APPLICATION OF THE RESIDUE NUMBER SYSTEM TO COMPUTER PROCESSING OF DIGITAL SIGNALS

G. A. Jullien and

Department of Electrical Engineering
University of Windsor
Windsor, Ontario, Canada,

ABSTRACT

The residue number system offers parallel
processing, digital hardware, implementations
for the binary operations of addition,
subtraction and multiplication. This paper
discusses the use of the residue number system
in implementing digital signal processing
functions, in which these binary operations
abound. The paper covers implementations using
arrays of read only memories, and briefly
discusses the use of parallel microprocessor
structures. ROM array implementations of
scaling operations are also presented.

INTRODUCTION

Nearly all digital signal processing
structures consist of interconnections of the
two basic arithmetic operations: addition and
multiplication. The residue number system (RNS)
has unique advantages when used to implement
such structures. These advantages stem from the
fact that parallel independent paths can be used
to perform the arithmetic operations. Each path
can be constructed from a moderate IC package
count, and be made to operate at very high data
rates.

The theoretical basis for the RNS has its
ground roots in Fermat and Gauss, though the
modern, computer oriented work was done in the
50's and 60's. In particular, the work of

ap and Szabo and Tana\ka[2

Svoboda are important
primary references.

In order to introduce the notation, and to
point out the special properties of the RNS, the
following introduction is presented.

The RNS representation of a number, X,
takes the form of an N-tuple

X=(x0, Xqsees XN-1)

Each digit, or residue, is found from:

CH1412-6/78/0000-0220$00.75 (c) 1978 IEEE

W. C. Miller

N9B 3P4

X5 = X Modulo m.oor x; = t Xl
The § mig are relatively prime and yield a
N-1 . .
number range M =_T_T_m1' A signed integer
i=0

system can be developed using the additive inverse,
or modulo complement notation, where the complement
of X, X, is found from X = M - X. The complement

operation on individual residues is ii = M- X,

Thus X = ( X . ;N-1)' Using this

9> Xyr e
convention for signed integers we find the
following remarkable property. Binary operations

of addition (subtraction) or multiplication between
two variables represented in the RNS, can be
performed by independent operations on the

ie., Z=XeY
z; = 'Xi ° yil n. Wwhere o € (+, .)
entirely eliminated the inter digit carry

respective residues. implies

. We have

required by weighted magnitude systems. The RNS
is not without disadvantages however. In particular
there is no well defined order to the RNS digits,
and this makes sign and relative magnitude
determination difficult. In fact, what is easy to
perform in a weighted number system is difficult
to perform in the RNS, and vice versa.
Fortunately, most digital signal processing
structures have an abundance of easy operations
as far as the RNS is concerned. Probably the only
difficult RNS operation to be performed, is that
of scaling to prevent overflow 3]
Two examples of typical digital signal
processing structures are shown in Figs 1 and 2.
Fig 1 shows a second order canonic recursive
section which can be repeated, or multiplexed, to
provide a required filter transfer function 43




Here, 5 multiplications and 4 additions are
performed for the price of one scaling operation.
In Fi€52, a radix 4 FFT complex calculation is
shown™™ =, Assuming that we require to scale after
every other application of the structure, then we
perform 24 multiplications and 44 additions for

a total of 8 scaling operations. In terms of each
scaling operation we are performing 3
multiplications and 5.5 additions. There are some
digital filtering structures that require no
scaling, since they use exact arithmetic. These

are the many classes of Number Theoretic

Transform (NTT) that now exist. Certain speed and
hardware advantages can be obtained by implementing
NTTs with the RNS.

LOOK UP TABLE IMPLEMENTATION
If we restrict the moduli set to a maximum

modulus size of 32, then the binary operations can
be carried out by storing all possible outcomes

in a Took up table of maximum size 5K bits. Thus,
commercially available 8K bit single packages can
be used. This is certainly a cost effective
solution for multiplication. In terms of addition,
fairly straightforward logic circuitry with small
capacity ROMs can be used[]1]h though this consumes
more 'PCB real estate' than the single package ROM.
One big advantage of the single chip ROM approach
is illustrated in Fig 3. Pre and post binary
operations with constants can be calculated and
stored in the ROM along with the results of the
particutar binary operation. Table I shows values
of M for monotonically descending, relatively prime
moduli m; & 32. Moduli m; < 16 can be implemented
in 1K ROMs. For most digital signal processing
applications, the number ranges are more than
adequate for a sytem with 5 or more moduli.

The operation of scaling is more cumbersome,
though ROM arrays can be used to effect two
different scaling oper~a’c1’onsl:'3:l . The first one is
the technique of exact division. We assume that the
scaling factor is the product of the first S moduli
K =_S|:|Lm‘

i=0 !

performed by the following recursive relationship.

The scaling operation Y& X/K is

221

L

04 0= 0~ g,

m; lmy

where @ = X . ®" = Y.and ¢, = | @' |, with the bounds
0<k<S—-LkgisN-1

This is referred to as the original scaling
algorithm. The second technique is that of
summing scaled metric vectorst]‘, and this is
performed as below:

X;
=
m,_m_' .

2

Yi-lY 1)

0 m

my|m,

This is referred to as the estimate algorithm,

In both cases we assume that the scaling factor
is formed by multiplying the first S moduli. [']
indicates the integer value of a function. In
both algorithms we have to reconstruct the
first S residues of the scaled number. This is
referred to as base extension 2 » and employs

a partial conversion to a mixed radix weighted
magnitude representation. Figs 4 and 5 show the
two scaling algorithms, plus base extension
stages, implemented as ROM arrays. The pre
calculated tables T and e can be found in
reference [3] . The Figs are shown for S$S=3, N=6.

HARDWARE FEATURES

One of the advantages of structures using
ROM arrays, is the ease of pipelining for high
speed throughput. Fig 6 illustrates the approach
for the function:

lelmi = @) + (c.0) n,
A ripple latch pulse stores the output of each
ROM, this becomes part of the address for the
next ROM. The buffers are used to provide delay
and power gain. Providing that we can keep the
pipeline full, the throughput rate is equal to
the inverse access time and latch settling time.
A conservative figure for 8K ROMs is in excess
of 10 MHz.

As an indication of the hardware
requirements for the examples given in the
introduction, we consider implementing the
following two RNS systems.

i) Digital Filter 2nd Order Canonic Section




n, € 929,31,25,27,328  5%2 5 M= 1.16 x 224

K=1.76 x 29. We chose an input data length of

12 and a coefficient range of ~ 29. Assuming

~ 2
that the filter has a gain (including scaling)

of <1, we will never overflow the number range.
The hardware requirement for estimate scaling and
filter implementation is 33 8K ROMs with latches.
This assumes that we already know the coefficients
of the filter, and that the section is not to be
multiplexed. If this is not the case, we will
require an extra 20 ROMs assuming that the
multiplier coefficient, A, is included in the
scaling array. If we allow the section to be
multiplexed in a parallel structure, we can keep
the pipeline full (and hence achieve a 10 MHz data
rate for the section) by arranging as many parallel
stages as there are latch cycles in the section.
This particular pipeline problem will only occur
in recursive networks.

ii) FFT Radix 4 Complex Calculation
Using a comprehensive error analysis

6]

we are
able to optimise RNS system designs based on a
prescribed normalised RMS error value. The
following system yields acceptable errors as far
as using the FFT to filter audio signals is
concerned. m, € $31,11,29,16,15,13% s =2

M=1.84 x 22 K =1.29 x 2/. The input data to

the FFT is 11 bits wide, and the 'twiddle factor'
coefficients are approximately 7 bits wide. The
theoretical maximum normalised error is 1.8% and
this has been verified experimentally. Results are
very good for wide band filtering of speech or
music signals. The ROM requirement is a mixture of
8K, 4K, 2K, and 1K packages since the moduli set
spans both 4 bit and 5 bit resolution. The total
package count for the radix 4 complex calculation
(8 real inputs) and 8 scaling arrays is:

76 x 8K; 32 x 4K; 64 x 2K; 200 x 1K.
The package count seems large, but the performance
is fairly impressive. Assuming that we adopt the
pipelining principles outlined above, ther the
computational element accepts 8 real inputs in less
than 100 nS. The serial input data rate is
therefore in excess of 80 MHz. If we choose an FFT
of 1024 complex samples, then we require to

multiplex the system through 5 cascaded stages,
and so the serial input data rate for a complete
FFT calculation is in excess of 15 MHz. It may
be necessary to pack the pipeline with extra
latch cycles in order to be able to control the
multiplexing of data into the computational
element more effectively.

NTT IMPLEMENTATION

The NTT is a transform that is structurally
equivalent to the Discrete Fourier Transform,
with the exception that it is defined over a

finite ring of integers. As such, the computation
is exact. The transform domain does not seem to
have any practical value (unlike the Fourier
Transform domain), however the cyclic convolution
property of the DFT is retained in the NTT. The
transform pair is defined as:

l N-1 I N-1
- E nm . - -1 E -nm
Xm —r Xn°( M Xn N p— de M

0< m,n £N-1. o
N in the ring.

is a primitive root of order

i.e. c(N = 1. A complete
description of the implementation of NTTs in
finite integer rings can be found in reference
[;7] . In order to make the NTT an efficient
convolution operator within the binary number
system, = 1is normally chosen to be 2 and M
chosen to be of the form Zk I 9. These
restrictions can be Tifted if we use the RNS. In
doing this, we require M to be composite and we
have to ensure that the NTT exists in each
residue ring modulo m, . The flexibility can be
increased by defining the NTT within complex

residue ringstg]

. General rings of quadratic
integers are also currently being investigated.
In using ROM arrays for NTT implementation, we
require all the moduli to be prime and this, in
general, requires some of the moduli to be
greater than 32. We can still use 8K ROMs, of
course. As an example of a radix 2 complex
butterfly, we can use moduli mié’§31,47,79,97}
which gives a dynamic-range of over 23 bits and
ution length of 32. 170 8K ROMs

are required for the implementation. This will

a cyclic convol

process 64 real input data in excess of a 13 Miz




serial input data rate.

PARALLEL MICROPROCESSOR IMPLEMENTATION
Because of the independence between operations

on residue digits, the RNS is ideally suited to
parallel processing. Rather than store just the
results of residue operations (as in the ROM
array approach) we can consider using single chip
microprocessors to store complete algorithms
within each modulus. The residue operations will
now be computed instead of storing all possible
outcomes. Using 8 bit microprocessors, we can
compute modulo m. addition for misi 256. If we
choose the m; to be prime, then primitive roots
exist within each ring. A table of indices can be
constructed, allowing multiplication to be carried
out using modulo mi—1 addition and index Took ups.
If we restrict the moduli to mi-s 127, then
addition tables with built in inverse index look

ups can be stored in one page of memory (256 bytes).

If we also perform addition operations using table
look up, then the total memory requirement for 2
addition tables and one index table is a maximum

of 632 bytes. If we choose, for example, an Intel
8048 series chip, then we have 392 bytes left for
the algorithm. With 4 chips, we can generate a
dynamic range in excess of 27 bits. For scaling
operations, an 8 bit I/0 port can be bussed between
all the chips for inter digit transfers. This will
not be a requirement for the basic NTT, but will

be necessary if scaling and/ar residue to binary
conversion are required['gj‘[101 on the final
output.

CONCLUSIONS

In this paper we have presented a brief
summary of the use of the residue number system
in implementing digital signal processing
functions. The use of ROM arrays in both high
speed computational elements, and associated
scaling operations, has been discussed. In
particular, we have used examples of recursive
filter sections, and FFT and NTT computational
elements. Alternate implementations, using
parallel microprocessors, has also been presented.

223

REFERENCES

[1)

{2}

(3]

(4]

[5]

[s]

7]

[s]

(o]

(1]

A. Svoboda, 'Rational numerical system of
residual classes', Stroje Na Zpracovani
Informaci, pp 1-29, Sbornik V, 1957,

N. S. Szabo and R. I.
arithmetic and its applications to

Tanaka, 'Residue

computer technology', New York, McGraw-Hill
1967.

G. A, Jullien, ‘Residue number scaling and
other operations using ROM arrays', IEEE
Transactions on Computers, Vol C-27,No. 4,
pp 325-336, April 1978.

L. R. Rabiner and B. Gold, 'Theory and
application of digital signal processing',
Englewood C1iffs, N.J., Prentice-Hall, 1975
G. A. Jullien et al, 'Hardware realisation
of digital signal processing elements using
the residue number system', Proceedings of
ICASSP, pp 506-510, May 1977.

B. D. Tseng et al, 'An error analysis of

a FFT implementation using the residue
number system', Proceedings of ICASSP,

pp 800-803, April 1978.

R. C. Agarwal and C, S. Burrus, 'Fast
convolution using Fermat number transforms
with applications to digital filtering',
IEEE Trans. on ASSP, Vol AS5P-26, No. 1

pp 87-97, April 1974,

M. C. Vanwormhoudt, 'Structural properties
of complex residue rings applied to number
theoretic transforms', IEEE Trans. on ASSP,
Vol ASSP-26, No. 1, pp 99-103, Feb. 1978.
H. K. Jenkins and B. J. leon, 'The use of
re sidue number systems in the design of
finite impulse response digital filters',
IEEE Trans. on Circuits and Systems, Vol
CAS-24, pp 191-201, April 1977.

A. Baraniecka and G. A. Jullien, 'On
decoding techniques for residue number
system realisations of digital signal
processing hardware', IEEE Trans. on
Circuits and Systems, Vol CAS-25, No. 10,
October 1978.




[11] D. K. Banerji, 'A novel implementation for
addition and subtraction in residue number
systems', IEEE Trans. on Computers, Vol C-23,
No. 1, pp 106-109, January 1974.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial
assistance of a grant from the National Research
Council of Canada.

FIGURES
x
1)
Y
N e - iopUt 10
s i scater
-,
W
w(~1)_\
b
L N
; e
L ///
2

(a) w___/

output from
scaler (b)

Fig. 1 (a) Canonic section (b) ROM implementa*ion

‘!
a
i
C; .
[
<, T
T :
i
2n
wo -
i [
-1
wZ:\ .;/

! TS
4 L.~
1]
n
w T~
T e — e — exe
Wi 1 P ir

Fig.2 - Radix 4 Complex Calculation

x
? ._—.?__./ YOV vanabies
‘ "‘ "1 -_\ COrt gty
N 0] - bwary operation

Fig 3 Binary opcrations that can be combined into one look-up table.

TABLE 1

{1 m,

jeo

3

2 100 x 2°
31 1.94 % 2°
29 1.76 x 2'*
27 148 x 2'°
25 1.16 x 2%

1.66 x 21"
19 198 x 2%
t7 105 x 2"

13 171 = 24
11 117 x 2**
7 103 x 27

=R RN VA W )
~
=

0)
B~
I J\\+ )
b o K
“ ,ga:/ﬁ

0}

o) & ~~ 4

Gy o0 .
) /,-i; )
2 L

) ¢f”/.t‘

©

) ¢ )\+

by o TETN(
s~ _

K +
trg) 3-8

% o

j£3

ESTIMATE

(!u) T0.0
=) T 7 TN
T1 (2,1}
o A0~ N
xy) 22) -~ z
LX) Lo
) Lo ~
AL R PR S
) T -7 2 3 3
TN 62
() N0
G FUPER, USSR, Yy
AR ¢ ¢
Tz [CAM] 72(5_2)
{x,) T(5,0) ~
0 B0~ T e )
by Liss - S s

+ #)

+E

ORIGINAL

Fig.l‘.-- Scaling Arrays




) 60 ) T,0.00 ~

+
— "0 ]
/"Z () ) T.01)
ty) Tles \ ) ~— 1.0
6 ) T,0,00 ~_ +
ERTUIN N\ ) Lo <7 '
ohm—hw ) ——— o
y) T.(55) {r,) T,0.C)
s Ty o ~ +
[SRACAT R 2
MIXED RADIX ) = e

FINAL STAGE

Pig, S~ Base Extension Array

(yz)

to other Tatches

ll, )

!

Tatch

5o | )
'5 latch g
5 i
]b'mi " rom
+ L
el J
i [
g ROM ,__jlatch ,
—_ g 5
lq) 8
m;
to oth;;f\\\J ~
latches buffer
latch
pulse

Fig. 6 Pipelining array

225




