DESIRABLE FLOATING-POINT ARITHMETIC AND
ELEMENTARY FUNCTIONS FOR NUMERICAL COMPUTATION

T.E. Hull
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 1A7

The purpose of this paper is to summarize
proposed specifications for floating-point arith-
metic and elementary functions. The topics consi-
dered are: the base of the number system, precision
control, number representation, arithmetic opera-
tions, other basic operations, elementary functions,
and exception handling. The possibility of doing
without fixed-point arithmetic is also discussed.

The specifications are intended to be entirely
at the level of a programming language such as
Fortran. The emphasis is on convenience and
simplicity from the user's point of view. The
specifications are not complete in every detail,
but it is intended that they be complete "in
spirit"” - some further details, especially
syntatic details, would have to be provided, but
the proposals are otherwise relatively complete.

"... the expression 25+1/3 yields the value
5.333333 in PL/T, and .333334 in pL/C ..."
Conway and Gries, An Introduction to Program-
ming, 1975, p.24.

Introduction

There has been a great deal of progress during
recent years in the development of programming
languages. However, almost all of this progress
has been under the general banner of "structured
programming" and almost no attention has been paid
to those aspects, such as the semantics of floating~
point operations, that are of special interest to
practitioners who are interested in numerical
computation.

The purpose of this paper is to propose some
specifications for floating-point arithmetic and
elementary functions. The main design goal is to
produce a set of specifications which is most
desirable from a user's point of view. There is
of course no claim that the set is unique. 1In
fact, many details, especially syntatic details,
have been omitted because there are obviously so
many possible variations that would be equally
acceptable. However, there are some basic require-~
ments that, in one form or another, do seem to be
desirable, and perhaps even necessary. It is
convenient to illustrate them in terms of concrete
examples.

CH1412-6/78/0000-0063$00.75 (c) 1978 TEEE 63

The specifications are described in the
following sections in terms of the base of the
number system, precision control, number represen-
tation, arithmetic operations, other basic opera-
tions, elementary functions, and exception handling.
These sections are followed by another that is
devoted to a discussion of fixed-point arithmetic.
Fortunately, these different aspects are to a
large extent independent of each other, so that it
is usually possible to propose alternative specifi-
cations in one aspect without seriously affecting
the others.

It should be emphasized that the specifications
are intended to be entirely at the level of a
programming language such as Fortran. For example,
in discussing arithmetic operations, our concern
is entirely with the syntax and semantics of the
programming language expressions. It may be con-
venient to refer to hardware representations as a
way of discussing the details of the arithmetic,
but the details of the hardware implementation are
irrelevant. (Of course, we must have hardware
possibilities in mind, since it would be foolish
to propose specifications that are not practical
to implement, but the implementations themselves
are not intended to be part of the specifications
in this paper.)

We feel that it is important to consider such
specifications for floating-point arithmetic and
elementary functions. Indeed, users who are
interested in numerical computation have an obliga-
tion to try to reach a consensus on such specifica~
tions, unless they are prepared to put up forever
with whatever facilities the manufacturers and
language designers are, perhaps grudgingly, willing
to provide. If some sort of consensus became
possible, it could evolve towards a standard. And
with the technology changing as rapidly as it is,
such a standard may not be too difficult to achieve,
or at least to approach much more closely than is
the case at present. In any event, with a standard
agreed upon, we would at least have a basis against
which we could judge the appropriateness of
various trade-offs.

The usefulness of a standard in terms of
portability of numerical software, and particularly
in terms of portability of proofs about what the
software does, is obvious. One fortunate circum-
stance is that some proofs can of course be
portable, even under circumstances which do not
meet all of the requirements of a standard. But
closer adherence to standards would make the

situation better, and would lead to other improve-
ments as well, in terms of convenience, programmer
efficiency, and so on.

An ideal arithmetic system should be complete,
simple and flexible. Completeness means that the
programmer knows what will happen under any circum=-
stance. Simplicity leads us to conclude, for
example, that the base should be 10. We will also
argue that there is no need to have a second
number system (such as "fixed-point" or "integer")
since the floating-point system can serve all
purposes. For simplicity we also argue for a
particular way of determining the precision at
which calculations are performed. We choose a
flexible way of ‘controlling precision, and also a
flexible mechanism for coping with exceptions such
as overflow and underflow.

An ideal system for elementary functions is
more difficult to agree upon. Completeness, in the
sense of always producing the same results whenever
the precisions are the same, is probably desirable
here. too. But what is more to the point at this
stage is that we emphasize simplicity, and this
leads us to require only a single simply-stated
accuracy requirement for all elementary functions.
In particular, we argue against insisting that a
long list of additional special properties be
required to hold. However, we do also need flexi-
bility in precision control for the elementary
functions, to match the precision control of the
arithmetic.

Base

Much has been written about different number
bases, and their relative merits with respect to
efficiency of storage, round-off behavior, and so
on. We believe that simplicity and convenience for
the user should be the primary consideration and
this means that

the chodce of base 48 10, (1)

With this choice, a number of annoying problems
disappear immediately: for example, the "conmstant"
0.1 will really be exactly one tenth, and any value
that is input will be exactly the same on output.
Moreover, with base 10, not even a perverse
compiler writer would dare allow the compiled value
for a number to differ from its input value.

Requiring the base to be 10 does not mean that
each decimal digit must be represented internally
as a separate entity. The hardware could, for
example, use 10 binary digits to represent 3 decimal
digits, if that were an economical thing to do.
The point is that the results must appear to the
user to be the same as if the base of the number
system were 10.

Input-output will be simplified with many
programs, especially in date processing, if base 10
is used internally. Programmer efficiency will

improve if the programmer does not have to keep in
mind the peculiarities of other number bases. Tt

may even happen that a base-10 system, including a
base-10 internal representation, would turn out to

be, overall, the most efficient, besides being the
simplest and most convenient for the user.

Questions about which numbers are to be
included in the number system, and questions about
the results of arithmetic operations on these
numbers will be considered in later sections.

Precision

The main questions related to precision can be
considered independently of the number base. It is
possible to describe specifications that would be
desirable, -whatever the base. However, for
purposes of illustration, we will do so only in
terms of base 10, but the corresponding statements
for other bases will be quite obvious.

Earlier versions of what will be proposed in
this section, including the description of a pre~-
processor for implementing the main ideas, have
been discussed elsewhere by Hull and Hofbauer 03,
It is hoped that further results will also be
developed in a future paper. We will therefore
consider only the essential ideas in this section.

It is important that the user have control
over the precision. In an ideal system, we believe
that

the user should be able to specify
separnately the numben of digits to be

used for the exponent of his gLoating- (2)
point values, and the numben of

digits to be used fon the fraction part.

Ideally he should be able to make a declaration
such as

FLOAT(2,12) X

and as a result have the value of X composed of a
2-digit exponent part along with a 12-digit
fraction part. (The exact details will be discuss-
ed in the next section.)

It should also be possible that
variables on expréssions, as well as
constants, be allowed in the declara- (3)
tions.

For example,
FLOAT(2,I+1) X

would have the obvious meaning.

The most important part of our proposal with
respect to precision is that

the user should be able to specify the
precisdion of the operations to be

caviied out on the operands, quite (4)
apart grom, and independently of the
precision of the operands themselves.

For example, he should be able to write something
like

AP g 5

BEGIN PRECISION(3,14)

Y =X + .51 * SIN(X)

END

and mean that
to be carried
the result of

every operation in the expression is
out in (3,14)~precision arithmetic,
the calculation finally being adjust-
ed to fit the precision of Y, whatever the preci-
sion of Y has been declared to be, before the
result is assigned to Y.

It is of course intended that
the precision of such "precision blocks"

be allowed to change between one execu-
tion of a block and the next.

(5)

Examples are given in the references by Hull and
Hofbauer referred to earlier; however, the pre-
processor mentioned there handles only the special
case in which only the fraction parts (of the
variables and precision blocks) are declared, and
their values denote numbers of word lengths rather
than numbers of decimal digits.

The specifications we propose for precision
control provide a considerable degree of flexibi-
lity. In particular, they allow the user to carry
out intermediate calculations in higher precision
(as may be required, for example, in computing
scalar products, or in computing residuals), and
they allow for the repetition of a particular
calculation in different precisions (as is required,
for example, in some iterative procedures, or in
attempting to measure the effect of roundoff
errors).

The proposed specifications are also simple.
For example, separating the precision of the opera-
tions from the precisions of the quantities enter-
ing into the calculations avoids having to remember
a lot of rules about how quantities of different
precisions combine. (No satisfactory rules for
such calculations can be devised in any event;
for example, no such rules would enable us to com-
pare the results of doing a particular calculation
twice, at two different precisions.)

It must be acknowledged that very high preci-
sion calculations would be used only rarely. This
means that all precisions up to something like
(2,12) or perhaps (3,15) should be done very effi-
ciently, but, beyond that, a substantial reduction
in efficiency would be quite acceptable.

One point is perhaps worth emphasizing. It is
intended that precision 12, say, means exactly pre-
cision 12, and not at least precision 12. We
cannot measure roundoff error if precision 12 and
precision 15 give the same results. Further
details about the arithmetic will be considered
later.

One further point is perhaps worth mentioning.
Our requirements for precision control could lead
to thinking of the machine as being designed to

65

handle character strings, a number being just a
special case in which most of the characters in a
string are decimal digits. However, as indicated
earlier, we are concerned here primarily with the
functional specifications, and not with any
details about how those specifications are to be
implemented.

ReEresentatiog

Quite independently of how the base is speci-
fied, or of what sort of flexibility is allowed
with the precision, it is possible to state speci-
fic requirements about the representation of
floating-point numbers. We will describe what we
consider to be desirable requirements in terms
which may appear to be hardware specifications but,
once again, the proposal is not meant to restrict
the details of the hardware representation in any
way except in so far as the results appear to
the user.

The proposal is that

a sign and magnitude representation be
used for both the exponent part and the
fraction pant, and that the {raction
part be nommalized.

(6)

Thus, if a value is declared to be FLOAT(2,3) in
our earlier notation, its largest possible

99

magnitude is .999 x 1077, TIts smallest possible

positive magnitude is .100Q x 10-99.

The reason for proposing a sign and magnitude
representation is that it is simple, and probably
easiest to keep in mind. The reason for allowing
only normalized numbers is so that the fundamental
rule regarding error bounds that is discussed in
the next section can then be relatively simple.

We deliberately do not propose any axioms,
such as "if x is in the system then so is -x", to
be satisfied by the numbers in the system. Any
such statements that are valid are easily derived,
and there is no need to state them explicitly. 1In
fact, it might be somewhat misleading to begin
with statements of this sort and perhaps give the
impression that one might be able to derive the
system from a collection of such desirable
properties.

Besides the normalized floating-point numbers
proposed above

At will be necessary tc allow a few
other values as well, such as OVERFLOW,
UNDERFLOW, ZERODIVIDE, INDETERMINATE,
and UNASSIGNED %o be used in special
clreumstances .

(7

We will return to this question in a later section
when we discuss the requirements for exception
handling.

Although what we have proposed as allowed
values for floating-point numbers is, for the
purpose of simplicity, very restricted, the

hardware can carry much more in the way of extended
registers, guard digits, sticky bits, and so on, if
that should be convenient for meeting the require-
ments of the following sections. However, if this
is done, it will ordinarily be only for temporary
purposes, and, in any event, the user would under
no circumstances have access to such information.
(We are continuing to think of the user as program—
ming in a higher level language such as Fortran.)

Arithmetic operations

Whatever the base or method of representation,
we can still be precise about the kind of arith-
metic that is most desirable. For various reasons
we propose that,

Ain the absence of overflow, underglow,
indeterminate, and zero-divide, the

rnesults of all anithmetic operations

be properly rounded to the nearest
nepresentable numbern. (Some fuwithen (8)
detail is needed to make this require-

ment completely precise. 1In case of a

tie, we might as well have the normal-

Lzed fraction parnt rounded to the

nearest even value.,)

Note that, for numbers of the form FLOAT(2,3), this

will
-99

99
will mean that every result 2 .9995 x 10

overflow, whereas every result < ,09995 X 10
will underflow.

There are several reasons for preferring this
specification:

{1) 1It is simple, and easy to remember.

(2) Since unnormalized numbers are not allowed, the
basic rule required for error analysis is easy
to derive and, in the absence of overflow,
underflow, indeterminate, and zero-divide,
takes the simple form:

fl(xey) = (x0y)(1l+e),

where ° is an operation and |€| < u, u being
the relative roundoff error bound for the
precision that is currently in effect.

(3) Rounding is better than chopping, not because
the value of u is smaller (although that
happens to be the case), but primarily because
of the resulting lack of bias in the errors.

There is a considerable advantage to stating
directly what outcome one is to expect from an ari-
thmetic operation, and then deriving any properties
that one needs to use, rather than to start off
with a list of desirable properties. For example,
from the simple specification we have given, it is
a straightforward matter to prove that (sign
preservation):

(-X)*Y = *(X*Y),

or that (monotonicity):

x £y and z 2 0 implies x*z < y*z,

It is misleading to write down a list of such
desirable properties and to suggest that rules
might be derived from them. (After all, if we did
write down all of the most desirable properties we
would of course want to include associativity!)

It is undesirable to allow any exceptions to
the specifications - even such small ones as the
exception to true chopping arithmetic that occurs
with IBM 360/370 computers. The reason is that it
is important for the user to know what happens
under all circumstances. A simple rule, that is
easy to remember and to which there are no excep-
tions, is a good way to ensure this knowledge.

A consequence of this insistence on no excep—
tions is that no tricks, such as arranging to
evaluate A*B+C with at most one rounding error, can
be allowed. It is essential that the product A#B
be rounded before C is added. If the rule could be
violated in this case (for a "bit" of extra accura-
cy!), how many other exceptions would you allow,
and would the user have to remember? And would it
be desirable to have the proof of what a program
does depend on such a trick? (If extra accuracy is
needed in the evaluation of a particular expression,
that requirement should be made quite explicit in
the program itself - and the programming language
should provide facilities for doing just that, as
proposed in the earlier section on precision.)

To complete the programming language specifi-
cations with regard to floating-point arithmetic,
we also require that

some conventions be adopted, such as the
Left to night nule fon nesoluing (9)
ambiguities in expressions such as A+B+C.

A further discussion of overflow, underflow, etc.,
is also required, but that will be postponed to

the section on exception handling.

Other basic operations

Besides the arithmetic operations, a program-
ming language must of course also provide various
other basic operations. These should include such
standard operations as

absolute value
the fLoon function,

quotient, nremainder, (10)
max, min,

as well as
the nelational operatons. (11)

With the latter it is essential that they work
properly over the entire domain, and that, for
example, nothing ridiculous happen such as allowing
IF(A > B) to cause overflow.

There would also be a need for functions to
perform special rounding operations, such as

round the nesult of an arnithmetic

operation to a specified number of

places in the graction pant, (12)
round up, or nound down, Aimizanﬁg,
nound a nesult to a specidied number

of places aften the point

and to carry out other special operations, such as

get precisdion of fraction part, (13)
get precision of exponent part.

Finally, a special operation may be needed to
denote

nepeated multiplication. (14)

. . . s s . n
The purpose of this operation is to distinguish x ,
where n is an integer and it is intended that x be
multiplied by itself n-1 times, from the case where

n
it is intended that x be approximated by first

determining log x and then computing e Log X,

Being able to make this distinction would be helpful

in calculating expressions such as (—l)n, or (3.1)3.
But whether this part of the proposal is accepted
depends to some extent on how strongly one feels
about dropping the fixed-point or integer type, as
discussed in a later section.

Elementary functions

For the elementary functions, such as SQRT(X),
EXP(X), SIN(X), etc., we propose requiring only that

§2(400)) = (7+n18)6(x(7+n2€))
overn appropiiate rhanges of x, where ny
and n, are small integens. (0f course, (15)

each e satisgies |e| < u, and the value
0f u would depend on the precision.)

It would be a nice feature if the n's were relative-
ly easy to remember. For example, it might be
possible to require nl = 2 for each function, and

n, = 0 for at least most of the functions of

interest. Unfortunately, the "appropriate ranges"
will differ, although they will be obvious for some
functions (for example, they should contain all
possible non-negative values of x for the square
root function, and all possible positive values for
the logarithmic function).

There is a temptation to require more restrict—
ions on the approximations to the elementary func-
tions, such as

SIN(0) = 0, C0s(0)
LOG(1) = 0, ABS(SIN(X))

]
it

1
1

IA

or that some relations be satisfied, at least close-
ly, such as
SQRT(XZ) = X,
2
(SQRT(X)) " = X,
SIN(-X) = -SIN(X),

SIN(ARCSIN(X)) = X,
2
SINZ(X) + C0S (X) =1,

or that some monotonicity properties be preserved,
such as

0 < X <Y implies SQRT(X) < SQRT(Y).

A few such properties follow from the proposed
requirement (for example, SIN(0) = 0), but we
propose not requiring anything beyond what can be
derived from the original specification. This
proposal is made in the interests of simplicity.
The original specification is easy to remember,
and any proofs about what programs do should depend
only on a relatively few "axioms" about floating-
point arithmetic and the elementary functions. No
one is required to remember a potentially long list
(and perhaps changing list!) of special properties
of the elementary function routines.

In those cases where something special is
required, the programmer should take appropriate
measures. For example, if it appears that we
might want to require that fsin(x)[<1, as we
might in trying to approximate the integral

T
1 Yl-sin x dx, we can simply replace l-sin x with
U

fl—sin x'. Moreover, separate function subroutines
can always be developed in order to provide func-
tion approximations that satisfy special properties;
for example, there could be a special sine sub-
routine, say SSIN, which produces approximations to
sin(x) with special properties such as being
guaranteed not to exceed 1 in absolute value.

We should have to remember only a small number
of basic "axioms" - and then program defensively.

Exception handling

We turn now to the question of what should be
required in our programming language to enable a
user to cope effectively with exceptions. There
are quite a few different kinds of exceptions that
can arise. Overflow, underflow, indeterminate, and
zero-divide have already been mentioned. (It may
be that one would like to make further distinctions
here, between positive and negative overflow, for
example.) It should be pointed out that overflow
and underflow can occur when precision is changed,
especially if the user can change the exponent
range. Other exceptions that can arise include
trying to compute with an as yet unassigned value,
or using a function argument that is out of range.

The first rule should be that,

i§ an exception arnises and the programmen
makes no special prov.ision fon handling

it, the computation should be stopped, (16)
along with an appropriate message about

where and why.

If the user is aware that an exception might
arise, and knows what he wants to do about it, he
can often "program around" the difficulty. One

67

example has already been mentioned in connection
with an argument getting out of range in v1-sin x.
Another arises in trying to calculate min([y/xl,Z)
where y/x might overflow. Here, unless 2x can
overflow, the calculation can be replaced with

"if [2x| < |y| then 2 else lyix]".

The second of these two examples is somewhat
harder to read, and there clearly is a limit beyond
which a user should not be expected to go. It
certainly would be advantageous to have a simple
way of stating what is to be done in case a parti-
cular exception should arise. In the second
example mentioned above, it would be clearer if
we could write min(ly/xI,Z) and have some way of
indicating that overflow is to be ignored if it
happens to occur.

Probably most cases where the user knows that
an exception can occur and knows what he wants to
do about it are of this sort. They occur in a
single statement of the program, and one simple
solution is to replace an overflowed quantity with
the largest number that can be represented (at that
precision), or to replace an underflowed quantity
with zero. A simple way of appending one such
"fix" or the other to a statement is all that is
required.

However, a mcre general capability will some-
times be needed as well, for example when under-
flows may occur at many places in a relatively
large block of code, or when the user might wish
to save data, and/or output a substantial amount
of information if an exception should arise.

We believe that it is more important to insist
on a general capability as our main requirement.
Our second rule with regard to exception handling
is therefore that

the usen should be able o specify the
scope over which he 48 prepanred to state
what is to be done, and he should be able
to detect the cause of the inferrupt,

An a way such as L8 suggested in the
goLlowing:

BEGIN
ON{OVERFLOW)
—— { what to do 4in case
—) 0f cverglow
(UNDERF LOW) (17
I ——

} scope
END

Besdides OVERFLOW and UNDERFLOW, the cother
possible causes of {nterrupts are ZERQ-
DIVIDE, INDETERMINATE, UNASSIGNED, and
OUTOFRANGE (i.e., argument of a function
out of nange).

Third, it is to be understood that

contrnol will be netfurned to the point of
interuption, aftern the specified action

has been taken, unfess the proghammen

has provided forn an alternative to be (18)
foLlowed, such as stopping the caleuwla-

tions altogethen, on perhaps making an

exit from that block of instructions.

Fourth, it is also proposed that

the programmern be able to assign a value
to RESULT as pant of the action to be
taken. Fon example, he could write
(19)
ON{OVERFLOW) RESULT = 10%**50
(UNDERFLOW) RESULT = 0
END

Not allowing the user to have access to the operands,
other than through his access to the program
variables themselves, has been deliberate. In
particular, if the operands that caused the inter-~
rupt were "temporaries', it is difficult to see how
he could make use of them.

A fifth part of our proposal is designed to
provide, in a convenient way, for those special
cases like min(y/x],Z) that are likely to arise
quite frequently. We merely propose that

there be a -shont form that can be used in
such special cases, as ifLustrated in the
following two examples:

z

MIN(ABS[Y/X),2) EXCEPT (20)
ON(OVERFLOW) RESULT = 100

W = U*SIN(V) EXCEPT ON{OUTOFRANGE} EXIT

Finally, we believe it would be helpful to
require that

output should be provided at the end of

any calewlation in which ON clauses are
executed, the output being designed to (21)
indicate which such clauses were executed
along with some statistics about the

number of such executions, and s0 on.

Fixed-point arithmetic

In conclusion, we would like to comment that,
at least to us, it appears that we do not need to
have any type of arithmetic in our programming
language other than the floating-point arithmetic
described in the preceding sections (except, of
course, for complex arithmetic). In particular,
there does not appear to be any compelling need
for fixed-point or integer arithmetic.

The floating-point arithmetic already describ-
ed can be used for subscripts, and for counting
(with base 10 we could even have the convenience
of DO I =1 TO 2 IN STEPS OF .1). 1In the case of

subscripts, a non-integer value would be an error,
of course - just as in the case of an out-of-range
subscript, or an out-of-range value of a function

argument. Mathematical Software II,
pp.1-18,
Floating-point arithmetic is difficult enough,
We have to get used to non-associativity, and to
such peculiarities as the possibility that (A+B)/2
may be less than both A and B. Let us not be
forced to learn another system as well - along with
all the messy details about conversion between the
two systems.

We pay a price for the simplicity of having
only one system, but the price may well be worth-
while. One part of the price to be paid, at
least from the point of view of the user (as
opposed to the designer of the hardware), is that
the "integers" would have to be declared as, for
example, FLOAT(1,4). This seems to be a small
price to pay, and, in fact, even this small price
could be avoided if we were willing to provide a
suitable default meaning for FLOAT. Another part
of the price has already been mentioned: it may be
necessary to have a special way of denoting x™ when
it is understood that n is an integer and
successive multiplications are intended. A third
part of the price to be paid for the simplicity of
having only one numerical type would be the need
for some way of determining when the result of an
arithmetic operation was not exact. For example,
instead of causing overflow, the product of two
integers might cause a roundoff error, and there
would have to some way of determining that this has
happened; another ON condition may be what is
needed.

If there were to be a second kind of real-
valued arithmetic, it would be useful to consider
rational arithmetic. Within the scheme described
in this paper, rational arithmetic can be viewed
2s a variable~precision arithmetic in which the
precision is determined by the numerical quantities
themselves, rather than by the programmer.

Acknowledgements

Much of this work is based on material that
was prepared for discussion by members of the IFIP
Working Group 2.5 on Numerical Software, beginning
with the Oak Brook meeting in 1976.% I would
like to acknowledge the helpful criticism of
members of that committee, particularly of W.S.
Brown and T.J. Dekker.

References

1. T.E. Hull, "Semantics of Floating Point Arith-
metic and Elementary Functions", Portability
of Numerical Software (edited by W.R. Cowell),
Springer-Verlag, N.Y., 1977, pp.37-48.

2. T.E. Hull and J.J. Hofbauer, "Language
Facilities for Multiple Precision Floating
Point Computation, with Examples, and the
Description of a Preprocessor", Technical
Report No.63, Department of Computer Science,
University of Toronto (1974).

3. T.E. Hull and J.J. Hofbauer, "Language

Facilities for Numerical Computation', Pro-
ceedings of the ACM-SIAM Conference on

69

Purdue University (1974),

