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ABSTRACT - A new interleaved rational/radix number
system is proposed for upgrading the precision of
normalized Floating-Point (FLP) arithmetic opera-
tions without increasing the basic word length. A
complete set of rational rounding and arithmetic
algorithms are developed. The Average Relative
Representation Error (ARRE) of tne proposed flexi-
ple FLP system 3s computed through a series of
simul ation studies on CDC 6500. Our results show
a 10% improvement of representation accuracy when
compared with tne ARRE of conventional FLP system.
Tne architecture of a rational FLP arithmetic pro-
cessor 1is also presented. Tradeoffs between
operating speed and computing accuracy are dis-
cussed.

1. INTRODUCTION

" This paper presents a new arithmetic system us-
ing Farey rationals interleaved with radix frac-
tions for wupgrading the mantissa precision of
Floating-Point (FLP) arithmetic without increasing
the basic word length. The precision of conven-
tional FLP arithmetic is reflected essentially by
the number, t, of significant oits in the fraction

portion (mantissa) of FLP numbers., We used to
consider each t-bit mantissa as a radix fraction

with a fixed denominator 2" and a numerator within

tne range [D,2t~1J. Only the numerator needs to
be represented in the radix number system, because
the constant derominator is sel f-implied. The nu-
merical gaps between adjacent radix fractions are

uniform with a constant value of Z-t. To simplify
the suosequent discussions, we assume an even
fraction length t = 2k with k > 1 for atl FLP num-
bers. -

In Fig. 1, we propose a new interleaved frac-
tional number system with two possible representa-
tions depending on the FLP numeric value being
represented. A tag is used to distinquish the two
fractional repreSentations, radix fraction versus
the Farey Rational to be described Delow. When
tag = 1, a normalized 2k-bit radix fraction is
Tepresented witn a leading bit 1 which coincides
with the value of the tag bit. when tag = 0, an

1

irreducible rational number g.within the rangekizli

ola

<1, called a Farey rational, is represented in
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its complemented form E%En The left k=1 pbit, nold

complemented numerator p-gq and the k bits
hold the denominator p. Note that 0 E_E%S < %-for

right

normalized q. We shall formally define Farey ra-
tionals and describe their numerical properties in
3ection 2. Farey series has been discussed in
number theory [5].

The use of Farey rationals 1is motivated from
Matula's work [11]. Many real fractions, which
can be written in our system as simple irreducible
%, %, -;, etc., can never be
represented in closed form in conventional radix
number system. Our analytic and simulation
results show that with this "flexible" duet
representations, the machine representation error
can be significantly reduced. In other words,
higher precision can be achieved in computer ar-
ithmetic with appropriate tagging and rounding
schemes. We then compare our results with the
precision performance of conventional FLP arith-

rationals as

metic systems as reported in Cody [21, Brent [1]
|« t =2k bits
lTag
1 Normalized Mantissa M
radix A conventional radix fraction
point

. c bk 2K
m in set Ryy With 3 m< (2°7-1) /2

TagL—k"l bits——'L——— kK bitg———n

0 Complemented
Numerator (p-q)

Denominator P

A Farey rationa] & in F, with
p 2k

1 k
729 <p 22 and ged(p,q) = 1. Note

that 0 < p-q < % and p = Zk

by the all-zero pattern in the denominator
field.

is represented

Fig. 1. The dual fraction representations: radix

fraction vs. Farey rationals.




and Kuck et al [10], we shall consider base-2 nor-
malized FLP numbers with fractions in the range

%,1 . A comparison of our rational system with

the p-adic [9] system for representing rationals
is also given.

g, FAREY SERIES OF IRREDUCIBLE RATIONALS
A Farey series Fn of order n refers to the fin-

ite set of irreducible rationals within the closed
interval [0, 1] whose denominators do not exceed
n. Fformally, we define

Fo= (% | 0<q<p<nandgedp,@ = 13 (D
We shall consider Farey series of order n = 2k,
where k = logzn is the number of bits required to

express the integer n in binary. Each member of
Fn is called a Farey rational . The series of

Farey rationals can be arranged in ascending ord-
er. Let % and<% be any two Farey rationals in Fn

\

+
such that 2 < —, then ay
p u

is defined as the
p+u

mediant of gvand %u Described below are some use-~

ful properties associated with Farey rationals.
Theorem 1

9 g q" ;
If T < ? < 5—-are three consecutive Farey ra-
tionals in F.- then
[1]
q.49'+*qg
PRI @

Proof of this mediant property can be found in
Hardy and Wright [5]. One can repeatedly apply
Theorem 1 to generate the entire Farey series F

n
Atgorithm for Generating Farey Ratjonals

Step 1 Start with 9 and L as tne two extreme ra-

1 1
. . . . 0+1_1
tionals and find their mediant TFT7 7

as the first nontrivial Farey rational at
the center of the series.

Find the mediants of all existing pairs of
Farey rationals until no more mediants
with denominators < n can be found.

w
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The following properties are immediate from
Theorem 1.

Corollary 1

[
Let %r < % be any two consecutive Farey rationals

in Fn.
p'a-pg' =1 3
n+1<p+p' <2n -1 (4)

q

1
The mediant 5 : gr, falling 1in the interval

L}
(%ng), is not a member of F,, due to Property (4).

The above corollary implies that no two consecu-
tive Farey rationals can have the same denomina-
tor, as long as n > 1. Consider an example of n =

8 and k = 3. The Farey rationals in F8 are tisted

below in ascending order.

E O 1T 1 1 1 2 1 3 2 3 1 4 (5)
8~ 1'?7fP3’P7f?8'?77?7'
3 5 2 5 3 4 5 6 7
'gl 8_’ 3" 7'4’ K' 'S'I 'gl 7’ g’ TI
Coroltary 2
Given two integers i < j, then all fractions

with denominator i, % for h =1, 2,3,..., -1,
can be reduced to be irreducible rationals in Fj'

This corollary shows that we can generate the
entire Farey series Fn by simply listing all the

rationals with denominators increasing from 2 to
n. Repeated appearance of rationals with the same
irreducible value should be crossed out from the
list. For n = 8, the Farey series F8 can be gen-

erated oy the following triangular listing of all
irreducible rationals with denominators strictly
less than 9.
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plus %'and %
The gaps between adjacent Farey rationals are
not uniform. We shall demonstrate the gap distri-
butions of Farey series in section 4. The follow-
ing theorem provides some bounds on these nonuni-
form gaps.
Theorem 2
Let 9 be the gap between any two adjacent Farey
rationals in Fn' Then

1 1
ATy $9 57 )

Proof:

1
Consider two adjacent Farey rational %v< %r in

F .
n
q=4  -9a.app'a
R PP
3y Corollary 1, pq" - p'q =1, we have g = E%T'

3y the fact that 1 < p < 2, 1<p <2%, p# o0,
and n + 1 <p+p'< 2n0-1, we nave




Max{pp') = ne(n-1),

T1en

Min(pp")

Therefore (6) is proved by the following ine-
quality

1 < g < ot Q.E.D.
Max(pp™) = 9 Z Winlpop"™y
2. THE UNION SPACE OF RADIX FRACTIONS AND FAREY
RATIONALS

Let R(0,1) = [0, 11 be the set of real numbers
within the unity interval and Rt be the set of t-

bit radix fractions. 0f course Rt C RG,1 for
all integers t > 0. A union space Ut is defined

as the union of the set of radix fractions Rt and
: ) t/2 .
Farey series FZL/Z of order 2 . i.e.
Up = R U Fot/2 4]
With t = 2k, we write

Up = R U Fok (8)
The union space U2t is formed by inserting the
Farey rationals of F2k into the uniform gaps of

the fraction set R The distribution of these

2k*

interleaved fractions in the union space U_,k is
«

Symmetrical with respect to the center point of
1/2. The dual fraction representations described
in Fig. 1 correspond to all normalized fractions
in the upper half of the union space Ut = U2k'

Normalized FLP arithmetic operations over this un=-
ion space will pe defined in section 5,
Theorem 3

The intersection of tne fraction set RZk with
the Farey series sz equals the fraction set Rk
Rak M Fak = Ry @)
Proof:
38y definition, Rk CcC sz and Ry C Roy
Thus, we have Rk (- FZI-: n Row (a)

. (
Now consider any % e Ry F]sz.
¥ q = 1em = l'ﬂl . ] 1
Then 5T on ZEL € Ry for some m. This means

that p divides 22k or, 1in turn, p divides 2k.

Therefore, there exists an h such that
a4 . ah _ah
P p*h oK € Ry
Therefore, we have sz ] R2k C Rk (b)

(a) and (p) completes tne proof.
Q.E.D.

Theorem 4
Let t =2k and a = % and b = % pe tyo  adja-
t t
2 2
cent fractions in set Rr for some 0 < w < Zt - 1.
There can be at most one Farey rational % € sz in
the interval La,bl, i.e.

W q Wt
“‘i"i—_ Q)]
2P,

Proof: Consider any two adjacent Farey rationals

C ! -

.g. <dr i Fok. By Theorem 2, we know that g- and
L}

gr must be at least

T 1k———-distance apart, which
2721

is longer than the uniform gap Z-Zk between adja-
cent fractions in R2k' Therefore, in each gap of

Rt’ there exists either one or none Farey rational
from sz.

Q.E.D.

Figure 2 shows the set-theoretic relationships
among a number of subsets of fractions. These
fraction subsets will be used to specify various
arithmetic functions over the Cartisian product
space U2k X U2k of the union space. The wunion

Space corresponds to shaded area in Fig. 2.

S
" to,11 A

Note : The Union Space U2k corresponds to the shaded area.

Fig. 2. Set - theoretic relationships among a
numoer of subsets of fractions in the
unit interval £o, 1.




The gaps between adjacent Farey rationals in

F2k are not uniformly distributed. 1In fact, it a R~ R3K an
assumes the symmetric distrioution pattern as Then, Wwe apply a rounding transformation to pro-
demonstrated in Fig. 3 for Fip. The curve is sym- duce the machine representation
metrical with respect to the rational 1/2 at the
-k p ot R3k + ‘J2k 12
center. Two largest gaps with value 2 occur
a1 2k_1 1 This p-mapping maps every 3k-bit fraction in
between (T’ —F) and between ( PG 1). The smal- R3k into a 2k-bit number in Ut’ which appears ei-

2 2

. 1 K ther as a 2k-bit normalized fraction m ¢ R
lest gap equals , which is about 2" times
2K ko)

2k or a

normalized Ffarey rational g-g F2k, depending on

smaller than the maximum gap for larger k. The

average gap in F32 are about ten times smaller which of these two representations results in less

error. The fraction y=a(x) can be written as the

than the maximum gap in F32_ When the word length sum of two subtractions as shown oelow:
increases, the average gap tends to decrease ra- ]E 2k bits __~4£_ kK bits N
pidly.

The gap probability distributions associated l u ! v ‘*7
with four Farey series with increasing orders of . ]
16, 32, 128, and 256 are demonstrated in Fig. 4. binary Initial Guard Bits !
As the word length increases, the gap distripution point approximation
tends to become a delta function near the zero.
This means that most gaps are small when k is suf- -2k -2k 53k

9ap y = us2 +ove(2 -2°%, (13)

ficiently large. Only a handful of gaps appear as
spikes with very low probability. The gap distri- - s L _
bution for the union space UB is shown in Fig. 5. where u and v are 2k-bit and k-oit integers. oo

viously, the subfraction u-2-2k can be used as an

Most gaps in U, assume the value 272K a5 shown by initial approximation of z=o(y).
the flat peaks at the top of the drawing.  Small Assume y ¢ La,bl, where a = w/22X 3nd b =
gaps between Farey rationals and radix fractions (w+1)/22k are two adjacent fractions in RZk There

appear as steep ditches.
are two cases to be considered in realizing the

rounding operation p in the union space U

2k "
4. CRAT¥3NAL ROUN8¥§G SCHEMES{ f i R Case 1. No Farey rational lies in La b]. The
ons1 er1an arbiirary rea raction x e 4 value of p(y) is determined by the nearest neigh-
where R = 52,1] is the upper half of the unity in- borhood rounding as usual. That is
terval. This real number x zan be approximated by
a machine number in space U2|< in either radix form a, if a < Y.S'EEE
or rational form through the following rounding (y) = A4)
operations. First, we retain the leading 3k bits pty b, if atb < <b L
of x through an o~mapping 4 2 Y2
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Case 2. There is a Farey rational f C[a,b] such
that a < f < b. Assume y ¢ [a,fl. (The case of y
e [f,b]) can be similarly discussed).

a, if |y-a] < |y-f]
f, if Jy-al > |y-f{~

oCy) = 15)
where |y-al and |y-f| are the absolute distance
between y and points a and f respectively.

In both cases, we need to first decide whether
there 1is a Farey rational, f, lying in the inter-
val Ca,bl. This can be done by the following re-
cursive procedures in finding the Euclidean con-
vergence to points a and b respectively.

We can write the point

W U0
a = —~=—r=la,,a,,a,,***,a
22k Vg 0771772 d]
=3+ 1
a, + !
a + 1
. (16)
1
3g-1 ¥
1
a4
Yy
where integer a, = VTJ for i > 0, and for i > 1,
i
we have
Ui = Ujeq = 3509 " Vi
- 7
Vi = Ui
q.

We define Ci = Bl-as the successive convergence to

.i
a by the following procedure with initial condi-
;1ons CD =4y = 0 and Pg = Pq = aq = 1 and for i >

9 T35 * - * A

_ . . (18)
Pj = 385 * Py ¥ Pi-2

Find the smallest i, say i = d, such that Py >

2k, then the nearest Farey fraction to point a is

q4.
obtained as f = C_,_, = _Q_l_ It is interesting to
d-1 Py-1
point out that f < a when ¢ is even, and that f >
a when d is odd. Similarly, we can decide whether
f <bor f>b. The two margin detections reveal
the fact whether there is a f in [a,b]l or not.
The nearest neighborhood test is then applied to
obtain the final value z = ,(y) = pa(x)) =

pealx). To do this, the use of the right k guard

digits guarantee that minimum gaps are used to en-
sure the optimality of the rounding scheme in UZk'

Detailed descriptions of above rounding procedures
written 1in Pidgin ALGOL are given in the full-
length paper [71.

The following result proved in [5] can be used
to estimate the rounding errors associated with
the proposed system.

Theorem 5
T If x Ts an arbitrary real fraction in R(0,1),

then there exists a Farey rational %»e F2k such
that

1 v 1
S — P IR a9
w ¥y = R PLIPH
For large k, this bound can be written as
2~(k+1) z-k
- < Ix - = <=

2, RATIONAL ARITHMETRIC ALGORITHMS
Four rational arithmetic operations, namely
RADD, RSUB, RMPY and RDIV, are to be defined below

in terms of composite mappings from set U2k X U2k
to set U2k' The operand pairs in set U2k X U2k
can be divided into four subspaces
Up X Upp = Ry, U Fok) x Ry, U Fok)
= Ry x Ry U Ry x Fok U Fok x Ry

U Fok x Fok (20)

It suffices to consider arithmetic operations on
three subspaces R2k X RZk’ RZk X sz, and F2k X
sz. Operations defined on subspace FZk X R2k are
similar to those for R2k X F?k. Only normalized

D <1 from R and normal-~

B . 1
radix fractions 7'§-22k 2K

ized Farey rationals % §<g <1 from F2k are con-

sidered legitimate operands. Operands from set

sz represented in complemented from, p;qr must be
converted to normal form, g, before they can be
applied in rational arithmetic operations.

Four standard fixed-point arithmetic opera-
tions, denoted as @, 8, 8, and @, and four auxili-
ary operations denoted as a, 8, §, and p, used to
define rational arithmetic operations associated
with mantissa arithmetic in FLP processors. The
mappings o and p were defined in (11) and (12)
respectively. g is a left-shift operation which
shifts a radix fraction or the numerator of a
Farey rational one bit to the left. § can be
similarly defined except shifting to the right. g
is needed for normalization purpose. &§ is needed
for operand alignment to avoid mantissa sum over-—
flow or quotient overflow. We shalt first define
RMPY and RDIV operations.




Rational Multiplication (RMPY)

$ <] a I
1 lized fractions must be
T:e product of two normalize . r R2k X R2k - R2k X R2k - F22k N R3k N U2k
in [f'1)‘ Normalization is required only when the s 8 . )
product is in C1,). Rak X Fak * Ryp X Fyp » Fa3k > Ry » U,y (24
RMPY : 8 8 a 0
For X Fsk » Fok x Fok » F.2k + R,, + U
P 8 a 0 2k 2 2 2 2 3k 2k
RZk b RZk + th + RAk * R3k + U2k’ In FLP arjthmetic,_egponents must be equalized
before mantissa addition or subtraction are per-
8 B a o formed. One can increment the smaller exponent to
Ry X Fok + F 3k > F 3k » Ry +. U, , 23 match the larger one and at the same time shift
2k 2 2 2 3k 2k : . : :
. right the mantissa associated with the smal ler ex-
] ) a o ponent.  Suppose we start with two normalized FLP
Fok x Fok » Foek » Fyek + Rap * Usps numbers. After equalizing the exponents, we may
o . . end up with one normalized mantissa and one unnor-
By considering Ry €& F,2k, the operations RZk malized mantissa. The sum of these two mantissas
] "] lies in range [%,2). We shall denote
X sz + F23k and F2k X sz > F22k are performed by . 1
- X
multiplying the corresponding numerators and Rop = {xlx el5,2) and 7€ Ry
denominators separately. The B-operation may be * q
- . - : ko _ q 1 . q/2
skipped if the initial produce after 8 is already and For = {315'2 (,2) and 5 ¢ Foky
. . 1
normalized in [x,1). The division-by-2 operation corresponds to right-
shift operation 5.
Rational Addition (RADD)
Rational Divigigg (RDIV)
; b,d _ bec @ s o
. Due t? the fact that 3/ = a+g7 RDIV can be de- Ry X Ryp = R;k * Ropeq > Usy
fined similarly to RMPY. If the dividend is
greater thgn.the divisor, one left shift is needed LA 8 a [
on the dividend to avoid quotient overflow. No Rak X Fap + F3k + Fy3k » Rak + Yk 25
normaljzation is needed, when both operands are
normalized and properly aligned. 14 « § a p
RDIV: "
sz X F2k > F22k * F22k + R}k + U2k
(First Operand) (Second Operand) (Result)
A Q B
T Mantissa
[ ! L T [g L : ] Re;lsters
Kk blts k bTts k bits k bits k bits k bits
— Exponent
E 2 l E ; ] _b I Registers
k bits k bits k bits
Ayoa By N Pk Av-ak 8.2k Ay B3
™ { h
3k-bit k-bit 2k % 2k 3K x 3k
Mantissa CIn Exponent in Multiplier Divider
cc'ut Adder cou t Adder
L %1k P=Pyy-1-+-P1Pg Qeagp ye-9)9
Hote: Registers a,3,and b are
used for exponent operations 22$;;ER >EE%EE— ggsz?gk chEAR
and also used for storing

guard bits during Mantissa

operations,

Fig. 6.

Basic hardware components in a r
with mantissa in interleaved rad

ix/rational form.
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Rational Subtraction (RSUB) can be defined
similarly to RADD. Detailed procedures in flow-
chart form for the above rational operations have
been described in £7]. The architecture of a FLP
arithmetic processor for implementing the above
rational mantissa operations is proposed in Fig.
6. Three sets of registers are used. A, B, and Q
are mantissa registers (each Zk-bits) and a, b,
and q are exponent registers (each k-bits). In
addition to one Mantissa Adder and one Exponent
Adder, the system requires also & hardware Multi-
plier and a divider as shown.

6. ARRE OF RATIONAL ARITHMETIC
Mckeeman [13] and Cody [2] have derived analyt-
ic formulas for measuring the Average Relative

Representation Errors (ARRE) associated with con-
ventional FLP arithmetic systems with different
word lengths and base values. Recently Kuck [10]
and his associates provided a comparative study of
ARRE's caused by various . rounding schemes. In
this section, we present an ARRE evaluation of the
proposed dual-representation system for. mantissas
of FLP numbers. Qur results are then compared
with those associated with : conventional systems.
We consider normalized FLP system with a loga-
rithmic probability distribution [4] for all frac-

tions between %<5 x < 1, where r is the base
value,
POO = ! 26
e (nr

The relative representation error . associated
with approximating an arbitrary real fraction x by
a t-bit machine fraction is defirned as

lacx)| = Igii%;:_iﬂ @n

where p{(x) 15 the machine number obtained by ap-
plying an appropriate rounding scheme p. In gen-
eral, the ARRE can be defined to be

1
ARRE = f [Q(x)]+P(x)dx (28)
1

In the conventional FLP system with the set Rt

of uniformly distributed radix fraction of t bits
long, the error function Q(x) can be approximated
by

1 Ave
=< x <1 et0=x| i 2"ty
X X

)

Q(x) =

Therefore, for all p(x) ¢ Rt’ we obtain the fol-

lowing closed result

[

=270 0 o

= 1 -
ARRE(Rt) = —X—-.—r-n*—r WX dx

5 !.al-’ -

For our dual representation system, the gap
distribution between adjacent elements in Ut is

not uniform. The error function Q(x) cannot bpe
written in closed form for all p(x) sUt. We can

still evaluate the ARRE for the union -space Ut oy
computing tne following summation series with uni-
form increment A smaller than the minimum g3ap in

=1 5 .- - 1/r]
Ut' Let Xo =T and integer j E»—jr—~— . We are

considering j equally spaced fractions in interval

2’

., 1 . . .
X5 = Xy + ey = F-+ ia for i = 0,1,2,..., i-1 31

[l é] as sample points in our simulation study.

We evaluate Eg. 28 for all p(x) eut oy

=1

ARRE(Ut) P(xi)'Q(Xi).A

&

B T e a1
=0 Nl o4

i

i

. 1T iy = 1 u s
1 ii; Aolpu(F‘+ 14) (F.+ 1A)|
T & ‘ (—1r-+ ia)°

where p : {X{|O < i< i1 - Ui is' the rounding

method specified in Egs. 11-and 12:

Table 1 shows a comparison of the gap . charac-
teristics and the . ARRE's ' associated with three
fraction number systems, R2k' sz, and UZk' for

base r = 2 and two fraction word lengths 2k = 8
and 16. The increment A used in each simulation
experiment was chosen to be a fraction of the
minimum gap in each case:

The,ARRE(UZk) associated with different k have

been computed by simulation expériments on the CDC
6500 computer .at Purdue University. A comparison

of ARRE (Rt) and ARRE (U,) is given in Table 2 and

plotted in Fig. 7 for base r = 2 and word length
from 6 to 20 bits. The increment used for the un-
ion space Uy, is equal to o = 0.240 x 1077, 1t
took 4.4 hours CPU time of CDC 6500 to compute the
value of ARRE (UZO)'

An ARRE Improvement Factor $(2k) is defined
below to compare the relative performance of ARRE
(UZk) over the conventional ARRE (Ry).

ARRE (RZk) - ARRE (UZk)

Bew =
ARRE (R,)

(33)

The B(2k) is plotted in Fig. 3 for word
lengths from 6 to 20.bits. The improvement factor
82k) tends to fluctuate around 10% for all word
lengths greater than 8 bits. This means that our
proposed rational arithmetic system is always 10%
better 1in precision than the conventional radix




Table 1. Computer Simulation Results of Numerical Characteristics of Various Number Systems.

property Minimum Gap Maximum Gap Average Gap ARRE
system 2k=8 2k=16 2k=8 2k=16 2k=8 2k=16 2k=8 2k=16
Radix - - - - - - - -
Fractions {0.391x10°2 | 0.153x10™ o.391x10™" 0.153x10™" | 0.391x1072 0.153x10™ 0. 141x107" 0.550x10"7
Rok
Farey -2 -4 -1 -2 -1 -4 -2 -4
Rationals [0.417x10 0.153x10" " [0.625x10 0.391x10 0.125x10"" [0.501x10 0.956x10 0.750x10
F.k
2
Union Set 1y eaxio™3 0.598x10"7 [0.391x1072 0.153x107" 0.313x10™% Jo.117x107" 0.125x107% [ 0.495x10"7
Yak
Table 2. Comparison of ARRE (RZk) and ARRE (U2k) for various Word Lengths,
Word
Length 6 8 10 12 14 16 18 20
ARRE (R, ) 15.64x1073 [1.41x10™3 [3.50x107% [8.81x10™5 |2.20x10"5 |5. 506106 1.38x10°8 [3.44x1077
ARRE (U, ) [4.39x1073 [1.25x1073 |3.1x10™ [7.91x10™5 |1 .98x1075 5.95x10°% [1.23x107¢ [3.09x10”7
ARRE o(t)
o, 4
(-4
1072 ¢ —=%—x—— ARRE(R,) X
N\ 20
03 \X ==-0=--0m-= ARRE (U,) ;
e ‘o\\
3 E
o3 g
IO-A T \§>§§x -
'o\ '™
\\\K ° 10 | S ———,
107° N p )
1076 ¢ \°\ &%
- Word length (bits) N Fraction length (bits)
7
10 + + 3 ' } } . ———y ' + t
6 8 10 12 14 16 18 20 ¢ 8 10z ok 16 18 20

Fig. 7. ARRE's for radix fractions in Rt and for
Fig. 8. The ARRE improvement factor ga(t) versus

uni c i i
on  space Ut versus various fraction word length t.

length,
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system. This is considered a significant improve-
ment over the conventional approach due to the ac-
cumul ative nature of representational errors in a
sequence of numerical computations.

7. CONCLUSIONS

The proposed FLP arithmetic system using inter-
{eaved Farey rationals and radix fractions results
in significant (10%) dincrease 1in representation
accuracy of machine arithmetic without extending
the operand word length. Number-theoretic
analysis and extensive computer simulation results
are reported. The numerical simulation experi-
ments verify the theoretical results nicely. Our
flexible dual-representation system complements
the p-adic rational arithmetic developed by Krish-
namurthy [9] in the sense that our system can be
immediately applied to existing FLP arithmetic
computations in general. Of course, there exists
the tradeoff between representation accuracy and
computation speed. We gain the accuracy at the
expense of increased computation overhead. Howev-
er, with pipelined design of the proposed
rational/radix arithmetic processor, the problem
of increased delay due to computation overhead
can be greatly alleviated. Continued efforts
should be conducted in developing such high-speed
pipelined rational arithmetic processors.
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