A REALISTIC MODEL FOR ERROR ESTIMATES IN THE EVALUATION OF ELEMENTARY FUNCTIONS

Krzysztof S. Frankowski

Computer Science Department
University of Minnesota
Minneapolis, Minnesota

Abstract

Floating point error analysis, as described by
J. H. Wilkinson (1963) has two known drawbacks: it
is too pessimistic and toc cumbersome for everyday
use. This paper describes a realistic model for er-
ror analysis, gives examples of simple formulae fre-
quently used in the calculation of elementary func-
tions, and analyses the error generated in single
precision computations with these formulae, using
the proposed model for error analysis. The paper
also presents error bounds for various polynomial
evaluations, as predicted by the model. Model ver—
ification is done using double precision arithmetic.

Index Terms

Floating point error; computer arithmetic;
evaluation of elementary functions; polynomial eval-
uation.

Introduction

Wilkinson's (W63) publications solved many of
the mysteries of floating point arithmetic. Error
studies are found even in the most elementary publi-
cations, for example D. McCracken and W. Dorn
(McCh5). Unfortunately, the usual analysis suffers
from two serious drawbacks:

1. Error bounds computed in the usual way are
unrealistically pessimistic, and

2. The algebra required is so involved that it
discourages many casual users from performing error
analysis on a day to day basis. In fact, D.
McCracken uses tree structures (called process graphs)
to analyze errors, and D. Stoutemyer (S77) even pro-
poses the use of an algebraic manipulator for this
purpose.

The issue is further clouded by a lack of agree-
ment about how to measure error. Some authors use
ulps (units in last place), some logarithmic error
and others relative error. In some library descrip-
tions, even absolute error is used. Without getting
into a discussion of which measure is best, we will
use only the relative error measure. It is the
author's claim that a few simple assumptions enable
a user to perform error analysis simply and get real-
listic error estimates in many practical cases.

The Basic Model

Assume that x is a real number and x is its_
floating point representation. Then E(x) = x - x

CH1412~6/78/0000-0070$00.75 (c) 1978 IEEE

and R(x) = Eix) , for x#0.

(Ez(x)=0) we have:

When E(x) is small

R(x + y) = ——iRiX;, + LLxRi i + ca (1)
R{x*y) = R(x) + R(y) + ea (2)
R(x/y) = R(x) - R(y) + ea (3)

where €=+ 1 only, and a is the error due to perform-
ing arithmetic operations in a computer. Formulae
(1-3) simply state that the total relative error in
the four basic operations is composed of two parts:
1. Relative error in operands, and 2. Error due to
chopping, rounding or whatever the arithmetic unit
of a particular computer does while storing the re-
sult of an operation in a bounded memory cell or re-
gister. We will call that error arithmetic error.
Note that e can be either + 1, and we choose the
8ign in such a way that the a's do not cancel.
During the actual computations in any numeric al-
gorithm, each atomic operation generates an error,
and some of these errors cancel each other. Since
we wish to obtain an upper bound on the error of the
numeric algorithm, we accumulate the errors of all
the atomic operations, ignoring this cancellation.
Thus, our bound is skewed toward the true upper
bound. We can neglect the sign of e if we remember
the rule aa + Ba = (fu|+|8|) a for any a, B real.

In addition to formulae (1-3) we shall assume
the following properties of finite arithmetic:

R(i) = 0 for -M < i <M, ic Integer (4)

which states that sufficiently small integers are
represented exactly, and

R(i + 3) = 0 and R(i*j) = 0 (5)

which states that if the absolute value of the re-
sults of an operation is less than or equal to M,
the result is represented exactly. Propagation of
error is well described in rules (1-5). Because
the ea of rules (1-3) each represent the same quan-
tity, we can obtain simpler formulae for the error
of any numerical algorithm than those obtained when
€a, represents a different quantity in each of the

rules (1-3).
The following examples demonstrate the use of

the model to select the best formula for a given
computation, and to select a range of values on

which to apply a given formula.

Example One

In computing the volume of a sphere, we have to

3
calculate y = /5-2 Using simple rules of algebra
5+2

we obtain:

05-2 y,=(/5 - 2)" y3=(€>-4/§)3 y,=

/5 + 2 N

(2889 - 1292/5)

1 1 3 1

Y= | - y Y5 —
> \5+2 ® \ov5 2889 + 12923
We have seven different formulae for the same number
and it 1s not obvious which one produces the small-
est error.

Let us use our model to evaluate R(yl)

R(yl)=3R 15_1_2_ + 2a =

V5 + 2

3R(V5-2) - 3R(V/5+2) + 5a=

12/5 R(Y5) + 1la = 27 R(¥5) + lla

Table I gives a summary of the R(y.) for i=1,...,7
and also the numerical results, aséuming a=0, that
is, that calculations are performed exactly, and

/5 =9/4 = 2.25. From this table it is clear that
formula ¥y is the best and formula y4 is the beast.

Example Two

Ll-x _ 2x
We evaluate Y T Y, = 1- Tix for small|xL

This type of formula is often used in the evaluation.

of log(x), ex, etc. Here
R(y,)= :gﬁgiﬁl + 3a,
1 2
1-x
and
-2x
R(y2)= 5 R(x) + 2a(l+x) +a . *

1-x

It is clear that as x>0 R(yl) -+ 3a, so Y, is more

accurate for small |x|. We wish to find out for

which range of x formula Yy is better. This
involves solving the inequality ’:255%})_ + 3a|>
-2xR(x) bax I-x
=7 -1 tal
-X
1-x

under different assumptions. The simplest one is

1-5 SK

that x is accurate. Then 3 >] | or -1<x<1/2.

*In most binary machines R(2x) = R(x) whether the
result is obtained by x+x or 2*x or an addition to
the exponenet. (If 2.*x# x+x the operation which
produces the exact answer should be chosen) .

71

Thus our model tells us that for |x|<1/2, if x is
accurate, then formula Yy is better.

Error In Polynomial

Before we discuss errors in polynomials, let
us examine the error in a sum. We

S

o 0

i}

evaluate S = Z a; by S.,=S, .+a, for i=1,2,3...n
i 7i i

i=1 -1

or by the equivalent formula |$S =a,

(=

57551050

for i=1,2,...n-1
Using our model we obtain:

SiR(Si)=Si_lR(Si_l)-+aiR(ai) + a.Si (6)
Solving this difference equation we have
S F(S)= Z a R(a)+ a z la (n~i+l) - a-lal[or

i=1 i=1
S F(S)= Z a, R(a) + af nT Z (i—l)'ail—]aﬂ] @))

i=1 i=

n

where T = Z Ia,l

n . i

i=1
Let P —Z b,x T
n-1 1 72 n

i=1
which we evaluate by:
0~°1
t0=l (8)
£i7ty17%
P1 i—l i-bi+l for i=1,2,3...n~1
From the model we have
PR =Py qRC; D+ (tyoby I R(eby) + 2 py
This equation is equivalent to (6)withai=ti_l-biso

n
Pn—lR(Pn—l)zzlti—lbiR(ti—lbi)+ alnQ,

n
_121(1_1)|ti—1bil‘!b1|], where Q (x)_th

. i
But since ti=x

(for i=1,2..
R(t,

, R(ti)=i R(x)+(i-1)a
.n-1), and

i1 i) (i-1) (R(x)+a)+R(b)

we obtain n i-1
n P__R(p__) =] x "bR(b)+xREP' . (x) +
P _ R =] 1 b, [1-1) (R(x)+ R(b,)] n-l el ot n-t

i=1

-1
i - @y 2y 5 " 1
*aln Qn-l_|bll-izl(i_l)|x[i ltbi|] n~1 n-1 n

n
i-1 ,
We notice that since the derivative P'n_l(x) = Pn-lR(Pn—1)= Zl biR(bi) + XR(X)Pln-l(X)+
T i-2
Z bi(i—l)x , the term a(nQn_l—§b1|) (9
i=1

Comparing the two solutions, we see that the first
two terms are identical but nQn_l changed to Qn—l

T i-1
2 I G-y e, =xP' ()

i=1 n-1 and |b1| changed to 1X|n—l|bn‘; both of these

changes are beneficial for evaluation of elementary

] This gives us the error formula in the form: - L.
] functions where the coefficients b, are stored and

o4 decrease rapidly and |x| is small.” Again, assume
Pn_lR<Pn_l)=iZlX b R(b)RR, (x) + that R(b,)=a. Then
XRO)P] &) 2:Q 4 (x)
a(nQn—l—|bl|) ®) R(Pn—l)H= P (x) +al P (x) *
n-1 n-1

In many applications e.g., while evaluating elemen-
tary functions the coefficients b, are computed, [x{Q! l(x) [x1 “Ib_|
n-

rounded and stored in memor then R(b,)* € a; and i n 15
¥s (b)) H) Y (15)
(9) becomes; n- n
P! 1
_ XR(x) n-l(x) - “n-1(x) |] (0) Applying (15) to our previous example we have
R(P__.)= - a[(ntl) 3 7]
n-1 Pn_l(x») (X) P (X» | i“x
R(ex)H=xR(x) +‘a(2+2[x|) el X
Example Three
n 1 -1 The results of predicted errors are given in
We evaluate e —Z (1 l)' according to Table IL.
t According to formula (15) even under the most
equation (8) storing bi= /(i—l): perturbed by a; favorable conditions our error bound for the
. 3 1} .
Assuming that we take enought terms p' (x):exthen evaluation of polynomials by H?rner s method is
n-1 bounded by 2a. One of these a's comes from eval-
x x|-x -x 11 ooy
R(e™)= xR(x) +a[(n+l) e‘ | -e] (an uating the first sum) x* 1biR(bi) in formula (14)
For x>0 the dominant term is (n+1) a but if x< 0 i=1
and fx|large, catastrophic cancellation occurs. with the assumption that R(bi)=a' Iif [x| is suf-
/ e.g. R(e_lo):IOR(x)-+a(n—+1)e20+ a-elo where ficiently small and accurate, and R(bl)=0, then
E 20 = . i~1
| e 4.85°E8. Zx b R(b,)=b R(b;) +xb,R(b,) + ...=0rxbRb)+. ..,
] Table II gives computed and predicted errors for i=1

|x| < 2 in steps of .4 with R(x)=0.

n
Let us turn our attention to evaluation of Z i-1
polynomials by Horner's rule. i=1 ¥ biR(bi)
showing that the contribution of T
‘j Let p -1 Z b X —bl+ b, ...b xn_l n-1
1 i=1 n i
which we evaluate by < a, The second a comes from a Z X Pn—i,
P
0 bn (12) which corresponds to the aPi in (13). For very
pi=pi_lx+bn_lfor i=1,2,3...n-1 small |x|, the sum is equal to aPn_l and again
Using the model equations (1) to (5) we obtain the contribution of this term to the error is
P.R(p.)=x R()+ RGO+ traced to the same source: the accuracy of bl'
1P TXR 1 MPy G)*a)xpy) +b, 1RG,)

So in computing elementary functions using poly-
nomial evaluation by Horner's method, it is essen-
tial to represent the first coefficient exactly,
even though we obtain the rest of the terms froma

+api (13)
Solution of (13), though elementary, involves more
algebra. After some manipulations we obtain

3
K.
.

3

minmax approximation. For example, we must use an

exact 1 in e'=1 + (), or cos(x)=1 - (), and an
exact x for sin(x) = x - () to minimize the total
computational error.

Conclusions

We have shown that our simplified method of
error analysis reflects error behavior quite well,
It is especially useful when many mathematically
equivalent forms with different computational
characteristics exist for a numerical algorithm.
Example one shows how easy it is to' choose the
"correct" computational formula, that is, the one
which gives the smallest computational error.

Secondly, our error analysis helps to obtain
computationally sound algorithms for use in a li-
brary of mathematical functions, where an additional
bit lost a the beginning of the computation might
have serious consequences toward the end of the
computation. Thirdly, our model helps trace lost
accuracy to its origin, as was shown in the dis-
cussion at the end of the last section.

Finally, the simplicity of the computations
involved in the error analysis might encourage
people to perform error analysis on their own nu~
merical algorithms more often.

Acknowledgments

I am indebted to my wife Elaine for her cri-
tical review of the form of this paper and to L.
Liddiard of the UCC for many discussions about
computational errors.

References

lWilkinson, J.H.; Rounding Errors in Algebraic
Processes; 1963; Prentice-Hall.

2
McCracken, D.D. and Dorn, W.S.; Numerical Methods
and Fortran Programming; 1964; John Wiley.

3

Stoutemyer, D.R.; Automatic Error Analysis Using
Computer Algebraic Manipulation; 1977; ACM Trans on
Math. Software; Vol. 3, NL.

i R(y,) y; for V5=9/4 R(y;) observed R(y,) predicted
1| 27R(/5) + 11a (1/17)°=2.035628-4 |_.176 -.178

2 57R(¥5) + 1la (1/4)%=2. 4414154 -.411 ~.36

3 -481.R(Y5) + 486a 0 =0. 1.000 3.00

4 | -1.67%10"R(/5)+1.67%107a | -18 =-1.80000E+41 |1.0600 E45 1.04E+5

5 | -3.17R(Y3) + 1la (4/17)%<1.69694E-4 1.95E-2 1.97E-2

6 | ~1.5R(¥5) + 6.5a (1/18)=1.71468E~4 9.26E-3 9.34E~3

7 | -.5R(/5) + 1.5a 1/5796)1.72533E~4 3.10E-3 3.12E-3

Table I
Compariso;rof different formulae for the evaluation of
—2\3 .
y= 75::% * 1.73070E-4

with R(Y5)= -6.2306E-3

X X X X
X Rp(e) Rp(e) R, (e”) Ry (e™) N
observed |predicted observed |predicted
~2.0 .55E-12 .82E-11 L43E-12 .23E-11 22
~-1.6 .22E-12 .33E-11 L23E-12 .90E-12 20
-1.2 .87E-13 .14E-11 .98E-13 .34E-12 18
-.8 .50E-13 .50E-12 .50E-13 J12E-12 15
-4 .22E-13 .18E-12 L22E-13 L44E-13 12
0 .98E-14 .14E-13 .98E-14 .14E-13 2
L4 .21E-15 .82E-13 .49E-14 .20E-13 12
.8 .49E-14 .10E-12 49E-14 .26E~13 15
1.2 .57E-14 .11E-12 .57E-14 .31E-13 17
1.6 .12E-13 .13E-12 .68E-14 .37E-13 19
2.0 .92E-14 .14E-12 L92E-14 .43E-13 20
Table IT

Comparisons of error estimates for the evaluation of
e* by power method and by Horner's method according to
formulae (8) and (12). R (ex)_relative error in the
power method RH(ex)—relative error in Horner's method and
N - number of terms used. (Note that the coefficients

a, are perturbed to make comparison more realistic).

74

