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Abstract

The design criteria and implementation of the
Arithmetic Element (AE) of the Burroughs Scien-
tific Processor, a vector machine intended for
scientific computation requiring speed of up to 50
million floating-point operations per second, is
discussed. An array of 16 AEs operate in lockstep
mode, executing the same instruction on 16 sets of
data. The 16 AEs are one stage in a pipeline
which consists of 17 memory modules, an input
alignment network, and an output alignment net-
work. The AE itself is not pipelined. It can
perform over one hundred different operations in-
cluding a floating-point addition, subtraction and
multiplication, division, square root, among the
others. Eight registers are provided for the stor-
age of intermediate values and results. Modulo 3
residue arithmetic is used for checking hardware
failures.

1. Introduction

The Burroughs Scientific Processor (BSP) is
designed to provide very high-speed execution of
algorithms used to solve complex scientific and
engineering problems.l;2,3

Several high performance systems have been
designed in the past decade; some using pipeline
organization (CDC STAR, TI ASC, CRAY-1), while
others used array organization (Burroughs ILLIAC
IV, PEPE, and The Goodyear Aerospace STARAN) .
Pipeline machines perform very well on long vec-
tors while the pipeline setup decreases the effi-
ciency drastically for short vectors. Further-
more, partitioning of processing units into
segments and then overlapping several instructions
On onme or more pipelines requires very sophisti-
cated and complicated control. On the other hand,
array machines perform very well on vectors that
are of the same size as array or one of its
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multiples. The problem of array machines is avail-
ability of data for all processing units all of the
time.

The BSP combines parallelism and pipelining.
Since FORTRAN had been chosen to be the main pro-
gramming language of the machine, the array-
oriented memory and processing was adopted. A
parallel memory system provides conflict-free ac-
cess of frequently used patterns (rows, columns,
diagonals, etc.) of a multidimensional array. An
array of processing units provides high-quality
numerical computation using approximate R* rounding
schemes, and mod 3 arithmetic codes for error de-
tection. Since array elements are not stored in
the order they are processed, input and output
alignment networks are used to bring the data to
their corresponding processing units. Both align-
ment networks are full crossbar switches. The mem-—
ory array, two alignment networks, and the proces-
sor array constitute five-stage memory-to-memory
data pipeline, doing fetching, aligning, processing,
aligning and storing of vectors. Each of these
operations, including nonarithmetic processing, is
performed in one 160 ns clock period. However,
arithmetic operations require more than one clock
period (floating-point addition (2), floating-point
multiplication (2), floating-point division (8),
floating-point square root (12)). A relatively
long clock period was chosen in order to reduce the
number of pipeline segments to avoid a complicated
clock distribution, and to simplify manufacturing
and testing by using standard procedures and tools.

To guarantee a high utilization of the memory-—
to-memory pipeline, each BSP instruction corre-
sponds to an assignment statement of one to five
vector or array arguments. This corresponds to
simple or double nested loops in FORTRAN. The vec—
tors or arrays are automatically sliced into 16
element slices and the slices are overlapped in the
pipeline. Furthermore, the instructions are pipe-
lined in the control unit, so that the setup time
for each instruction is negligible. Up to four of
these vector instructions can be in execution on
the pipeline at the same time. This instruction
overlapping results in high performance even for
short vectors.

In addition to high performance, the machine
instructions that resemble the source program
statements simplify compiler design and control
unit. On the other hand, the user is allowed to
tune his problem to the machine and achieve better
efficiency by using vector instructions that




FORTEAN has been extended with.

To support the high rate of computation, BSP
uses a CCD file memory that serves as a buffer
between the front-end processor and BSP. Usually,
the standard I/0 equipment may not be adequate for
a high-performance CPU, since it makes the compu-
tation dependent on the I/0 speed. The CCD file
memory should smooth the flow of data between the
BSP and the front-end processor, and provide un-
interrupted high-speed execution of user programs
on the BSP. The front-end processor is the sys~
tem manager that provides the rest of the chores:
compilation and linking of BSP programs, data
communication and time-sharing services for the
user, long-term storage and database management
and other general-purpose data processing services.

The BSP system shown in a simplified block
diagram in Figure 1 consists of three major parts:
the control processor, the array processor and the
file memory.

The control processor (CP) is a high-speed
element of the BSP that provides the supervisory
interface to the system manager in addition to
controlling the parallel processor and the file
memory. The control processor executes some
serial or scalar portions of user programs uti-
lizing an arithmetic element similar to the six-
teen arithmetic elements in the parallel processor,
but containing additional capabilities to perform
integer arithmetic and indexing operations. The
CP also performs task scheduling, file memory
allocation, and I/0 management under control of
the BSP operating system. It consists of four
units:

a) The scalar processor unit (SPU) processes
all operating system and user program instruc-—
tions, which are stored in control memory. It has
a clock frequency of 12.5 MHz and is able to per-
form up to 1.5 million floating-point operations
per second. All array instructions and some
scalar instructions are passed to the parallel
processor control unit, which queues them for exe-
cution on the parallel processor.

b) The parallel processor control unit
(PPCU) receives array instructions from the SPU.
The instructions are validated and transformed
into microsequences that control the operation of
the sixteen arithmetic elements in the parallel
processor,

¢) The control memory (CM) is used to store
portions of the operating system and user programs
as they are being executed. It is also used to
store program data values that are operands for
those instructions executed by the scalar proces-
sor unit. The control memory is a 4K bit NMOS
memory with a 160 ns cycle time. Four words can
be accessed simultaneously., Capacity of the mem—
ory is 262K words; each word consists of 48 data
bits and 8 bits for error detection and correc-
tion.

d) The control and maintenance unit (CMU)

serves as the direct interface between the system
manager and the rest of the control processor for
initialization, communication of supervisory com- !
mands, and maintenance. It communicates with the
input/output processor of the system manager. The
CMU has access to most data paths and registers of
the BSP, so that it can perform state analysis and
circuit diagnostics under control of maintenance
software running on the system manager.

The parallel processor (PP) performs array-
oriented computations at high speeds by executing
16 floating~point operations simultaneously in its
16 arithmetic elements of the parallel arithmetic.
Data for the array operations are stored in a par-
allel memory consisting of 17 memory modules.
Parallel memory is accessed by the arithmetic
elements through an input and output alignment net-—
work. Thus, the memory-to-memory pipeline consists
of four units:

a) The parallel memory (PM) consists of from
.5 to 8 million words. Like the control processor
memory, it is a 4K bit bipolar memory. Each word
contains 48 data bits and 8 bits for error detec-
tion and correction. The rate of data transfer
between the parallel memory and the arithmetic
elements is 100M words per second. The parallel
memory is organized internally into 17 modules,
permitting simultaneous access to almost any con-
secutive 16 elements of the commonly referenced
components of an array, such as rows, columns, and
diagonals.

b) The input alignment network (IAN) is a
full crossbar switch used to establish natural
order since the adjacent elements of a row, column,
diagonal or any other entity are not necessarily
stored in adjacent memory modules. In additionm,
the IAN can broadcast scalars from SPU to all
arithmetic elements in parallel arithmetic and re-
solve conflicts if several arithmetic elements
request data from the same memory module.

c) The output alignment network (OAN) is
similar to the IAN in switching the results to be
stored in proper memory modules. Furthermore, the
OAN is used to support communication between arith-
metic elements in execution of instructions like
min, max, n-ary sum, Fast Fourier transform, etc.

d) The parallel arithmetic unit (PAU) con-
sists of 16 arithmetic elements (AE) that are the
subject of this paper. At any time, all of the
arithmetic elements are executing the same instruc-
tions on different data values. The arithmetic
elements operate at a clock frequency of 6.25 MHz
and are able to complete the most common arithmetic
operations in two clock periods. Each arithmetic
alement can perform a floating-point add, subtract,
or multiply in 320 nanoseconds, so the BSP is capa-
ble of executing up to 50 million floating-point
operations per second. Each arithmetic element can
perform a floating-point divide in 1280 ns and
extract a square root in 2080 ns. Thus, the BSP
can execute approximately 12.5 million divide in-
structions or 7.7 million square root instructions
in one second.




The file memory (FM) is a high-speed secondary
storage device. The FM is loaded by the system
manager with BSP code and data files for a task.
The task is then queued for execution by the con-
trol processor. The FM is also used to store
scratch files and output files produced during exe-
cution of a BSP program. It is the only peripheral
device under the direct control of the BSP; all
other peripheral devices are controlled by the
tem manager.

3ys—

The FM utilizes high-speed charge coupled
devices (CCD) as its storage media. The CCD memory
combines a .5 millisecond access time with a 12.5M
word/second transfer rate. The high speed of the
FM provides performance that balances the high
speed computational units of the BSP. Since it is
entirely electronic, the reliability of the file
memory is much greater than that of conventional
rotating storage devices.

The file memory control unit (FMCU) provides a
further distribution of function within the BSP by
performing logical address translation for acces-
sing data file records. The FMCU also queues pri-
oritized I/0 requests and performs automatic error
retry, thus avoiding interference with the control
processor for routine I1/0 housekeeping operations.
The FMCU is given logical record descriptors that
are converted into physical memory addresses. This
facilitates implementation of file allocation and
protection of file memory against illegal access.
The FMCU also contains buffer areas that balance
the difference between the data rates of the file
memory and the system manager. The rate of data
transfer between the data file memory and the sys-
tem manager is 250K words per second. The rate of
data transfer between the file memory and either
the control processor memory or the parallel memory
is 12.5M words per second.

2. AFE Considerations

2.1 AE Design Goals

The design and implementation of a parallel
arithmetic unit for the execution of operations on
vector sets by replication of an Arithmetic Element
(AE) 16 times POses numerous problems.

Firstly, a simple and inexpensive method to
control each AE needed to be developed. Although
the same command is broadcast to all AEs, some
operations are data dependent. TFor example, an
addition may become a subtraction if one of the
operands is negative. Thus, one AE may generate an
overflow in its mantissa adder, shift one position
to the right, and add 1 to the exponent, while the
other AE may generate leading zeros during sub-
traction, shift to the left and subtract the shift
amount from the exponent. TIf these operations are
not executed in one clock (registeruto—register
transfer), a local control sequencer must be de-
signed into each AE. Such a distributed control
makes testing and maintenance more complex and it
increases the cost by replicating unnecessary hard-
ware. An opposite approach of completely central-
ized control was adopted in BSP with data-
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independent algorithms implemented in the AE logic
and microprogram. This requirement of synchronous
operation on different data sets may slow down
operations that require several clocks for execu-
tion. For example, the double-precision addition
is executed in 8 clocks instead of 7 needed to add
any two double-precision numbers.

Secondly, an AE design with maximum speed of
arithmetic without excessive hardware is an obvious
requirement for a scientific processor. Since 48-
bit floating-point format may be considered too
short for some applications, fast-double pPrecision
arithmetic was required. A good, unbiased rounding
and detection of hardware failures were desired,
too.

Thirdly, the implementation was to be executed
with 4 PC boards with each board containing 200,
24 pin MSI and SSI Burroughs Current Mode Logic
integrated circuits.

Finally, an AE was planned to be used in SPU.

2.2 Data Representation

The data word size of 48 bits was chosen as a
tradeoff between memory cost, accuracy of computa-
tion and compatibility with the front-~end proces-
sor.

A B7700 that serves as a front-end processor
uses 48-bit data format. Thus, the most efficient
storage and transfer of programs and data between
the BSP and B7700 would be in 43-bit increments.
On the other hand, a high degree of accuracy is
desirable in some scientific applications. Sixty-
four-bit data format is considered adequate for
these applications. However, this means a 25%
increase in cost of memory, data paths, and a 40%
increase in arithmetic. Furthermore, the higher
precision is usually required to compensate for
poor rounding available on present—day computers.
A 48-bit data format with good and consistent
rounding was the obvious compromise. A fast,
double-precision arithmetic is available as a
substitute for higher precision.

A single-precision floating-point number is
represented with 11 bits of exponent and 37 bits of

mantissa. The range of lOiBOO is considered ade-
quate for scientific applications. For a given
word size and the exponent range, binary arithmetic
provides potentially the greatest accuracy.”» The
argument that higher-radix representation requires
less shifting during addition’/ does not hold since
BSP uses a combinatorial barrel shifter. Further-
more a good rounding scheme requires three guard
digits, which means only three additional bits for
binary arithmetic and twelve additional bits for
hexadecimal arithmetic.

Both exponent and mantissa use sign-magnitude
representation which allows symmetric distribution
around zero. Furthermore, it is easier to work
with during the design, testing, maintenance and
reading memory dumps. The frequently used biased
eéxponent was considered, but no improvement in
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hardware speed or cost was obtained. Furthermore,
a biased exponent requires corrective computation
in higher order arithmetic operations (multiplica-
tion, division, square root, etc.)

The floating-point numbers are normalized and
the binary point is understood to be on the left of
the mantissa. A double-precision value X is repre-
sented as two single-precision values Xl and X2
such that X = X_L + X2. It is always the case that
e(Xz) j_e(Xl) - 36 unless the mantissa of X, is
zero, where e(Xv) and e(X]) are signed exponents of
X, and Xl’ respectively. The signs of X, and X

2 1 2
must be the same, except when X2 = 0.

Since the range of single-precision numbers
was considered adequate for double-precision, the
above double~precision format was chosen to sim-—
plify and speed up double-~precision algorithms.
Each part of a double-precision number can be
handled independently, and no operation executed in
one clock ever depends on any information from
previous-clock operation. For example, during the
normalization of a double-precision number the
shift amount (the number of leading zeros) is never
stored or in any other way passed from the first to
the second part. This kind of consideration made
arithmetic completely combinatorial and thus easily
testable.

An integer has a zero exponent and assumed
binary point on the right of the least significant
bit.

The logical value true is represented by a
word of all ones and false with all zeros.

A character is stored as an 8-bit byte using
EBCDIC. Six characters may be packed into one 48—
bit word.

To the basic BSP word of 48 bits, 12 other
bits are appended to form a 60-bit AE word: a 1-
bit null indicator, 3 error condition bits (under-
flow, overflow, and undefined), 4 guard bits, 2
bits of the mantissa modulo-3 residue, and 2 bits
of the exponent modulo 3 residue. For input and
output purposes only 49 bits are used: the 48-bit
data word, and the null indicator. The AE data
word is shown in Figure 2.

2.3 Instruction Set

A rich instruction set with over 100 instruc-
tions has been microprogrammed for the AE. The
microinstruction register is 114 bits wide. A
horizontal type of micro control is used to achieve
the maximum amcunt of parallelism and allow for a
variety of instructions. Some instructions have
several hundred variations. Only a few of them are
included in the present instruction set. The main
goal of logic design was to group similar functions
into independently controlled logic blocks, and
thus provide clean design, simplified testing and
easy change in the instruction set. For example,
two operands in any instruction may have their sign
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sets in more than 100 different ways before they
are operated upon. The setting of signs is per-
formed independently of any other operation in the
AE.

The instruction set is divided into eight
broad categories:

Boolean

conditional

shift and extract
single-precision floating-point
double-precision floating-point
integer

conversion

miscellaneous

The set of conditional imstructions may have
two different consequences: the result generated
by a conditional instruction may be operand A or
operand B and/or a test bit T may be set or reset,
depending on the condition specified. Some typi-
cal instruction in this class may look like:

" A B ]
IF{ O ) relation { 0 } !
T T ;
A
THEN return { B } and set T bit
TRUE

A
ELSE return { B } and reset T bit
FALSE

where relation may compare two operands, test ome
of the operands for underflow, overflow, undefined,
evenness, or the lack of it, or test T bit. Note
that min and max functions are executed within one
microinstruction. The T bit is the mechanism used
to communicate the status of AE to ACU or from one
microinstruction to another inside AE. Shift and
extract instructions provide for shifting or ro-
tating of any number of positions, bit setting,
complementing and testing, and field masking, ex-
traction and insertion.

The miscellaneous group contains instructions
for calculating addresses of operands that are
randomly distributed in 17 memory modules and con-
verting character strings into binary numbers and
vice versa.

3. Subunit Definition

In the realization of the AE, we found it
helpful to associate a subfield of the microword
with a functional subunit. Eight such subunits
evolved: the Register, Shift and Mask, Arithmetic
and Logic, Exponent, Error, Multiplication Unit
and Residue Logic (Figure 3). While microword
fields could be easily defined to only one partic-
ular subunit, each subunit interplayed closely
with others. Figure 3 does not show all the con-
nection between the units.

The register unit (RU) forms the major




interface with the alignment network. It provides
for storage of input data and contains the AE out-
put registers. Furthermore, it provides the
multiplexing capability for selecting either logic,
arithmetic or multiplication results from the other
AE subunits. These results can be stored in one of
six temporary registers, an output register, or the
two working registers RO and R1. Two operands used
by all other subunits are always coming from regis-

ters RO and Rl. This way there is no time delay

associated with reading the file of general-purpose
registers, i.e., the access time is equal to zero.

The shift and mask unit (SMU) selects one of
the two operands (RO or Rl) and rotates it a

specified number of places. The specified fields
of the rotated data can then be masked on or off,
to yield a shifted result. The shift and mask
amounts can be specified from the exponent differ-
ence, the number of leading zeros or various fields
of the other operand. In case of arithmetic cpera-
tions, the input to SMU is a single-precision, 36-
bit mantissa and the output to ALU is the double-
precision, 72-bit mantissa.

The nonshifted operand may be extended to 72
bits with various constants in the least signifi-
cant part. These constants are used in rounding,
and in instructions like floor, ceiling, and frac-
tion.

The arithmetic and logic unit (ALU) operates
on the two output operands from SMU. The ALU field
of each microinstruction specifies a pair of opera-
tions that can be executed in ALU. Some of the
frequently used palrs are: <add, subtract>,
<TRUE, FALSE>, <left operand, right operand>, and
<AND, OR>, One of the operations in the pair is
selected depending on the operands' signs, the
validity of a prespecified relation between the two
operands or the state of the TEST flip-flop. The
ALU is 72 bits wide.

The exponent unit (EU) operates on the expo-
nents of the two operands. Two results are avail-
able--one for each part of the double-precision
result.

The error processing unit (EPU) is the central
point to which error conditions are reported.
Underflow, overflow and undefined status bits are
appended to each result and are reported to the
Array Control Unit whenever an output data is read.
Because it was often desirable to continue a com~
putation even after underflow occurred, hardware is
included to set a result which has underflowed to
zero.

The residue unit (RU) has no microinstruction
field associated with it. 1In that respect, it ecan
be thought of as a simple extension of hardware in
other units. Because of its unique functional
role and the problems the RU created, it is shown
as a separate unit. For every floating-point num-
ber, the exponent and the mantissa part each are
extended in the TAN with 2-bit modulo 3 residue.
In arithmetic microinstructicns, valid residues
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are generated, concatenated with the result, and
stored. If the result is an intermediate value,
then the residue is checked when its dataword is
again operated upon. In other words, only data in
registers R0 and Rl has its residue checked. If

the result is sent to an OAN, then the O0AN checks
the residue and reports check back to the AE.
Logic microinstructions do not use residues for
checking. A code of two ones (11) in the residue
field of a dataword indicates the absence of the
valid residue and prevents the error-detection
logic from detecting an error. All errors are
reported to ACU on a clock-to-clock basis.

The sign unit (SU) is a very simple unit that
generates proper signs in arithmetic micro-
instructions.

The multiplication unit (MU) includes logic
for execution of a 38x18-bit multiplication. A
A full 36x36-bit product requires two cycles
through (MU). In addition to XY, the MU generates
2 - XY and (3-XY)/2 which are used in calculation
of 1/N and 1//H.

The microinstructions with numeric operands
(single-precision floating-point and integer num-
bers) use all units to generate the result. Non-
numeric data is operated upon in SMU and ALU only.

4. Algorithms and Implementation

Within the combinational section of the hard-
ware, two"major functions exist, namely, addition
and multiplication. All the other hardware is in
reality an appendage to one of these two areas.
The basic flow and implementation for these two
areas is now detailed.

4.1 Addition/Subtraction Logic

The block diagram of the logic that executes
90% of all microinstructions, including mantissa
addition and subtraction, is shown in Figure 4.
During addition (subtraction), the most signifi-
cant 36 bits of mantissa A remain unchanged
passing through the SMU. The least significant 36
bits of A are created inside SMU from 4 guard bits
and predefined constants of the CONSTANT SELECTOR.
For example, during rounding of the operand B,
zero is entered as the operand A. The constant

2~37(1—2_35) is created in CONSTANT SELECTOR and
added to B. If the least significant 36 bits of B

have value greater than 2_37 a carry is propa-
gated from ALU2 into ALUIL rounding up B. If the

value is equal or less than 2_3/, no -carry-
propagatrion occurs. However, the least signifi-
cant bit of ALUl is forced to 1 if no carry
occurred and the most significant bit of ALU2 is 1.

The same trick with a different constant is
used during calculation of ceiling and floor func-
tions (/x], |x]) and their inverses ([x1-x,
x~-|x]).

During addition and subtraction, the B
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operand (which is always the smaller of the two
operands) passes through the ROTATOR that only
rotates right from 0-47 positions. The extended
shift right of 0-72 positions is created by the
MASK GENERATOR.

The MASK GENERATOR is a circuit that produces
a mask vector, that is, a sequence of zeros
followed by ones, which is ANDed with data from
the ROTATOR. The number of most significant zeros
is determined by the MASK AMOUNT (MA). Using two
control lines, a MASK GENERATOR may output:

a) a zero on all output lines;
b) the mask vector as a function of the MA;
¢) the complement of the mask vector; or

d) a one on all output lines.

During addition, the MA is the same as ROTATION
AMOUNT (RA). However, during the field manipula-
tion instructions like field transfer from one
dataword into another, a speedup of 2-3 times can
be obtained by properly selecting RA and MA that
are not equal in that case.

The ALU is a 72-bit wide adder/subtractor
performing a one's complement calculation using
two levels of carry-lookahead. 1If during addition
overflow should occur, the COMPLEMENTER/SHIFTER
shifts the sum to the right by one position. If
the ALU is performing a one's complement, sub-
traction and operand A is less than the shifted
value of operand B, then to return the magnitude
of the difference, a bit-by-bit complement of the
result is performed in the COMPLEMENTER/SHIFTER.

The two operations are specified in each
microinstruction. One of them is selected ac-
cording to the validity of a relation between A
and B, a test on either A or B, the status of the
TEST flip-flop, the value of the signs or the com—
mand from ACU. The COMPARATOR does the comparison
between the floating-point numbers, their magni-
tudes, or checks only one of them for a specific
value. The result of the text can be stored in
the TEST flip-flop and used in the next micro-
instruction. If exclusively-ORed signs are inter-
preted as a relation between A and B, all of the
microinstructions realized by SMU and ALU are
given by the following microinstruction form:

. A(n) relation B(n)
A(n-1) relation to B(n-1)
THAN A(n) op, (B(n) SHIFTED)

ELSE A(n) opZ(B(n)SHIFTED)

where A(n), B(n) are the values of operands on
inputs A and B at nth clock,

4,2 Multiplication

Figuve 5 shows a block diagram of the multi-
plication hardware. The multiplication hardware
is capable of performing a 38-bit by 18-bit

multiplication using the modified Booth's algo-
rithm. Two iterations through the hardware are
required to obtain a normalized 36-bit product
from two 36-bit operands.

The MULTIPLIER SELECTOR selects the appropri-
ate half of the multiplier. For the first
iteration the least significant 18 bits are used;
for the second iteration the most significant 18
bits are selected. The selected multiplier bits
control the selection of a multiple of the multi-
plicand. Each multiple is either +2, +1, 0, -1,
or -2. Ten such multiplies are developed. These
multiplies are then partially added via a modified
Wallace tree adder called a COLUMN COMPRESSOR.
Fach bit slice of the COLUMN COMPRESSOR adds 7
bits without propagating carries. The three-bit
sum is then reduced to two bits. The partial
product and a rounding constant, can also be added
in to the COLUMN COMPRESSORS, when appropriate.
The final product is developed by summing the re-
maining two bits of each bit slice with a CARRY
PROPAGATE ADDER. Since the fractional mantissas
can yield a product in the range [1/4,1) and since
numbers in the range [1/4,1/2) need to be normal-
ized via a shift left, two products are developed,
one for the nonshifted case [1/2,1) and one for
the shifted case [1/4,1/2). The two products are
not necessarily shifted copies of one another
since rounding may change one radically. At the
end of the first iteration, the most significant
36 bits of the product are saved in the PARTIAL
PRODUCT REGISTER. These bits are then added in on
the second iteration.

4.3 Reciprocal and Square Root

Division in the AE is accomplished by first
taking the multiplicative inverse (reciprocal) of
the denominator and then multiplying this by the
numerator.

The reciprocal of A is found using Newton's
1

method to solve the equation F(X) = X" A= 0.

Newton's method for solving an equation required

the selection of the first approximation, XO, (the
seed value) and the formation of Xl’ X2, using
the following recurrence relationship

F(X )
X =X - 2
n+1 n F'(Xn)

For reciprocation, the above recurrence relation-
ship becomes

X=X (2-A Xn)'

Thus the development of each Xn+ requires two

1
steps. The first produces Y = 2-(A Xn)’ and the
second Xn+1 =
can be easily obtained from series expansion.
Since 0.5 < A <1 then 1/A = 1/1-¢ where 0 < ¢
< 0.5. Therefore, '

= Y Xn. The above recurrence formula
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This proves the equivalence of methods of series
expansion and additive iteration defined by
Flynn.

The seed value, X, 1s an approximation of 1/A

and is found through ROM-based table lookup. = The
ROM table gives XO with 7 most significant bits

correct. Since each iteration almost doubles the
number of bits of accuracy of the reciprocal three
iterations of two cycles, each are performed to
develop a 36-bit result.

The S}gare root of A is found by first
finding 1/V/A and then multiplying by A. 1//A is
found through the recurrence

- 2
X4 = X (3-X7 A)/2

Again, the subtraction is done by complementing
the multiplier and forcing the constant 3 into the
COLUMN COMPRESSOR. Each iteration of the above
equation requires three passes through the multi-
plication hardware and three such iterations pro-
vide a 36-bit result.

4.4 Rounding

It was desired to select a rounding scheme
which produces statistically unbiased results.
For single precision operations, rounding is per-
formed as follows: If an operation produces a
36+X bit resultant normalized mantissa, m(R),
which is composed of three parts ml(R) is the 35

3
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most significant bits; mO(R) is the bit with

36

weight 2777, mX(R) are the remaining X bits of the

result, then the following table gives the value
of the rounded mantissa, m(C),

mX(R) m(C)
< 2737 m, (R) + m_(R)
1 0"
=277 | n ) + 2736
1
-37 -36
> 2 ml(R) + mO(R) + 2

4.5 Double-Precision Algorithms

This section describes the double-precision
algorithms for addition/subtraction and multipli-
cation only. Others have been omitted because of
space. Only three basic microinstructions are
used in double-precision algorithms:

ADD microinstruction performs addition or sub-
traction of two single-precision floating-point
numbers. The result is a double-precision
floating-point number. Both parts of the double-~
precision result are stored in registers. If
overflow occurs during addition, the magnitude
parts of the result are shifted to the right and
both exponents adjusted accordingly. Otherwise,
the result is left unnormalized.

NORMALIZE performs normalization of a single-
precision floating-point number. The result is
& single-precision number obtained by shifting
left end-off all leading zeros and adjusting
éxponent accordingly.

MULTIPLY produces a double-precision product of
two single-precision floating~point numbers.
Both parts of the double~precision result are
stored in registers. The most significant por-
tion is a normalized number.

To achieve a comparable speed with single-
precision operations, a "carriage"™ double-
precision operation has been implemented. That
means that a full double-precision accuracy has
not been achieved in double-precision operations,
and an error has been allowed to appear in 1, 2 or
even 3 least significant binary digits.

a) Addition/Subtraction Algorithm

There are only two different positions of two

double-precision operands A and B (Figure 6 )
The following algorithm gives the

correct result in either case. Note that a guard
bit is required on the least significant portion
of the partial result C, which in turn requires
implementation of more than 72 bits adder. This
guard bit is omitted, which will cause the error
in two least significant bits. The subscript G
denotes the presence of 4 guard bits in the
operand.
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A= Al + Az, and B = B1 + B2 are double-
precision operands. S = S, + S_ is the double-

precision result.

4. Cl + ElG = Fl + F2

5. NORMALIZE Fl

6. Fl + F2 = Sl + S2

7. NORMALIZE Sl

8. NORMALIZE S2

b) Multiplication Algorithm

Multiplication of two double-precision num-
bers produces quadruple-precision results. Only
the most significant half of the result is re-~
tained. That involves 4 multiplications and at

least 6 additions, altogether 14 microinstructions.

To speed up the double-precision multiplication to
10 microinstructions, low-order portions of the

product are neglected. Let A = Al + A2 and B = B1

+ B2 be multiplicand and multiplier, respectively.

Figure 7 represents 8 different partial products
that have to be added to obtain a final product.

The double-precision partial product K = Kl + K2

is neglected. The error made that way is equal to
K and less than Ze(AZ) + e(BZ) +72)
e(Al) + e(Bl)

, which is

less than 2 Since the product P =
Pl + P2 may have one leading zero, the error

+
22 *+ 2B 1oy be multiplied by 2 during nor-
malization process. Therefore, the negligence of
K may result in errors that are less than two
least significant binary digits. To minimize the
negligence of C, (D2), the four most significant
Lo

bits of 02 (DZ) are attached to Cl (Dl) as guard
bits. So, the transaction of C, and D, generates

2 2
e(Al) + e(Bl) + 1

an error that is less than 2 1+
2_3); that is, 2 least significant bits.

A= A1 + AZ’ and B = Bl + B2 are double-
precision multiplicand and multiplier. P = Pl +

PZ is the double-precision product.

1. A, xB, =C, +¢C

2 1 1 2
2. Al X B2 = Dl + D2
3 ClG + DlG = E. + E2

7. NORMALIZE P

5. Performance

The AE has been built, tested and operative
for more than a year. It uses Burroughs Current
Mode Logic (BCML) family of standard MSI and SSI
24 pin leadless packages. For nonstandard func-—
tions in AE, two master-slice logic arrays with a
maximum of 100 and 150 gates per package have been
used. A dozen different types of circuits have
been implemented using logic arrays. Without
logic arrays, the original goal of 4 board AE
could not be met.

Each microinstruction requires 160 ns for
execution. That is translated into 320 ns for
single-precision addition, subtraction and multi-
plication, 960 ns for reciprocal, 1280 ns for
division, 1000 for square root reciprocal, 1280
for double-precision addition and subtraction,
1600 for double-precision multiplication and 2400
for double-precision reciprocal. Most nonnumeric
instructions are executed in 320 ns.
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s{X)

mie (X))
m(X)

q{x)
UNDERFLOW
OVERFLOW
UNDEFINED

NULL
e (mix)}
r{me(X)))

s (X} IS SIGN OF X

m{X) IS MAGNITUDE OF X

e{X} 'S EXPONENT OF X

9{x) 1S GUARD EXTENTION OF X

o {X} IS RESIDUE OF X MOD 3

X00™ %48 1S INPUT {QUTPUT} TO (FROM) AE UNIT

Fig. 2. AE data format
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Fig. 3. AE block diagram
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Fig. 4. SMU and ALU block diagrams
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Fig. 5. MU block diagram
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Fig. 6. Positions of operands in double-precision

addition
F:oap X 8
C: Ay X By
DAy X B,
K 2 Ay X By

L Fl Fs

G S
0 02
3 Ky

Fig. 7. Position of partial products in double-
precision multiplication
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