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ABSTRACT

The organization and design of an arithmetic
module (Basic Byte-Slice Module -- BBM) is presented
A network of BBM's implements an efficient digit-by-
digit method for fast evaluation of polynomial and
rational functions. Verification of the BBM design,
its feasibility in present LS1 technologies and its
performance are discussed. The proposed BBM is
characterized by a small number of input/output
terminals, a uniform internal structure, and simple
control and inter-module communication requirements.

I. INTRODUCTION

In this paper the implementation of an effi-
cient method for fast evaluation of polynomial and
rational functions at the hardware level is pre-
sented. The evaluation method, described previously
in [1, 2] as the E-method, is chosen because it has.
several properties enahling effident hardware-level
implementation. First, the E-method provides a
unique iterative algorithm. Tt allows for parallel
execution in such a manner that the time required to
simultaneously evaluate a polynomial and all its der-
ivatives or a rational function is linearly pro-
portional to the number of digits in the result.

The algorithm has a single primitive operator which
allows for easy partitioning of the implementation
into identical modules with a small number of input/
output connections. The interconnections between
modules require very few lines. Some additional
characteristics will be discussed in later sections.

The objective of this research was to estzblish
the implementation feasibility of the E-method. The
main subject of this presentation deals with the
organization and design of a byte-oriented module
(Basic Byte Slice Module - BBM) which, together with
ROM modules, can be used to implement fast and ver-
satile function evaluation units. It is assumed
that the function evaluation is performed by using
appropriate polynomial or rational approximations in
a fixed-point radix-2 system. The fast polynomial
evaluation schemes [7, 8], based on fast primitive
operators and a redundant number representatior
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system are versatile but more complex on the level
of the basic building block. In addition, the over-
all control and interconnection requirements for
these methods are more complex than the scheme based
on the E-method.

In the following sections, the relevant details
of the E-method are discussed and the organization
of a function evaluation unit is described in a
hierarchial manner. Some details of the BBM design
are also presented. A complete description, includ-
ing a design simulation and verification details,
is provided in [3].

II. THE EVALUATION METHOD

In this section the E-method of evaluating
polynomial and rational functions {1, 2] is briefly
reviewed. The main idea of the method is to re-
place a given polynomial

u
pu(x) =.L pixl
i=0

or rational function

Ru,v(x) = Pu(x)/Qv(x)

by a nonsingular system of simultaneous linear
equations A y = b. This system, subject to certain
conditions, can be solved in a parallel manner using
a digit-by-digit iterative algorithm. The solution
to the linear system directly provides the value of
the polynomial (rational function). For an n-th
order system where n = max{u,v)+1l, a network of n
elementary arithmetic units is used to generate the
solution in (m+1) carry-free additions where m is
‘the number of digits in the solution.

The transformation of a polynomial
u
Pu(x) =.Z p;X
i=0

i

into a system of n=u+l simultaneous linear equations
Ay = Db is performed as follows. The elements of
the coefficient matrix A are:

1 i=j;
ij = -X for j = i+1, i < u; (1)
0 otherwise.




and the elements of the vector D are:

- P._ .
bi i-1 for i = 1,..., u+l 2)
0 otherwise
so that
yl = pu(x)
and
di—l
y, = T (Pu(x)) for i = 2,..., u. (3)
dx

y = vy, Yorewsyy)

corresponds to the value of the polynomial and all
its derivatives.

Example
To Evaluate P_(x) = p x3 +p x2 + p,XxX +
3 3 2 17 P
Yi oo Xy, = Py
Yy T W, RS

where Yy = Ps(x).
The transformation of a rational function
o)
R, 00 = )
Q) 9

into a linear system A y = b of order n = max(u,v)

+1 is specified as follows:

1 for i = j
aij : qi—l for j = 1 and i = 2,3,...,v+] 4)
-X for j = i+1 and i=1,2,...,n-1
0 otherwise
by . P for i = 1,2,...,u+l (5)
0 otherwise
Then,
yl - Ru,v(x) ©
ExamEIe

To Evaluate

2
) = P2X T PiXtp,

3

RZ,S(X .
QzX + q,x° + qqx + 1
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the corresponding linear system is

Y1 - Xy, =P,
47, % Y - g =P
a,7; tyg -y, =p,
Y4 + Y4 =0

where Y = RZ,S(X)'

The linear system A y = b, obtained by these
transformations is solved by using an iterative
digit-by-digit algorithm [1,2 ]. After m+l itera-
tive steps, the elements of the solution vectory y
are computed to the precision of m digits. The
radix 2 version of this algorithm is shown below:

Algorithm E
1. [Begin]

web; a (O

<~ 0
2. [Recursion]

For j = 1, 2,..., m+l do:
() G-1) . g G-D)

=

< 2(!,]~

() 50D,

k=8

3. [End]

where

j is the step index;
m is the number of digits in the solution;

w(j) = (wl(j),..., w (J))is the scaled
- residual vector;

d(j) = (dl (j),..‘,d (j))is the solution
- n digit vecor with

d§3) e (-1, 0, 1};
n = max(u,v)+l 1is the order of the linear

system Ay = b

S(EFJ)) is the digit selection function
defined as

1oir w3 g
a9 =)o i ) < ayaleor al 1,5 (8)

e w ) <

The computed elements of the solution vector y are
» MM+l

: G) -
y, =T d, 3 a1, 2,000, N, (9)
j=1




T —_—

i
i
1
!

A

The error bound

1o« ™ 10
ly, -y | <2 (10)
holds if the convergence conditions, specified in
detail in [1,2 ], are satisfied. In the case of
rational (polynomial) function evaluation in the
radix 2 representation system, the sufficient con-
ditions are:

":_ 1/2 for all 1

(11)

laq. | + [ x] <31/128 for all i

1

These conditions are specified so that the
precision of the scaled residual
W )
i
required for the digit selection, is 6 bits to the
right of the radix point. Thus, the time of the

iterative step does not depend on the total number
of digits m.

In order to satisfy the convergence conditioms,
a scaling may be required. The scaling procedures
are discussed in [1, 2] and it is assumed here
that the coefficients and the argument satisfy
the conditions specified in (11). Since a poly-
nomial can be evaluated as a rational function with

the implementation of the algorithm for solving the
linear system defined by (4) and (5) is considered
In this case, the elementary recursion to be im-
plemented is:
() _ 5 G- (-1 G-1)
W, = 2(wi ‘dl + x.d

"4 i+l

i-1
(12)

Since dj(J) e {-1, 0, 1}, the primitive operator

is a 3 - operand addition. The computed results
*

y; are represented in a redundant radix-2 number

system [4,5]. Therefore, the selection of digits
di(J) can be performed on a limited precision as
In particular, wi(J)

discussed in [1,2 is rep-

resented in a redundant form so that a limited
carry-propagation addition is used. In the present

implementation of (12), the scaled residual w‘(J)
is represented with the pseudo-sum and carry
vectors. In order to perform the selection, the
assimilation of carries is performed over 6 most
significant non-sign bits. Clearly, the implemen-

tation of (12) is easily partitionable into modules.

III. ORGANIZATION OF FUNCTION EVALUATION UNIT

A Function Evaluation Unit (FEU) which im-
plements the algorithm £ is described first at the
system level. The FEU contains a storage (ROM)
for coefficients of polynomial and rational approxi-
mations for a number of functions. The FEU consists
of several Elementary Evaluation Units (EEU). Each
EEU which implements the basic recursion (12) is
organized as a cascade of Basic Byte Slice Modules
(BBM). The number of EEUs is determined by the
desired speed. The fastest evaluation requires n
EEUs, n-1 being the maximum degree appearing in the
approximations used. The speed/cost tradeoff can be
determined from the relationship T(n/k) = k-T(n)
where T(n) 1is the time required to perform compu-
tation on n EEUs.

The number of BBMs is determined by the desired
precision. Again, the tradeoff between speed and
cost can be determined from a relationship similar
to the previous one.

The conceptional organization of the FEU is
given in Figure 1. A function to be evaluated is
selected from a set of 2N functions and the corres-
pending coefficients are transferred from the
functional memory into the Buffer Section. In order
to keep the number of interconnections small, the
transfer of coefficients is done in two steps. At
the same time, the argument is loaded into its
holding registers from an external bus. In the 31d
step, the active registers in the Computational

Section are initialized with the contents of the
corresponding holding registers and in (m+1)
additional steps the result is computed in a
digit-by-digit fashion, beginning with the most
significant digit. The result appears in

redundant representation and can be accumulated

and converted to the conventional representation

in one extra addition time. However, the conversion
is not considered here.

SYSTEM FEU

|
|
, (Zh x 2n

m-BIT WORDS)

FUNCTION Ly COEFFICIENT
SELECT h MEMORY

LOAD —

[ BUFFER SECTION | (3nm-BIT

ARGUMENT X —————/~p (HOLDING REGISTERS)
m REGISTERS)

»

CLOCK —4 I ¢

| "1 COMPUTATION
START —————p{ SECTION

RESULT DIGIT I (ACTIVE RI:(:ISTER;)
2

FIGURE 1. CONCEPTUAL ORGANIZATION OF FEU
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The Buffer Section is used to eliminate the
overhead in initializing the Computational Section
since the holding registers can be loaded with
new coefficients during the computation cycle. The
precision of evaluation is easily controlled by the
number of clock periods.

In the next section, the building block for the
FEU is described. The organization of the FEU at
the level of a network of these Elementary Evalu-
ation Units is shown in Figure 3.

IV. ORGANIZATION OF THE
ELEMENTARY EVALUATION UNIT (EEU)

An Elementary Evaluation Unit (EEU) implements
the basic recursion {12). It has conceptually the
same organization as the FEU. The organization of
the EEU is shown in Figure 2. The inputs d1 and
d, correspond to the digits generated by EEU1 and
EEUi+1. The organization of the FEU at the level
of Elementary Evaluation Units is described in Fig-
ure 3. Each EEU consists of an appropriate number
of Basic Byte Slice Modules ({BBMs). The organiza-
tion and the design of a BBM is discussed in the
next section.

START

I [ ]
I ®
[
| .

;v y y

| EEU,, EEU,
4 < 4 diyy [ e
2
I A} A 4 4 i A 4 3

P/Q LOAD
SELECT ENABLE

FIGURE 3
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V. ORGANIZATION AND ® LOADX - Enables loading of the argument Holding
DESIGN OF BASIC BYTE-SLICE MODULE (BBM) Register with the value on the IEB
(Initial Entry Bus). This signal over-
rides the LOADE and REGLS signals. Inter-
pretation of the states of this input are

B0 SRS i g

The BBM implements an 8-bit slice of an EEU.
EEUs can be formed for any precision using only

focieciai i yios

. BBMs and a corresponding number of ROMs. The as follows:
- proposed BBM is universal in the sense that it can
% function in any position in the word format. 0 = Disables loading of the argument.
; Figure 4 illustrates how BBMs and ROMs are inter- 1 = Enables loading of the argument, regard-
i connected to form an EEU. Notice that each BBM less of the state of the other control
i and its associated multiplexer and ROM could be lines (LOADE or REGLS).
: defined as another module and realized as a higher
? level module or possibly as a single IC. The ® LOADE - Enables loading of either the p or q
i feasibility of this approach is discussed later. Holding Register (as determined by the
% A block diagram of an internal design of the BBM REGLS line) with the value on the IEB.
+ is shown in Figure 5. No action on the p or q Holding Registers
! occurs if this line is not active. This
i signal is overridden by the LOADX signal.
i ) . 2 . POStTRSL iy
: The inputs to the BBM as indicated in Figure Iﬁie;gzezztég?lg;thé states of this in
4 and Figure 5 are briefly described below. P o
0 = Disables loading of p and q Holding
; Registers.
| ® CLOCK - Used both to load registers in the BBM as 1 = Enables loading of p or q Holding
f well as provide the Basic Cycle clock for Register (provided the LOADX signal
1 generation of the result (DOUT). is not active).
{1
|
, FUNCTIONh,[ T - - - - - 1
i SELECT 7] o - .- h
i — /] B 4 1 Y
: ' ROM
! e |
! (2""1 worbDs ROM ‘ KOM
4 l X 8 BITS) |
4
| | m 3 m-8 8 I
ARGUMENT __| / ; 4° ms 3 8
BUS I 7 vd ees // 4 I
l A A 4 Y 4 Y
| b —{ ] % ] |
LOAD X |
LOADE —4
P/Q SELECT cee— ¢ |
7 CLOCK | .o e |
cor 0
! | 2 _.. ] ©
| v v —+0J
] | L»{10ADX DO ¢ N e |
; | »{LOADE  DJ|e > > > < |
; | »{ REGLS » >
] »{ CLOCK > |
: 9 BBM BBM " BBM I
\., pDouT 4T+— pout A P
g | “1'" =—ip] HOB LOB [——"0" e l— 0" Q" e— 1" |
]
3 4—{SHOUT SHIN |« P A — < royer
| <+3 COUT  CIN [e—= 3 3 2 |
".’ .7 1-—74—000—+— <7(.. uomul

FIGURE 4. INTERCONNECTION OF BBM'S AND ROM’'S TO IMPLEMENT EEU
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® REGLS - Indicates whether data on the IEB is to
be loaded into the p or q Holding Regis-

o
"

Current contents of the Active Registers
ter. If LOADE is O or if LOADX is 1. are used to produce results.

—
"

Contents of the Holding Registers are

the value of REGLS is irrelevant. . . .
clocked into the active registers.

Interpretation of the states of this in-

put are as follows:
O [EB (Initial Entry Bus) - Used to enter values

4 0 = Data on IEB is loaded into q Holding into the p, q, and x Holding registers.
. Register. The IEB is 8 bits wide. The radix point
1 1 = Data on IEB is loaded into p Holding is assumed to be in different positions
:2 Register. depending on the value of the HOB input.
® START - Causes contents of the Holding Register - If HOB = 1, the radix point is assumed
to be clocked into the Active Registers to be between the second and third high-
] of the BBM. If START remains high for order binary digits. The representation
;‘ more than one consecutive clock, the is assumed to be in the two's complement
] BBM will produce the first digit of the non-redundant representation system.
result on all clock periods following
the first. (That is, Basic Cycle 0 is - If HOB = 0, the radix point is assumed
repeatec until the Basic Cycle after positioned either 6, 14, 22, 30,
START gces low.) Interpretation of the digits further to the left of the most
states cf this input are as follows: significant digit on the IEB, depending
; IEB Vi
LOADPH
] LOADE ——{ (DAD
. REGLS ——P{ SELECT y LOADQH \ 4 [ v
LOADX {Ls) ‘—D{JHFIEG QHREG -, —>| PHREG
T / P VA SHIN
| LOADXH QHOUT PHOUT (> :
] sELw XHOUT . Ls F3*—muxin 3
4 5 2K ; ANDIN
48 1 MULTIPLEXER] | [AND ARRAY
i TART » MUX) {ANDARR
3 S CONTROL LOADW ) ( : )
{CNTL) WSIN WCIN
CLOCK —4—» y LOAE:Q Y v v
I—b{_XREG ] I—UEG ] wsree | Lof WCREG |
QouT
DIGITE COMPX WSOUT )
XOouT GATEX WCouT
Y 4 compa A 2
GATING GATING < 2's COMP & /2 DO
LOGIC LOGIC  |gaTeq| LOGIC  |e— A5m DJ
(GATLOG) |4~ (GATLOG) = (TCLOG) | LOB
[ QSGND
[ XSGND TCADJ
o] S0 vy 4
(SDC) ZADJ . ADDER ARRAY <
y (ADDARR)
COUT < 3 SUM CARRY
- * HIGH ORDER 3 BITS OF CARRY] 45
SHOUT ¢— /’7 LOW ORDER 5 BITS OF CARRY
HIGH ORDER 8IT OF SUM “] LOW ORDER 7 BITS OF SUM
\ 4 4
ASSIMILATION LOGIC [T
(ASSIM) - WERPY
RESULT[ g
y K 4
DIGIT
DOUT < 2| DREG |4t2 DIGIT SELECT
(DS)

FIGURE 5. INTERNAL BBM FUNCTIONAL BLOCK DIAGRAM
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on the interconnections used. In any
case, the relative position of the radix
point is irrelevant to the operation of
the BBM is HOB = 0.

® HOB (High Order Byte) - Indicates that this par-

® LOB -

® DO -

® DJ -

® CIN -

® SIN -

ticular BBM is the high order byte of
an EEU.

Indicates that this particular BBM is the
low order byte of an EEU. It is used
internally by the BBM in effecting two's
complementation by inserting the approp-
riate amount of carry-in to the Adder
Array.

Digit serial input of the value of yj.
During the first Basic Cycle (after the
START signal), the DO inputs should rep-
resent the digit of ylwith weight 1, with
digits having progressively lower weights
(1/2, 1/4, 1/8,...) being input during
successive Basic Cycles. Since y; is rep-
resented in redundant form, two input
lines are used to represent each digit.
Interpretation of these inputs are as fol-
lows.

00 = O
01 = -1
10 = invalid
11 = 1

The selection of this coding was made to
facilitate the design of the Adder Arrcy.

Digit serial input of Y;,;. During the
first Basic Cycle, the DJ inputs should
represent the digit of Yj,; with weight
1, with digits having progressively lower
weights (1/2, 1/4, 1/8,...) being input
during successive Basic Cycles. Since
Yi+1 is represented in redundant form,
two input lines are used to represent
each digit as indicated for DO.

Inputs the 3 bits of COUT from the next
lower order BBM of an EEU. These in-
puts should be low if this is the lowest
order BBM of an EEU (that is, if LOB=1}.

The need for these inputs is discussed
later.

Inputs the one bit of SOUT from the next
lower order BBM of the EEU. This input
should be low if this is the lowest order
BBM of an EEU (that is, if LOB=1}. The
need for this input is discussed later.

The following are the outputs from the BBM.

® DOUT -

Digit serial output of the result yji.
This output is only valid if this is
the highest order BBM of the EEU (that
is, if HOB=1). During the first Basic
Cycle, the DOUT output will represent
the digit of y with weight 1, with
digits having progressively lower
weights (1/2, 1/4, 1/8,...) being outp.t
during successive Basic Cycles. Since

¥ is represented in redundant form,
two output lines are used to represent
each digit as indicated before.

® COUT - Outputs 3 bits to the CIN inputs of the next
higher order BBM of an EEU. This output
is irrelevant if this is the highest
order BBM of the EEU (that is, if HOB=1).

® SOUT - Outputs one bit to the SIN input of the
next higher order BBM of the EEU. This
output is irrelevant if this is the
highest order BBM (that is, if HOB=1}).

The basic objectives of this prcposed BBM
design were as follows.

1. Minimize I/0 requirements in order to allow
for simple module interconnection networks.

2. Design a universal module so that no other
module (except possibly memory) is required
to realize an EEU.

3. Be compatible with Large Scale Integration
techniques.

4. Minimize time required for the Basic Cycle
(the iterative step defined by (12) ).

The design presented here is not necessarily optimal
but does illustrate the feasibility of modular hard-
ware implementation of the E method to perform fast
evaluation of functions.

The internal design of the BBM is primarily
driven by the need to implement the basic recursinn
defined in (12). Figure 5 is a block diagram of
BBM . Holding Registers for the argument x (XHRLu
»~d the p and q coefficients (QHREG and PHRE(C) ar
along the top of the diagram. The Active Registers
used for the actual computations are XREG, QREG, Wk.'.,
and WCREG. Note t?a the two registers, WCREG and
WSREG, store the w'J/)ts inthe redundant form. The
Multiplexer at the input of WSREG and the And Array
at the input of WCREG allow the initialization of
w(0) with the value of p from XHREG. The Control
Logic controls inputs to WSREG and WCREG as well as
the use of the DO and DJ inputs.

The multi-operand addition required in (12) is
performed in a carry-save manner in the Adder Array
with the w{J) result being stored in WSREG and WCRI,
in redundant form.This eliminates the need to w-<: “~»
propagation of carries, or the need for carry look
ahead logic across the entire precision of the FEU
This is performed in the equivalent of an array of
carry-save adders. Alternate implementations of the
Adder Array are considered later and in [3]

As mentioned earlier, the required precision of
the addition in Equation (12), in order to properly
select d(i) (DOUT) is 6 bits to the right of the radix
point. Note that the format of the digits in a BBM
which is used as the high order byte of an EEU is as
follows:

XX XXXXXX
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Thus a complete addition is required only within

the high order BBM of an EEU. This addition is
performed in the Assimilation Logic. The BBM then
performs the digit selection (selection of the cor-
rect output digit, DOUT) for the EEU using the Digit
Select Logic.

Note that since all digits (DOUT, DO, DJ) have
redundant digit sets, inputs to the Adder Array must
either be in true or complement form, or zero. Im-
plementation of subtraction with the Adder Array is
done by complementing the input and then inserting
a carry-in to the array via the TCADJ lines. The
Gating Logic, together with the Two's Complement
Logic performs this control function. Note that in
the case where both q and x need to be subtracted, a
TCADJ of 2 is required, meaning that a 1 needs to be

added in the second least significant bit of the FEU.

Thus, if a BBM is indicated as being the Low Order
Byte (LOB=1}, there is the provisions for two low

order digits to be added in the Adder Array. If a
BBM is not the Low Order Byte, the Two's Complement

Logic is disabled and always inserts zeroes as carry-

ins to the Adder Array regardless of the state of
the DO and DJ inputs.

To accomplish subtraction of the digit se-
lected on the previous Basic Cycle, two high order
bits must be taken intc the Adder Array, providing
that the BBM is the High Order Byte (HOB=1) of the
EEU. Note that only the high order 2 bits are re-
quired to perform this subtraction. ZADJ provides
these two bits to the Adder Array. The ZADJ inputs
are disabled (always 0) if this is not the High
Order Byte. Thus, inputs to the adder array can be
enivisioned as shown in Figure 6.

The registers, the adder and the selection
logic are discussed next. The function of each
register is indicated below.

® XHREG - Holding Register for the argument x.
This register is loaded from the IEB
when LOADX=1 and a clock pulse oc-
curs regardless of the states of
LOADE and REGLS.

XSGND XX HXXXXXX
QSGND XX XXXXXX
WsouT XX XXXXXX
wCouT XX HXXXXX
ZADJ/TCADJ XX XX
SUM XXX XXXXX
CARRY XXXXX XXX

FIGURE 6. MULTI-OPERAND ADDITION

297

® QHREG

- Holding Register for the q coefficient.
This register is loaded from the IEB
when LOADX=0, LOADE=1, and REGLS=0, and
a clock pulse occurs.

® PHREG - Holding Register for the p coefficient.
This register is loaded from the IEB
when LOADX=0, LOADE=1, and REGLS=1, and
a clock pulse occurs.

® XREG - Active Register for the argument x. This

register is loaded with the contents of

XHREG when START=1 and a clock nulse

occurs.

® QREG - Active Register for the q coefficient.

This register is loaded with the contents

of QHREG when START=1 and a clock pulse

occurs.

® WSREG, WCREG - Together, these two registers

store the value of w(lpl) in redundant
form. When START=0 (normal computational
mode), these registers are updated with
the outputs of the Adder Array, shifted
one bit to the left (to effect multi-
plication by 2), using the SIN and CIN
inputs from the next lower order BBM in
the proper fashion to fill in the lower

order bits. When START=1, w(o) is
initialized with the p coefficient which
is stored in PHREG, Thus, in this case,
the contents of PHREG are loaded into
WSREG while WCREG is loaded with zeroes.

Stores the value of d01) for output
from the BBM during the ith Basic Cycle.

® DREG -

The function of forcing d(o) to zero
during the first Basic Cycle of each
Computational Cycle is performed by the
TWO'S COMPLEMENT LOGIC using DIGITE.
Note that a value is computed and stored
in DREG in each BBM. However, only in
the high order BBM (designated by HOB=1)
of each EEU does this register contain

the proper value of a1

The Adder Array performs a multi-operand ad-
dition producing the result in redundant from as 1ii-
lustrated in Figure 6.

Note that the required result of this multi-
operand addition is in a format enabling the use
of (5,5,4) and (4,4,4) counters [7]. A possible
implementation of such a (5,5,4) counter using a
logic array is discussed in [3].

The Assimilation Logic is responsible for
producing a non-redundant result from the output

of the Adder Array. A classical implementation of
this logic is simply an adder (with or without carry
look-ahead logic). Array logic implementation of
this Assimilation Logic and the Digit Select Logic

is discussed later. It should be noted that although
this logic is present on every BBM and in fact always
produces a result, its result is only meaningful
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FIGURE 7. ASSIMILATION LOGIC FUNCTION

in the high order BBM. The function of the Assimila-
tion Logic is illustrated in Figure 7.

The Digit Select Logic actually selects the digit
to be output from the EEU according to equation (8).
The inputs and therefore the outputs from this logic

are meaningful only in the high order BBM of each EEU.

An implementation of the combination of the Digit
Select and Assimilation Logic is discussed in [3].

The additional details of the internal design of
the BBM are given in [3]. A brief discussion of some
alternatives in the BBM design follows. The data in-
put of the BBM provides for transfer of three 8-bit
words before each computational cycle. Selection of
the 8-bit wide bus (IEB) represents a compromise be-
tween the input bandwidth (maximized using a 24-bit
wide bus) and the number of interconnections (mini-
mized using a 1-bit wide bus).

The Adder Array can be implemented using the
following approaches:

(1} An array of carry-save adders or (3,2)
counters;

(2) An array of ROM modules implementing
(5,5,4) and (4,4,4) counters;

(3) Logic arrays implementing (5,5,4) and
(4,4,4) counters.

The carry-save alternative requires 20 FA's and
4 HA's with the delay of about 12 gate levels and
about 250 active elements. The ROM approach requires
two (1024x4) and two (256x4) ROM modules or an
equivalent ROM of 10,240 bits with 36 inputs and 16
outputs. The alternative based on logic arrays re-
quires on the order of 1000 active elements. A
detailed analysis of the logic array approach which
is definitely superior to the ROM implementation
is given in [3]. On the basis of the required num-
ber of active elements, the carry-save approach was
selected. Similar analysis of alternatives in im-
plementing Carry Assimilation and Digit Select Logic
were performed in [3] and the conventional approach
was selected.

VI. PERFORMANCE ESTIMATES

An attempt has been made to previde an estimate
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ESTIM
FUNCTION NUMgEn OF | TOTALNUMBER
GATE DELAYS
LOAD SELECT 1 3
CONTROL 1t 1"
MULTIPLEXER 3 30
\ AND ARRAY 2 16
8-BIT NON-REDUNDANT GATING LOGIC 3 38
RESULT (RSLT) TC LOGIC 2°* 8
sDC 2 4
ADDER ARRAY 12° 268
ASSIMILATION LOGIC 1 56
DIGIT SELECT 3¢ 10
REGISTERS 1%t 580" "
TOTALS 33 1024
* INDICATES THOSE FUNCTIONS USED IN ESTIMATING
DELAY THROUGH BBM
t INCORPORATED TO ACCOUNT FOR 'SET-UP" TIME
** ASSUMES SEVEN 8-BIT REGISTERS AND ONE 2-BIT
REGISTER (AT 10 COMPONENTS PER REGISTER)

TOTAL DELAY = (33 GATE DELAYS) x (1.5 ns/GATE DELAY)
=50 ns
TOTAL CHIP AREA ~5 mm¥ 8000 mil?)

(ASSUMING =200 COMPONENTS/mmZ)

TABLE 1. ESTIMATES OF BBM SIZE AND SPEED

as to the speed, power consumption, and size of the
proposed BBM. Table 1 breaks down the number of
equivalent gates and gate delays required for each
function within the BBM. The estimated number of
gate delays is for the longest path through the
logic function. Specifically, this tabls assumes
use of the Hughes Integrated Injection (I4L) tech-
nology in late 1978. Implementation of the Adder
Array, anc Assimilation and Digit Select Logic is
that of the conventional approach. No logic arrays
are used in this estimate. The Basic Cycle time

is estimated to be 50 nanoseconds.

Note that the estimated chip size does not include
input/output buffer circuits or connector pads which
will increase the final chip area. Note, however,
that the estimated size and complexity of the chip
are wWell within the realm of current technology.

Using an estimate of 150 microwatts per compon-
ent, the above I2L chip would consume approximately
1.54 watts running at maximum speed. This is also
within the realm of current technology.

Note from Figure 5 that 29 I/0 lines are required
by the BBM implying that at least 31 pins on an IC
package would be required for an LSI BBM (including
two pins for chip power and ground). Currently, 40




pin Dual-Inline packages are used extensively by

the microprocessor industry. Thus, the proposed BBM
does not require an excessive number of I/0 con-
nections for LSI implementation.

As noted earlier, the 8000 square mil chip si:c
is somewhat below the current LSI technology capa-
bility. Thus, assuming the availability of more
useable surface area, design of the proposed module
can be extended to accommodate additional bits in &
straight forward manner. It would suffice to extend
the '"middle' portion of the 8-bit slice to provide
the desired number of bits. The required chip area
would be nearly a linear function of the number of
bits desired. The number of input/output pins on
the module appears to be the limiting factor for
this expansion. Additional chip area could also be
used to incorporate on-chip storage of coefficients
with either a ROM or RAM implementation. The latter
use of additional silicon area seems to be the more
desirable approach since it eliminates the need for
an additional chip type (memory) when implementing
an FEU.

The use of logic arrays in the implementation
would provide a more regular structure on the chip.
However, no estimate of the chip area required by
such an implementation can be given at the present
time.

Using such a high-speed BBM would place fairly
strict requirements on the ROMs used in the proposed
EEU implementation. However, fairly large ROMs
are currently available with address-to-output delays
within the required range.

VIT. CONCLUSION

The design presented in this paper indicates that
implementation of the E-method in hardware is straight
forward. The estimated size, power consumption and
complexity of the Basic Byte-Slice Module (BBM) are
well within the capabilities of current technology.
Using 1978 technology, an FEU designed using this
proposed BBM would be capable of providing a 64 bit
redundant result in about 3 microseconds. In such a
case, the implementation of a unit for evaluation of
rational functions up todegree 8 would require 72
BBMs and 72 ROMs or 144 ICs.

The major advantages of the function evaluation
unit based on the E-method are (a) a large domain
and flexibility in specifying the functions to be
evaluated, (b) simple centrol and variable pre-
cision capability, (c) high modularity, uniformity
and ease of interconnection. Such a unit would
require only a simple interface with the other sub-
systems. If a switching network is provided between
BBMs and ROMs, a reconfigurable system with fault-
tolerant capabilities can be realized. In particy-
lar, the inter-module signals can be effectively
protected by low-cost error-codes [9].

The proposed BBM could be used, with minor modi-
fications, to perform evaluation of a given rational
function of degree n when the number of EEUs is
smaller than n or when the precision requires more
BBMs per EEU. In either case, the relationship be-
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tween the number of BBMs and the evaluation time is

linear [1,2 ]. The FEU is also capable of performing
the basic arithmetic operations and the evaluation of
certain arithmetic expressiocns [1].

The main limitations of the described approach
is its scaling requirements and its restriction to
the fixed-point number system. However, these
limitations are not critical in the case of function
evaluation where the coefficients can be scaled a
priori.
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