AN APPROXIMATE AND EMPIRICAL STUDY OF THE DISTRIBUTION
OF ADDER INPUTS AND MAXIMUM CARRY LENGTH PROPAGATION

Oscar N. Garcia

Harvey Glass

Stanley C. Haimes

Department of Electrical and Electronic Engineering
Uniyersity of South Florida, Tampa, Florida

This paper investigates, using sampled data,
the commonly used hypothesis that integer operands
reaching the adder of a computer are uniformly dis-
tributed. Questions raised on the validity of that
hypothesis are reinforced and their impact on the
calculation of the average of the worst case
length of carry propagation is considered. An ap-
proximate formula is developed for the worst case
carry chain length when the arithmetic operands
are restricted in magnitude.

Keywords: binary addition, carry propagation,
average worst case carry chain

Introduction

A central problem in the design of high-speed
arithmetic units is minimization of the time re-
quired for carry propagation in a binary adder. In
the addition of two numbers. several carry propa-
gation chains may occur. Because addition time is
proporticnal to the length of the longest propaga-
tion chain, the length of this chain is of partic-
ular significance.

An assumption frequently made in the analysis
of an adder is that input values are evenly dis-
tributed among all possible combinations. This
assumption simplifies the analysis of the expected
Tength of the maximum carry propagation chain.
Yuen (5) has observed that if the input values are
not uniformly distributed that carry propagation
will be significantly different than that obtained
from uniformly distributed values.

This paper describes a study in which empir-
ical data was collected during machine execution
in order to investigate this problem. Input values
to a binary adder on a specific computer in a par-
ticular environment were gathered and examined.
The results indicate that the assumption of uni-
formly distributed input values may not be support-
able.

Previous Research

Several authors have attacked the problem of
calculating (or bounding) the expected length of
the Tongest carry propagation chain. As early as
1946, Burks, Goldstine, and von Neumann (1) in a
classical analysis showed that if two binary num-
bers to be added are uniformly distributed, an up-
per bound on the expected length of the longest
carry in an n-bit adder is Togon. In 1955,

CH1412—6/78/6000—0097$00.75 {c) 1978 IEEE

97

Gilchrist, Pomerene, and Wong (2) demonstrated a
logical design to detect the completion of all
carry propagation. A carry propagation will have
completed when we may determine that for every bit
position either a 'one' has been propagated, or
conversely that it will not be propagated. In the
Tatter case it is convenient to refer to zero
carry and to consider the lengths of both zero and
non-zero carry propagation chains.

Reitwiesner (3) in 1960 derived an algorithm
for the determination of the expected length of
the longest zero or non-zero carry propagation
chain and Briley (4) in 1973 exhibited a tighter
bound on non-zero carry propagation than that pre-
sented in the classical paper by Burks et al (1).
For two's complement addition they new bound is

(1ogzn -%) (1 - %) for the average worst case of

the carry Tength. A1l of these authors assumed
that the numbers added are uniformly distributed.
As Reitwiesner points out, "That this hypothesis
thoroughly represents reality is not contended;
however, it is adopted here as a first approxima-
tion to reality."

The assumption of uniform distribution does
seem inconsistent with our intuition. One would
anticipate that more positive than negative inte-
gers will occur and that numbers of smaller magni-
tude will occur more often than numbers of greater
magnitude. Yuen (5) cites these reasons in a let-
ter commenting on Briley's results and points out
that a designer of arithmetic units should be wary
of using results based upon the assumption of uni-
formly distributed input values. Yuen demonstrates
that if input values are not uniformly distributed
different results for the expected length of the
longest carry propagation chain may occur. He fur-
ther suggests that it would be of interest to ob-
tain some empirical data on the distribution of
numbers during actual machine execution.

Method of Data Collection

There are serious difficulties with collecting
a set of adder input values that may be described
as "representative." The sample will depend upon:

® the machine
e the operating system, and
¢ the mix of programs run.

We chose not to be deterred and designed a
means of collecting samples from a particular

machine in a particular environment in the hope
that the information would help to provide insight
into the problem.

The samples were collected on the IBM 360/75
under the 0S/MVT operating system at the Computer
Research Center of the University of South Florida.
Because the great majority of work processed at the
Center is either a FORTRAN or COBOL compilation we
have, to date, collected our data during the run-
ning of these compilers.

The instruction sequence of a compiler in ex-
ecution was sampled at intervals of 16.67 milli-
seconds with a specialized software monitor using
the timer interrupt capability of the IBM 360. At
the completion of each interval, the monitor deter-
mined whether the monitored program has received
CPU service during the interval. When it has, the
following information is recorded for later analy-
sis:
the next instruction to be executed,

e the values (contents) of operands ad-
dressed by the instruction, and

e the values in both the base and index
registers referenced by the instruction
for memory address calculations.

Note the last set of values. The parallel
adder on this computer serves two purposes. It is
used not only to implement the execution of arith-
metic instructions but also to calculate effective
memory addresses. In our analysis, this latter
case has represented by far the greater volume of
adder use in the machine.

Tabulation of the Empirical Data

After a sample is collected the data is exam-
ined by a program which tabulates the values of
operands only for the machine instructions listed
in Table 1. Note that this table contains both
(two's complement)arithmetic and logical instruc-
tions. For our purpose we assume that the logical
instructions operate exactly as their arithmetic
counterparts. Their only difference Ties in how
the processor status bits are set for later inter-
rogation by branching instructions. For all sub-
tract instructions the operand value tabulated for
the subtrahend is the two's complement of that
value.

For each of the selected operations, either
arithmetic, logical or address caiculation, the
operation is simulated with the actual operands in
order to tabulate the Tength of the longest carry
propagation chain. The instructions in the sample
totaled 51,229. O0Of these 3993 or 7.79% were arith-
metic instructions by our definition. Table 1
lists the frequency of each such instruction in
the sample. Since the same arithmetic unit is uti-
lized for the computation of the effective memory
addresses of the operands of the sampled instruc-
tions, it was decided to analyze this data as well.
The number of address calculations required by all
these instructions totaled 56,502. Notice that
some instructions in the IBM 360 system require no
effective address calculation while quite fre-

quently others require either one or two calcula-
tions. There are either one or two addition steps
in each address calculation depending upon the
format and the use of an index register in an in-
struction.

The tabulations of the results obtained from
arithmetic instruction operands are kept separate
from those obtained from effective address compu-
tation.

Table I. Instructions Sampled
Number Times
__Observed
2,456 Add Arithmetic
14 Add Logical
1,523 Subtract Arithmetic
0 Subtract Logical

Total 3,993
47,236 Other Instructions
Total 51,229

Nature of Arithmetic Operands The operands
corresponding to each of the binary arithmetic and
logical operations mentioned above are 32 bits
long. They are treated as positive and negative
integers in two's complement representation. In
performing the tabulation the full range of these

arithmetic operands, which is from -23] to +23] -1,
is evenly divided into 64 intervals. This means
that there will be 32 intervals for the positive
integers and 32 for the negative: the most sig-
nificant six bits of the sampled operand deter-
mined the interval to which it was allocated. Each
interval contained a tally for the occurrences of

up to 226 different integers in that interval. For
an interval m for example, it would contain the
number -of occurrences of integers from

m X 226 to ((m+ 1) x 226

324 m < 3.

-1) where m is an integer

The results obtained are shown in Table II.
The arithmetic (and arithmetic-logical) operations
considered yielded 7989 operands. If these oper-
ands were uniformly distributed over the range of
two's complement 32 bit integers, we would have
obtained about 125 of them per each of the inter-
vals. Table II indicates that this is far from
being the case here. As a matter of fact, these
results indicate that 97% of all values are in
intervals -1 and 0, with interval 0 above account-

ing for 80% of the total. Since 22°-1=64, 108,
863 it is not surprising that we satisfy such a
high percentile of the usage within that range for
the most common integer operations. The results
given in Table II are shown graphically in Figure
i

Nature of Operands for Effective Address

Computations In the IBM 360 system the largest
effective address requires 24 bits in general, but
in the machine used in this experiment, only 22

bits sufficed to address all of memory. Therefore,
the tabulation of the operand consisted of treating
the samples as 22 bit unsigned positive integers,
i.e. integers in binary representation. Just as in
the case of the arithmetic operations the range from

0 to 222 = 4,194,304 addresses was divided into 64

intervals of equal size with 2]6 = 65,536 different
possible values within each interval. Similarly for

a given interval m the values ranged from m(216) to
((m+1)(2'%) -1) with 0 < m < 63.

Table III shows the results obtained. The data
again indicates a strong clustering around the
small integer values, particularly around the in-
tervals 0, 1 and 2. In effect the range from

0 to 3 x 2]6 -1 contained again 97% of all effec-
tive address operands for the computation.

These results are shown graphically in Fig-
ure 2.

The total number of operands for effective
address computations found in the 51,229 sampled
instructions was 113,004 or around 2.2 operands per
instruction. This indicates that, on the average,
slightly over one effective address computation
takes place per instruction executed. If these
operands had been uniformly distributed over the
range considered we would have found 2568 in each
of the intervals, far from what the experiment
shows.

Distribution of the Lengths of Carry Chains

The approaches mentioned earlier to determine
the worst case carry propagation chain have con-
centrated in finding the average value of such
chain. We found that a study of the distribution
of the frequencies of the longest carry chains for
each operation is very illuminating. Such distri-
butions are shown in Figure 3 for the binary arith-
metic operations mentioned and in Figure 4 for the
effective address computation.

These values were obtained by capturing the
operands involved in either case and by simulating
the addition and finding the longest length carry
chain. The subtraction operations are performed as
an addition of the complement of the subtrahend and
the carries of this addition are counted; however,
the carries which may be generated during the com-
plementation operation are not included in the tab-
ulation. The two figures show quite different dis-
tributions of carry lengths.

In Figure 3 the average value of the worst
Case carry length is 10.37. It is seen, however,
that there are three major areas of interest in the
distribution. One is on carries of length below
six, another of length between 14 and 16 and an-
other on carries of length greater than 27.

99

Table II. Distribution of Operands
for Arithmetic Calculations

Interval

-32
-31
-30
-29
-28
-27
-26
-25
-24
-23
-22
-21
-20
-19
-18
17
-16
-15
-4
-13
12
-n
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1

PN = = ot e et s
OCWONOONEWN—=OWHNIIADWN —O

N NN NN
oW —

W WM MM N
— oW

00 —

Number in

Interval

—

~N
OO —~NOWO—-0OOO

—
b ro
NOOPW——~DPDONWWOOD —~— WO O —

o

w

— O
O W -

(78]

— N
NOOONOOWUOHINOO~O0ON—"O0OONOONWODMN ~ &H 0

—_

FREQUENCY

FREQUENCY

0. I I S J I B N B
-32-28-24-20-16-12 -8 -4 0 4 8 12 16 20 24 28 32

MAGNITUDE

Figure 1. Distribution of Arithmetic
Operands (N = 7,986)

0,60 |-
0.50H
.40
0.30
0.20

0.10

) [N S U VRN VU SUUNS SN N SN VU N BN SO S |
O ¢ 8 12 16 20 24 28 32 3B 4G 44 48 52 56 ©0 64

MAGNITUDE

Figure 2. Distribution of
Address Calculation Operands
(N = 113,004)

0.30
0,60
0.70

0.601-

0.10

0 Eti::l:j::LAi LNt b b T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3¢

CARRY LENGTH

Figure 3. Distribution of Lengths of
Longest Carry Propagation Chains
for Arithmetic Calculations
(N = 3,993 Average Length = 10.37)

1.00

0. L1 [T RS SR NS N B
D 2 4 6 B 10 12 1% 16 18 20 22 2%

CARRY LENGTH

Figure 4. Distribution of Lengths of
Longest Carry Propagation Chains
for Address Calculations
(N = 56,502 Average Length = 3.89)

Table III. Distribution of Operands in
Effective Address Computations

Interval

—
—OWONOITNTHWN ~OD

N ed — e e b
SO NDOD WM

W W W W W WWWMNINMN M NN NN N
SN ERWN = OWRNO OB W -

+ W W
o w

el i i I W~
NOYO W —

[S21N3 A RN =N
— O wow

[SARS RO NS Né]
T W

o
~

% of Total
54.
12.
31.

CO0O0 000000000000 ~00000ODO0OO000OO000OCD0OOO0COOOODO0O0O0O00OO0OOOOND

Number in

Interval

60682
13936
34914
465
1824

OO0 OOOOOO0OOOOOCOOOOOOOOO 0000 OOOOO

S
o
(]
o

B —
oo,

NOOODOOONO—-ODOOO

E=1

101

Yuen (5) suggests that the non-uniform distri-
bution of the operands in arithmetic operations
coupled with the fact that both negative and posi-
tive integers are added would invalidate the
tighter bound on the average worst length carry
chain developed by Briley (4). He considers four
cases for addition

1) two positive operands

2) first operand positive, second negative
3) first operand negative, second positive
4) both operands negative

Based on a probability p that a positive oper-
and occurs and that most values are of less magni-

tude than 2™ for an n bit word, he develops an
approximate formula for the average carry chain
length. Actually his formula is flawed by assum-
ing that the fourth case above has the same carry
length chain as the third. A modified formula
will be deveioped below to correct this.

First, let's postulate a uniform distribution
of positive and negative n-bit operands, but limi-

ted in magnitude to be below |2m|. Then if
X€{ 0,1} with equal probability, the operands look
as shown in Figure 5.

Figure 5. Positive and Negative Operands of
Magnitude Less Than 2",

We will further assume that the bound found by
Britey (4) is sufficiently tight to be used as the
actual value of the average worst case carry
length. Therefore, in case (1) above, which occurs

with a probability pz, the average worst carry
length is (1ogzm - 1/2).

Cases (2) and (3) will have identical results
because of commutativity, and will occur with a
probability 2p(1-p). However, we can consider two
subcases:

a) if no carry flows into the bit position of

weight 2™, then using (4) again the aver-
age worst case carry length will be (1ogzm -1/2),
and

b) if a carry flows into that bit position
then the longest carry chain is> (n-m).

If we let PX be the probability that subcase
b) above occurs then (1-PX) is the probability of
subcase a). Let's compute the quantity Px‘

A carry will flow into the bit position of
weight M if it s generated at the bit position of

weight 2m-1 or if it is generated at a lower order
position at the beginning of the chain and trans-
mitted through all consecutive positions. Given

that for any of the m low order bit positions ones
and zeroes are equally likely, the condition for
carry generation is that the corresponding bit
positions be both ones (which occurs with proba-
bility 1/2 . 1/2 = 1/4) and for transmission that
a zero-one or one-zero combination occurs in cor-
responding bits (which occurs with probability
1/2 . 1/2 +1/2 . 1/2 = 1/2). Then the proba-
bility:

m-1

P =20 (1/8)(1/2)]
i=0

If we consider the sum Px above this is a
truncated geometric progression of rate 1/2 and

)m+1

1 .
sum »- - (172 Therefore

-1 1 ,m+1
T B

For m> 8, which is always reasonable,
Px'_‘: 1/2.

If we further restrict m> n/2 then we can
assert that in subcase (b) the length of the worst
case carry chain will have an average of
n-m + 1092m - 1/2.

For cases (2) and (3) the average worst case
chain for m2 n/2 will be

(- PX)(1092m - 1/2) + Px(n—m + 1092m - 1/2)

Finally for case (4) which occurs with a prob-

ability (1-p)2 the worst case carry chain will be
(Togpm - 1/2) bits long on the average, since the
Teading ones in the high order positions of the
operands do not propagate a carry chain.

The average worst case carry length under
these circumstances is given by Cnf= p2 .
(Togym - 1/2) + 2p(1-p) [(1-P,) (Tog,m - 1/2) +
Po(n-n + Togym - 1/2)] + (1-p)%(Tog,m - 1/2) or
calling m = 1092m -1/2

T+ 2p(1-p) T+ Py(nem) + (15 2

Cn Zp m

~ 5 (1-p) =
=2, P (n-m) +m
Furthermore for m > 8 we can say
C, = p(1-p)(n-m) +m

Comparison with Empirical Results

The values obtained empirically for the aver-
age worst case length of carry propagation for
arithmetic computations was 10.37 and for effective
address computation was 3.89. The former value is
far above the bound given by Briley which would be
4.5 for n = 32. The latter value is closer to it
for n = 22 which yields 3.96 using Briley's bound.
While in neither case we had a uniform distribu-
tion, in the effective address computation experi-

ment there were only positive operands.

In the case of arithmetic operations let us
assume that 80% of the operands were positive.
Since there were 1,523 subtractions out of the
3,993 arithmetic operations sampled, we can say
that 38% of the operands changed signs or that we
had 0.62 x .20 + 0.38 x .80 = 43% of the operands
as negative integers. This yields p = 0.57. If
we postulate m = 16 then ™ = 3.5 and ¢, =

(0.43)(0.57)(16) + 3.5 = 7.4. This is still far
from our experimental value of 10.38 but it is
much closer than the value obtained assuming a
totally uniform distribution of the operands.

The values shown in Figure 3 seem to indicate
that it is likely that even when the magnitudes of

the operands are restricted to less than 2", we do
not have anything close to a uniform distribution.
This would go along with our intuition about the
abundance of positive and negative integers of
values near + 1.

Conclusions

It is obvious that the (1og2m -1/2) bound

is not realistic because of the grouping of the
integer operands around + 1.

The main motivation for the study of the aver-
age worst case carry length is to consider the ad-
vantages of a carry completion adder. In this
respect the observations of Reitwiesner (3) with
regards to chains of carries and chains of no-
carries or zero carries are also valid. These con-
siderations have not been included in our approxi-
mate formula.

The experimental study reported has a number
of acknowledged shortcomings and is far from com-
plete. For example, it only includes addition and
subtraction and ignores other arithmetic operations
such as complementation, multiplication and divi-
sion. Furthermore, the analysis only monitored a
portion of the activity of the computer, specifi-
cally the execution of the COBOL and FORTRAN com-
pilers. While these compilers account for a large
portion of the processor activity it would be of
interest to examine other types of programs at
arbitrary times of processor execution.

Acknowledgements

The authors would like to express their sin-
cere appreciation to S. Garrett of the Department
of Electrical and Electronics Engineering and to
R. Fascenda and P. Lyons of the Computer Research
Center at the University of South Florida for their
comments and assistance.

References

1. A. W. Burks, H. H. Goldstine, and J. von
Neumann, "Preliminary discussion of the logical
design of an electronic computing instrument,”
in Collected Works of John von Neumann, Vol. 5,
A. H. Taub, Ed., New York: MacMillan, 1963,
pp. 34-79.

2. B. Gilchrist, J. H. Pomerene, and S. Y. Wong,
“Fast carry logic for digital computers,"
IRE Trans. Electron. Comput., vol. EC-4
pp. 133-136, Dec., 1955,

3. G. W. Reitwiesner, IRE Trans. Electron.
Comput., vol. EC-9, pp. 35-38, Mar., 1960.

4. 8, E. Briley, IEEE Trans. Comput., vol. C-22,
pp. 459-463, May, 1973.

5. C. K. Yuen, IEEE Trans. Comput., Vol. C-23,
p. 333, Mar., 1974.

103

