor p should
be greater than one.

The choice of p is made as follows. Let
2-2%Z be the argument represented in the radix 2
normalized floating point number system with the
fraction ze [1/2, 1) and the exponent e, an

integer. Similarly w. 2w represents the result

(2-262)]/2 in the same number system. Since only
integer exponents are allowed,

_ 1/2 - oo . .
w=(z})'°, e, = ez/a if e, is even (23)
and

W= (2/2)]/2, e, = (eZ +1)/2 if e, is odd (24)

where
wel1/2, 1), i.e., the result appears in the normal-
ized form. Also, in (23) and (24) p = 1 and
p = 2, respectively. Because of the condition
(22) which requires that p > 1 we chose the fol-
Towing argument scaling.
_ 1/2 _ . P
w = 2{z/4) s e, eZ/2 if e, is even.
and (25)

1/2

w = (z/2) e = (e +1)/2 if e, is odd.

W z
Then the algorithm operates on
X =z/4 if e, is even,
and | (26)
x = 2z/2 if e, is odd.
If x < [1/8, 1/4), then y ¢ [1/2V2, 1/2)
so that
¥y = 0 and Yo = 1. (27)

Therefore, the worst case in the condition (20)
occurs for j = 3:
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6, -t -4 1

204ty L (28)
3

or

204t 82 (29)

16V 2

which is satisfied for 6§ = 2 and t > 5. If

x e [1/8, 1/2), then y ¢ [1/2, /2/2) and vy =1
The condition (20), for j = 2, gives

-8

A N PR,

or (30)

2%+ 27t < 38

which is satisfied for § > 2 and t » 3.
Therefore, we choose the minimum on-line

delay & = 2 which guarantees that the overlap

intervals are of the size 4 » 272, It will be
seen that the on-line delay is § = 1 with respect

to the floating point argument z-2%Z,
We now determine two comparison points
B_]e [aO, b_]J and B] € [a1, bo]. These points

should 1ie in the middle of the overlap intervals
so that the required precision of the remainder

estimate ﬁj is minimized. We obtain:

1 -3, 1 -j-1 1 -3 1
T7 g e Yyt 2 < B xp 2
or (31)
15 -3 31 -3
60 " %2452 "< By <5z - Xpus2
and choose

_ ] -3 _
B1 =7- X2+j2 = (2 -x2+j)/8 (32)
Similarly
By = - 4= x,, 273 = (-2 -x,..)/8 (33)
-1 4 2+j 2+371"
This completes the specification of the
selection function:
A
1 if R, > B.
j-1 ]
= S(R, ) = R., <8 (34)
Y5 S(Rj_]) 0 if By < 3-1 1
TOif Ry, < B
A
where Rj—] is an estimate of Rjn] satisfying
n -6
LRy s Ry s (35)

i.e., the remainder Ri—]’ computed in a redundant
form, is converted for the selection purposes into




A
R. ;. The estimate ﬁ.
j-1 -

form and has no more than seven bits including the
sign.

1 is in the conventioral

The previous derivations are summarized as:
Algorithm A:

+ 0 < . -1 . -2
1. Y0 03 RO X 2+ Xo 2
2. Forj=1,2,.... m+ 1 do:
A
2.1 vy = SRy Xouy)
2.2 Y.+ Y, . 4y, 279,
i Y )
Rj « 2Rj-] + x2+j 2" -
. 27y,
(@Y 1+ ¥3277)y;
where
A -
Rj = [64Rj\/64
is the estimate of the remainder and
. A
1 if Rj-] > (2 - x2+j)/8
A . A .
S(Rj_1, X2+j) ={T if Rj-1 s (-2 - x2+j)/8

0 otherwise
is the selection function.
Our main objective is to apply the on-line
square rooting algorithm on the normalized float-

ing-point argument z-2%Z and generate the result

we 25w,
that:

We now establish, using (25) and (26),

{a) For e, even:

X =X, =0,
Xj =250 10

3, 4,..., m+ 2

=0 (36)

and

wi =yi+], i=T1,..., m

For e, odd:

Xy = 0,

Xg =230 172, 3,...,m+# 1,

X = X = 0 (37)

m+3
and
Wy =Y 1= lyoo., m.

The algorithm A is now restated in-a form
convenient for implementation:
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Algorithm B:
1. W« 0; R+ 1/4

2. forj=1,2,..., mdo:

A
wj « S(R, zj+])
We W+ w2k
J

2.1

2.2

-2

R+ 2R + z., 2

- 2Wew.- wl 27k
jtl Jod

where

J if e, is odd;

g+ 1 if e, is even;

W and R denote the result and the scaled remainder;
zj+1 is the digit of the argument mantissa re-
ceived at the j-th step in which w. digit of the
result mantissa is generated. J

An example of square root evaluation is given in
Figure 2.

3. On Implementation

The proposed on-line algorithm has two pro-
perties important for a modular implementation.
First, a small number of inputs and outputs is
needed because of the digit-by-digit mode of oper-
ation. Second, the primitive operations {1imited
carry propagation addition and concatenation) can
be efficiently implemented and allow for easy par-
titioning.

The block diagram of the data section of the
Basic Module (BM) for square rooting in on-line
fashion is shown in Figure 3. The structure is
based on the Algorithm B. Since W at the i-th step
contains i-1 most significant digits,

W=HW+ w12'] can be obtained by concatentation,
i.e.,

W (W, w,)

Similarly,

272 _ 2ww1), - w?)

R« ((2R+ 2z, 1

1

The data section of the BM is d digits wide
and it consists of the following parts:

1. A limited carry-borrow propagation adder
with the operands and the result repre-
sented in the redundant form.

2. Two registers R and W for the remainder
and the result. Due to the redundant
representation, each register requires
2d bits.




Argument;

3. The result digit selection block S which

} implements the selection function

A
S(R, Since only the most sig

the output of the S block is control
3 by a Select Enable (SE) signal. If
; output of the S block is tri-state,

(R, z:,4).
ficant m&dule performs the selection,

ni-

Ted
the

then the terminal w. can also be used
. as input wher BM is not in the most sig-

nificant position. This is illustrated

in Figure 4.

4. Two selection networks SN and the di

the concatenation of the term wjz'k,

trolled by a d - bit shift register.

S=-

tribution (demultiplexing) network DN
perform the multiplication by (-w.)} and

respectively. In order to reduce the
number of terminals on the module and
make it independent of the working pre-
cision, the distribution network is con-
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2z = 65767815 e, - even
Result:
w = .81097358 e, =¢e,/2
Number .of bits: m= 24

Sy W u R Vz - 2

0 1 0 0 .25 .81097358
1 1 ] .5 .5 .310973586
2 -1 1 .75 125 .060973586
3 0 4] .75 .25 060973586
4 1 1 .8125 -.0312% -.001526414
5 4 0 8125 -.0625 -.001526414
[3 0 J .8125 -.125 -.001526414
7 1 0 -8125 .0 -.001526414
8 -1 0 .8125 -.25 ~.001526414
9 -1 -1 .810546875 .0615234375 .000426711
10 0 Q .B10546675 .123046875 .000426711
11 1 0 .810546875 .49609375 .000426711
12 1 1 8107910156 .43151856 000182570
13 1 i .810913(858 .30218507 000060500
14 0 1 8109741208  -.2065734633 ~.000000534
15 1 0 .8109741208  -.1631469266 -.000000534
16 1 0 .8109741208  -.0762938532 -.000000534
17 1 0 .8109741208 .0974122936 -.000000534
18 -1 0 .8109741208  -.0551754128 -.000000534
19 -1 4] .8109741208  -.3603508256 ~.000000534
20 1 4} .8109741208  -.4707016512 -.000000534
21 0 -1 .810973644 -.13042942 -.000000058
22 0 ¢ .810973644 ~.26085384 -.000000058
23 0 -1 .8109735248 2892559044 . 000000061
24 | 1 .8109735844 .0175382542 . 000000001

/ 2,
Error: < §5 ziZ'i>]/2 - £4 W, P2k PR 1078 . 2
i=0 i)
Figure 2: Example

5. The conversion block C generates an estimate

ﬁ in the conventional form of the redundant
remainder R.

The inputs to the BM are:

1.

where

Transfer Inputs (TIN)

Tin = Coys Rpys Wpy)

CIN is the adder transfer digit;

RIN is the leftmost digit of the remain-
der; and

wIN is the leftmost digit of the partial

result, generated by the next lower sig-
nificant module.




2. Digit Input (DIN)

z for the most significant BM;

J+l
Dpy =
J otherwise.
3. Select Enable (SE)
] for the most significant BM;
SE =

0 otherwise.

4. Distribution Control Qutput (DCIN)

For BMi:

1 in step j = (i -1)d;

DCIN:

0 otherwise.

In each subsequent step this 1 is shifted
one position to the right, enabling the distribu-
tion of wj in the positions 2, 3,..., d of the
After d steps, DLOUT
the distribution of W in the next lower signifi-

module. = 1 which enables

cant module.

The outputs of the BM are:

1. Transfer Qutput (TOUT)

Tour = Cour> Rour> Mour!>

defined analogously to TIN'

[aS)

Digit Output (DOUT)

wj for the most significant BM;
Dout =

used as input otherwise.

3. Distribution Control Qutput (DC

OUT)
For BMi:

1 1in step j = i-d;
DCoyr=
' 0 otherwise.

We conclude that the basic module would re-
quire about 20 terminals for logic signals, in-
cluding the clock and the initilization signals.
Note that the number of terminals is independent
of the working precision d of the module.
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Figure 3: Data Selection of the Basic Module (BM)

The control of the BM requires an initial-
ization signal (IS) to set the registers W and R
according to Step 1 of Algorithm B. The recursion
is controlled by a desired number of clock pulses
(CP). These signals are issued in parallel to all
modules. The beginning of operation is identified
by an input synchronization signal (SIN)' The

presence of this signal, which appears synchro-
nously with CP, indicates a valid input digit DI.
As soon as the first result digit is generated,
the output synchronization signal (SOUT) is issued

so that any subsequent on-line operation using
this result may proceed. As shown in Figure 4, a
control module (CM) receives and generates the
synchronization, initialization and clock signals.
In addition, €M generates the result exponent By

The time required to perform the basic recur-
sion (Steps 2.1 and 2.2) is

t, =ty ttgt t = 0(10tg)

where tA is the Timited carry borrow propagation
addition time, tS is the selection time, tT is the

register transfer (set-up) time and t
delay. 9

is the gate

In order to obtain m most significant digits
of the result mantissa, it is sufficient to have

m+ 6
n = [-Zd —l basic modules under assumption that




{a) A module has d bits of precision, and control and interface, are discussed in some de-
tail. The number of terminals of BM is indepen-
(b) The estimate of the remainder used in dent of the working precision of the module. The
. o =6 modules are connected in a cascade fashion to pro-
- 2", ; ., . . .
the selection saE1sf1es | R R | s vide for a desired precision, but the time to gen-
Clearly, n = [—g ] modules are required erate a digit (the step time to) is independent of
for multi-precision operation. A multi- the number of modules. Since this is a digit-by-
module organization is illustrated in digit aTgorithm, it takes m steps to generate the
Figure 4 complete result. However, a subsequent operation
’ with an on-line delay dk which uses this result
4. Concluding Remarks can proceed after 6k digits are generated. This
) . ) . provides for an overall speed-up of inter-depen-
An on-line algorithm for computing square dent computational sequences.
roots in the normalizaed radix 2 floating-point , - .
system with the redundant (mantissa) digit set is Ihe approach used in deriving the algorithm
presented. The algorithm has the on-Tine delay for r = 2 can be directly applied in a higher ra-
§ =1 and a simple step-invariant selection rule. dix case. The existence of the selection function
Several implementation apsects, such as the basic for a radix r ctan be easily ghown.and the corres-
module (BM), a multi-module organization and the ponding selection rules obtained in a straight-
forward manner.
SIN e Zj+]

i
'b“ Is Toor  Tin - -
€M -)Jl P 1-pfsE ey 0| 8M, oo o0-pl BM
OC1N Doyt frmmmpd —> .

Figure 4: Multiple BM Organization
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