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Abstract

An investigation of the feasibility of a fi-
nite precision approximate rational arithmetic based
on fixed-slash representation of rational numbers is
presented, Worst-case and average-case complexity
analyses of the involved rounding algorithm (an ex-
tended shift-subtract ged algorilthm) are presented.
The results are applied to a proposed hardware re~
alization of a fixed-slash arithmetic unit.
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I. Introduction and Summary

This paper presents some partial results of
ongoing research on the foundation and implementa-
tion of a finite precision approximate rational
arithmetic, based on the fixed- and floating-slash
representations presented at the previous symposium
on computer arithmetic. Hitherto, floating-point
approximations of real numbers have been considered
the (almost only) viable number representation for
sclentific/numerical computations. The fixed- and
floating-slash representations provide an alterna-
tive to floating-point representations, an alterna-

tive which has a number of merits worth investigating.

This presentation concentrates on the algorith-
mic and architectural feasibility of the involved
arithmetic, primarily the rounding algorithm.
Loosely speaking, this rounding algorithm is based
on the computation of the '"last representable" con-
tinued fraction approximation of the number to be
rounded. This is certainly not a trivial rounding
algorithm compared to roundings used in floating-
point systems. The present analysis demonstrates
that this rounding can be realized in today's tech-
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nology at a speed which makes such approximate ra-
tional arithmetic feasible, although not fully com-
petitive in 'very high speed' computers.

Complexity analysis and arithmetic unit design
is pursued for the rounding associated with fixed-
slash representation. The complexity analysis of
the equivalent rounding procedure for floating-slash
representation is beyond the scope of this paper,
although additional research has shown comparable
complexity results are obtainable.

II. Binary Fixed-Slash Systems

Since it is not the purpose of this paper to
detail the formal aspects of approximate rational
number systems, we only introduce the notations and
definitions necessary for analysis of binary fixed-
slash systems, which are the subject of this paper.
An in-depth treatment covering more general finite
precision rational number systems is under prepara-
tion,“*

We may think of the binary fixed-slash repre-
sentation of a rational number as a representation
where in a computer word one bit is set aside for a
sign, and two fields each of N bit width are used
to represent respectively, the numerator and denomi-
nator of a fraction.

1 bit

N bits N bits

Figure 1.

The monotonically increasing sequence of such
fixed-slash representable irreducible fractions be-
tween zero and unity is well known in classical num-
ber theory (e.g.a) as the Farey series FZN-l' As

the other fixed-slash representable values are then
simply determined by inverses and negatiom, the
theory of Farey fractions provides a foundation for
these number systems. For our purposes, we charac-
terize this binary fixed-slash system by the set of
ordered pairs (ignoring sign)

K=K®N = {(p,] 0<px21,0¢q<2-10.

We shall henceforth refer to the fixed-slash system
K with the dependence on N and addition of the sign
to determine negative values implicitly understood.
Note that K contains reducible as well as irreducible

*This research was supported in part by the National Science Foundation under Grant MCS 77-21510.
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fractions, and every irreducible fraction % for
(p,q) € K is said to have multiplicity given by the
maximum m such that (mp,mq) e K.

Utilizing the notation [ao,al,...] for the con-

tinued fraction

3 I a, >0 (2)
ay + 1 . -
az + . .
where the quotients a, are assumed to be integral,
any non-negative rational number £ has a finite
expansion 1

R
q [ao,al,...,an]

which is unique (canonical) with the added require-

ments

a, 2 0; a; >1,i =1,...,n-1; and a > 2 when n > 1.
The truncated continued fractions

ﬁ: = [ao,al,...,ai], i=20,1,...,n (3)
yield rational numbers which form a sequence of con-
tinued fraction approximations of g (called the con-
vergents) whose properties can be summarized as fol-
lows.

Theorem 1.

The convergents gi = [ao,al,...,ai] of g =
[ao,al,...,an] for 1 =70,1,...,n satisfy the fol-
lowing properties:

i) (recursive ancestry)

With P_, = O,p_l = 1, q~2 = 1 and 9.7 = 0

,
Py T3Py g TPy,
9 T 24%.1 " o,
i1i) (irreducibility)
ged(p_,q;) = 1,

iii) (adjacency)

1
4Py 1~ Pydy g = DT

iv) (alternating convergence)

P P P Pos_ 1%
LD DUIP e > PSSP AP o S
G 92 Q29 79° 924-1 91
v) (best rational approximation)
P p
L Y g = E-2]>| _i._.11| ,
s qi - S q qi q

vi) (quadratic convergence)
p

| -2 <

9y a

< — for i < n-1.
949441

Proof: These are all classical results on continued

fractions.

Since the quotients a, of the expression

= [ao,al,...,an] are theiquotients obtained from
the standard Euclidian GCD Algorithm applied to Pyq,
we may simply extend the Euclidian Algorithm by in-
corporating computation of 1 and 9 in parallel with
computation of the a; to achieve an algorithm for de-

termination of all convergents of ﬁu

Algorithm EC: (Euclidian-Convergent Algorithm)
For any p > 0, q > 1, let

b_z =P

P,=0;5 a_,=1;
by =49 py;=1; q 1 -0
Determine a; as the quotient, and bi as the non-

negative remainder of the division of bi—2 by b

i-1’
s0
Piog T PBip 3yt by,
and compute
Py SPyy "3 TPy

93 T 941 " 33 Y 440

for 1 = 0,1,... until i = n, where b_ . # 0, b = 0. l
n-1 n

= [a

For any rational x = % .,an] or ir-

02

,al,...], the convergents —, —,
0 %

- represent successively finer approximations

rational x = [a0
)
qz,..
to x. For the fixed-slash system K, the Euclidian-
Convergent Algorithm may be used to determine the

K-finest convergent given by:

P P
(B if x=2=8 yien (p_,q ) ek,
q q n’'n
n n
4 Py
¢K(x)- EI if (pi,qi) €K and (pi+1’qi+l)¢ K,
(%)
\_QK (-x) if x < 0.

The function ¢K is now shown to be a "rounding" for

the fixed~slash system K.

Theorem 2:
The function ®K given by (4) is a rounding
scheme in the sense of Kulishs, i.e.:
i) (monotonic)
X <y =y (x) < o ),
ii) (antisymmetric)

%:bX)=-% =),
i1i) (fixed points)

=2 =P
x= g (p,q) e K = o () iy




o { = _R2
x g—. (p,q) € K =3 o (x) 5

Furthermore:

iv) inverses)

l —_—
1
e, (;)

(exact
¢ (x) =

Proof: The properties follow readily from the defi-

nition (4) and the theory of continued fractions.a l

For each interval (x,x') between successive mem-
bers of a finite precision number system a rounding
yields a splitting point s with x <8< x' such that
values below s round to x and above s round to x'.
For the successive irreducible fractions E < 5 in K,

the splitting point for the rounding ¢K can be

shown3 to be the medilant Ezg, 80 @Kis termed mediant

Utilizing the mediant rounding ¢ _, the

rounding. K’
fixed-slash arithmetilc operators which characterize
closed fixed-slash approximate arithmeticican now be

described.

The monadic operators absolute value, negation,
and inverse are closed in the fixed-slash system char-
acterized by K and are implemented for the word for-
mat of Figure 1 as follows.

Monadic Operator Implementation

Sign Bit « O

Absolute Value

Negation Complement Sign Bit

Swap Numerator and De-
nominatox N Bit Fields

Each of the dyadic algebraic operators +,—,%,+
applied to a pair of fractions of K{N) yields a frac-
tion exactly representable in K(2N+1) using no more
than standard integer multiplilcation and double
length addition or subtraction. Double length re-
gisters and double length integer arithmetic is suf-
ficient to realize flosed fixed-slash approximate
arithmetic in K defined as follows for all (p,q),
(r,s) € K. The necessary sign bit manipulations for
signed fixed-slash operands are taken as an obvious
and implicdit extension.

Inverse

Dyadic Operators

-% 1 R %ﬁ )
%B§=¢K(§§)
EB'E:@K(E%:;E) ”
Pag - e (BT

Note that an implementation of the dyadic oper-
ators X and G first require two single length in-
teger multiplications which may be computed in paral-
lel followed by an implementation of the rounding ¢K
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applied to an argument with at most 2N bits each in
the numerator and denominator. The operators [H and
Fl require three single length integer multiplications
which may be computed in parallel, followed by a
double length integer addition or subtraction, with
an implementation of ¢K(N) then necessary for an

argument with at most 2N+1 bit numerator and 2N bit
denominator.

Thus the overall complexity and feasibility of
binary fixed-slash arithmetic depends on the effi-
clency of implementation of a special purpose "double
length" to "single-length" mediant rounding ¢K'

III. The Binary Shift-Subtract GCD
and Binary Convergent Algorithms

It is evident from the Euclidian-Convergent Al-
gorithm of Section II that the bi’ 1 and q; may be

computed in parallel. For binary representation

- J o -

ai _-); dijz where dij 0,1 for all 1,4,

so then

- _ h|

by = b, § dgy (27by )
- ] _

Py =Py o *I dij (2 Py 1) i=0,1,...,n.

J 6)

= ]

94 79,7 § dyy 2Ty p)

From (6) the following observations are perti-
nent to a binary implementation of a convergent al-
gorithm.

(1) Regarding hardware:

the bits dij

(most significant bit first) from

bi—2 and bi—l by the shift and sub-

tract procedure of a standard binary
division implementation. As each

bit dij 1s determined, Py and q may

then be accumulated in parallel to
bi by a comparable shift and add

For each 1,
may be determined

procedure. Thus only binary shift,
add and subtract are required.
need not

(2) Regarding storage: The a,

be explicitly computed, and only
two successive values, bi-2 and bi—l’

need be saved in computing the bi's.

If only the K-finest convergent is
desired as specified for mediant con-
version, then only two successive

values P,_,» P;_; and 9.0 941

need be saved during the recursive
computation of the desired convergent.

We now incorporate these observations into two
algorithms. The first, Algorithm SS, simply computes
the greatest common divdsor of u and v, defined by




ged(u,v) = max {w|w divides u, w divides v}. The
second, Algorithm BC, computes the last representable
(K-finest) convergent, thus realizing the mediant
rounding ¢K.

Algorithm 8§ (Binary Shift-Subtract GCD)

Given u>1, v>0, this algorithm determines ged(u,v).
while v > 0 do
LO: begin k: = 0;
while nsb(u) > nsb(v) do
Ll: begin k: = k+l; v: = 2xv Eﬂi;
L2: 1loop d: = u-v;
if d > 0 then u: = d;
exit if k = 0;
v: = v/2; k: = k-1;
end;

interchange (u,v);
end

ged: = u;

Comments:

(1) The loop L1 left-shifts v until its most signif-
icant bit is in the same position as that of u,
using the function nsb to encode the number of
significant bits (or equivalently the position
of the most significant bit). In a hardware
realization this test can be realized as a one
bit enable/disable.

(2) Note that the inner loop L1 is executed only one
less time than the inner loop L2, so we may con-
sider them together as the minor cycle, each cy-
cle consisting of one subtractiou and two shifts
(implementing k by shifting).

Algorithm BC (Binary Convergent in K for r/s)

Given r > 0, s > 1 and the fixed-slash system K,
this algorithm determines the K-finest convergent
p/q to r/s, i.e. the mediant rounding:¢K(£). Paral-

s

lel execution of statements is expressed using and
as separator, with the semicolon denoting standard
sequential execution.

b':=r and p':=0 and q':=1 and k:=0 and

b:=s and p:=1 and q:=0;

while {max(b,b') not yet normalized} do

begin b:=2b and b':=2xb" end;

while (b > 0) da

LO:begin
while {b not yet normalized} A {(p,q)eK} do
Ll:begin k:=k+l and b:=2xb and p:=2xp and
q:=2xq end;

L2:1oop e
d:=b'-b and p":=p'+p and q":=q'+q;
if 4 > 0 then

bégin b':=d and p':=p" and q'=q" end;

exit if k=0; |
b'=2xb' and p:=p/2 and q:=q/2 and k:=k-1;
end;
exit if {(p'a") ¢ K)
interchange (b,b') and interchange (p,p') and
interchange (q,q') o

end:
{on exit p/q is the last representable convergent}

Comments:

(1) Note that the left-shifting of b' during the
loop L2 may move the most significant bit of b'
into the "sign-position", but this does not af-
fect the result when the algorithm is implemented
in two's complement arithmetic.

P
L 5y = B

(2) For ol [ao,al”...,am] and ¢K(5) < the outer
loop (LO) will be executed n+2 times (if n <m
and nt+l times if n = m), the last time being the

Pn+1
(partial) computation of —= . 1In the i'th
q .
nt+l
major cycle bi”pi and g, are being computed in

the inner loops (L1l and L2), which will be ana-
lyzed in the next sections.

The necessary circuitry for a hardware real-
ization of Algorithm BC consists basically of one
2N+2 bit "subtractor", plus two N+l bit adders.
Figure 2 shows these components together with the
necessary control for a slightly different ver-
sion of the loop L2 (based on right-shifting of
b instead of left-shifting of b', and shifting for k).

1. L L.
F

l [ } I T
= e H !

'Subtractor'

IN Shifter UI \  Shifter

[ZNH Shifter OJ
RS RS RS
EJ_S_hlﬂer (k) o
RS
_I . A
clock ———————1
ot Ed
start =m0
£
|
Figure 2.

It is worth noticing that the LS Algorithm by
Brent’ also might be used for a Euclidian-Convergent
Algorithm by a proper extension. The LS Algorithm
basically skips over zero-bits of the quotient a;,

hence executes fewer cycles than the 85 or
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BC Algorithms, but each cycle requires one '"normal-
ize" and two or three subtractions in comparison to
one subtraction and two shifts per cycle in Algorithm
SS. Following the basic idea of the LS Algorithm, the
BC Algorithm might be improved by enclosing in a loop
the "single-shifts" of b', p, q and k at the end of
loop L2. This new loop has to execute at least once,
but would continue until b' is normalized or until

k = 0, thus avoiding some trial subtractions. The
comparatively small expected number of subtractions
avoided does not seem to justify the added complexity
for the current analysis.

IV. Upper Bounds on the BC Algorithm

Returning to the recursive construction of the

Py and 4y if for any x and y a sequence s s

0?51t =98,
is constructed from the linear recurrence

8y T 33841 T8y

with initial values s . =y and S_, = x then

1
s1 = xqi + ypi.
This result may be utilized to characterize each bi
of the gcd algorithm in terms of p,,q,,p, and q.
i’
Taking x = p and y = -q we have

81 T P9y

- ap,.
For the standard convergent computation initial con-
ditions b4-= q and b_2= p, we have

b, = —aib

+
i bi~

i-1 2!
hence
bi

We can thus state the following lemma concerning the

(—l)i s; = (—l)i(pq]L - ap).

relatiop of the bi to the (pi,qi).
Lemma 3: The sequence of remainders bO’bl"°"bn=0

of the ged algorithm applied to (p,q) sgtisfy the

following relations to the convergents k- of .

i p P )1b1
1): b, = (=1 - ii): -———= (=1 —,
1) ;= D (pqi qpi) or (ii) a7, a,

Furthermore for 0 <i<n-1,
; g ;
(111) qq fbi <9t 954,

. P
(1v) P1+15biipi"'p1+1 :

Py*Piyr
Proof of (iii): For i < n, —= (the mediant of
==t - At q,+q
P e 1 +1
A and —1il) must fall between £ and —l, and using
44 941 94

Theorem 1(iv),

PitPiy1 Py

p._"_i_! 5 ‘ﬁﬂ _h
9%y 9y

<
3
i 9 a1 Y
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then using Theorem 1(iii),

1 |p_ 3

1
. <
(a*a59095  la 4

9
" Yy

which together with (ii) proves (iii). (iv) is
proved analogously. l

To estimate the timing of Algorithm BC we will
start by establishing upper bounds based on the fol-
lowing lemma. A minor cycle of Algorithm BC (as in
Algorithm SS) will contain two shift and one sub-
traction time periods.

In the following log x will denote logarithms to the
base 2.

Lemma 4: The accumulated number of minor cycles S

in Algorithm BC to compute the convergent I oot

2o

grd12 s am], n < m, is bounded by:
<§ < + n+ >q.
log pn+ry_Sn__log Pt 3 forp>gqg
Proof:Introducing the function (length in bits)

|log 3) + 1 for x > 0,
L(x)=
1 for x = 0,

the number of minor cycles in the i'th major step
for 0 <1 < n, assuming p > q, is

ki = g(bi_z)—l(bi_l)+l,

n
hence Sn = gki= E(p)~£(bn_l) + (nt+1).

Then
P

log S—E—-+ n < Sn < log + n + 2.

n-1 n-1

Using Lemma 3 (iv) the lemma is proved. I

The total number of minor cycles in Algorithm BC
applied to (p,q) is dgnoted by S(g) and includes the

number Sn to compute EE plus the number sufficient to
n

Pn+l
indicate that —= ¢ K. Necessary bounds on n (number

9+l
of major cycles) are derived Stilizing the classical
thecry of Fibonacci numbers?»”? ,

Theorem 5: For the fixed-slash system K (N numerator

and N denominator bits), the number of minor cycles
S(B) of Algorithm BC to determine the mediant rounding

E .
¢K(q) satisfies:

(i) for any rational B—; 0,
s(lc:-) < cN+7,

(i1) for some rational (p,q) € K,

S (1;—) > cN-3,

where ¢ = [1 + —2— | = 2.4404...
(/5—+1)
e\ 7




Proof: Fibonacei numbers are defined by the recur-
rence f0=0, f1=l, and fn-fn_l+ fn—2 for n> 2.

Some relevant properties of Fibonacci numbers4’9
are:
ntl = = a.= = = =
(a) 3 = [aO—O,al l,a2 l,,...,an_l l,an 21
n+2
for all n > 1,
fn+]‘
(b) the convergents of F =~ for any n > 1 are
nt+2
P f
—i=fi for 0 <1 <n-1,
94t
) £
o _oHl for 1 = n,
9 n+2
n
(c) frl = l’ﬁ (-l-—"z—\/g) + —]; for any n > 0.
5 < -
Choose n such that
_1_(1+r5')n+1<2N_1< 1 _]‘+V'5')n+2
et s
V5 2 - s 2

and note from (c) that (£ ,..f ) € K.

Thus 1+ \E>
2

(n+2) log( - log Vs > N-1,

so N SR
log (1_422__‘{_-5:) (7)

n >

Since (fn+l’fn+2) e K,

fn+1 fn+1 fn+2
s| ¢ -s (= =145 | ¢ ,
n+2 ™\ "n+2 n o+l

and using Lemma 4

fn+1
S| > n+log f ., 2>N+a-1, (8)
n+2
so then (7) and (8) yield (ii) of the theorem for
2. fol
1 fn+2

To prove (i) note from (a), (b) and the require-

ments on the ai in the definition (3) that the con-

vergents to any rational % mugt satisfy

Py > fi’ 9y 2 fi+l for all i > 0.

Hence
+

Misg st - ;(_1_1__5)“1+L

S %n - Tntl 5 2 2|?
80
2N>_1_(1+/3')“+1

s\ 2 ’
and

n € ————— . (v+1o0g v5)-1. (9

In the last major cycle of Algoritbm BC as applied
to an arbitrary rational P , note that after the

normalization loop L1, irgespective of the value of
the value of the variable k is such that

a s
o+l N-k+1

P»q, <2
minor cycle for possible initial switching of p
and q,

Then using Lemma 4 and adding one

s® «s (a4 4o <N+t
q’ = “n\min{p,q} -

and (9) and (10) yield statement (i) of the theorem. I

Although the theorem gives an upper bound on the
number of minor cycles valid for mediant rounding of
any rational P, the timing will depend on the mag-

nitude of p and q since a subtraction is part of the
minor cycle (the timing of which increases with the
logarithm of the number of bits in standard adders
with carry look ahead).

V. Average Case Complexity
for the BC and SS Algorithms

The average value of the number of steps in
Algorithm BC will depend on the distribution of num-
bers to be rounded. Most existing analysis of the
Euclidian algorithm and of continued fractions is
based on some sort of uniform distribution. For our
purposes, if we restrict our analysis to the interval
zero to unity (and assume symmetry around unity) some
uniform distribution might be appropriate, but ' this
is probably not the distribution of numbers occuring
in actual computations.

In discussing gcd algorithms it is usually
assumed that u and v are uniformly and independently
distributed, u < n and v < n, and asymtotic results
on the average value of the number of steps in com-
puting ged (u,v) are obtained as n» (e.g. [6,7]). For
the fixed-slash system, n is fixed (but large, n=2N—l).
The uniform distribution relevant to a fixed-slash
number system could associate equal probability to

all %, u < 22N+l and v < 22N (all temporary results

to be rounded), or possibly a uniform distribution
for real x in the interval [0,1] with l-uniform for
x > 1. ¥

In the latter case, if x ¢ [0,1], the probability
of rounding into a particular irreducible fraction %
is proportional to the length of the interval rounded

into ﬁ-by mediant rounding, which may be simulated.

For the average number of steps in Algorithm
BC, we proceed similarly to the average case analysis
of gecd algorithms and assume that the probability of
P

rounding into is proportional to the multiplicity

m(p,q) of that fraction, which is equivalent to

associating the same probability li-with any point
. n
(p,q) in




K = {(p,q) [1<p<n,1<qc¢< n}, where

n=2Y_1,

and applying Algorithm BC to all points in Kn'
Note that when restricted to (p,q) € Kn’ Algorithms

BC and $S have the same number of major and minor
cycles.

To obtain an estimate of the average number of
steps in Algorithm BC (or §S) utildzing Lemma 4,
we will need the average value of the number of
major cycles and the average valueofilog(max{p,q})
over all (p,q) € K. Knuth under the same distri-
bution, (u,v) uniform in Kn’ determines an heur-

istic expression equivalent to the number of major
cycles in Algorithm BC (or SS),6

12 (1n2)2

72

log n + 0(1). (11)

Thus we need an expression for the average value
of log {max{p,q}) that is

M = li‘ z log(max{p,q}) * m(p,q),
n

=

n

g irreducible

or equivalently

M= log ( —3+—)

ged(p,q)

) (2)
n  1<p<qs<n

Evaluation of M is aided by the following lemmas.
Lemma 6:

If q has the prime factoization:

R T ok
q qI qz AR k L

then

=X

( l-qifai) q
a4\ 94-1 .

ged(p,q)
1 i=1

ft =.a

Proof: For each 1 and j = 1,2,..., a,, there are

i
exactly q/qij values of p, 1 < p < q which contain

a4 to some power greater than or equal to qu.

Thus

]

L. / 1q. %4 s o
7 < 4/ay *ale Tt +a/q

I e~

j=1

9

a(1-q;*1)/(q4-1)

is an exhaustive count of occurences of 9y in

ged(p,q), hence the lemma. “
1

1 =0

P
45

Lemms 7: There exists ¢ > 1 such that
2
n
m = N ged(p,q) < ¢ for all n > 1.
n 2
pqsn
Proof: From the previous lemma
k
n q
LI S q/€q,-1)
D=1 i=1 U i

n LP/ij L . pj/(pj—l)
i I P .
j=1 %=1 3

where PpsPoseses Pn is the list of all primes < n.

m pj(1+2+...+Ln/ij)/(Pj'1)

Fromn®_ < NI p it follows
n - k)
i=1
since p, < n that
- 2
m n /Pj(Pj—l)
‘ITn _<_ )i pj
j=1
n2
1
o p.(p.-1) ,
J j n;!
<tn pj =c
i=1

since the infinite product is convergent. l

Returning to the expected value M we may now
state from (12) that

2 r 5
M=% ¢ ] qloggq-=logm
o |am

and estimating the sum by an integral, with Lemma 7,
M=1log n +0(1l) for n +=

Assuming the validity of the heuristically derived
expression (11) we have as a corollary: For u,v
chosen unifornly on 1 < u <n, 1 <v <n, the aver-
age number of minor cycles (1) in Algorithm S$S for
computing gcd(u,v), and (i1) in Algorithm BC for

computing QK (%D, are both given asymptotically by
n

=+ 12(1n2/m) %) 1og o + O(1) .

1.58416...10g n + O(1).

w
]

To get an estimate of the O(l) term for S in
Algorithm SS, gcd(u,v) was computed for all
0 <v<u-<n for the cases n = 2+, i=1,2,..., 13.
In the following table z is the accumulated num-
ber of minor cycles, §; is the average value,




= Q! _ at
An Sn Sn-l (whiqh supposedly converges to the

constant 1.58416...) and c; = S& —A,n + logn (which
approximates the O(l) term).

Table 1: Minor Cycles in Algorithm SS

3 n logn Z, St ' c!
. 2 1 4 0.800000 - -
{ 4 2 20 1.428571 0.628571 0.171428
8 3 110 2.560000 1.071426 =0.714285
16 1 572 3.7€3157 1.203157 =1.289473
32 b 29806 5.332147  1.56%964 -2.5127K1
61 6 14820 ©.912313 1,580170 =2.568710
128 7 714527 H.522423  1.010110 =2.748347
250 8 335694 10.125904  k.o034¥1 ~2.70194%
512 9 1547094 11.734632 1.608727 -2.743918
1024 10 7010100 13.331647 1.597014 -2.635494
2048 11 31343090 14.9230692 1.592044 -2.588802

1.588197 =2.540477
1.587393 =2.536838

4096 12 136613216 16.5114¥8Y
§192 13007533508 18§.,0992483

The tabulated values of Ah give empirical evi~

dence for the constant 1.58416... . To compen-
sate for the restriction v < u regarding the possi-
ble initial interchange of (v,u) in Algorithm SS

we will have to add. 0.5 to 5; and c& to get the

proper values of §n and dn’ hence we may state
that L

sn,3 1.5842 log n - 2.0.

During the computation the number of major cycles
was also accumulated, and the equivalent table
confirmed the approximation stated by Knuth':

Tn T 0.5842 log n + 0.06.

For fixed-slash arithmetic we are essentially in-
terested in application of mediant rounding to mem-
bers of an rounding to Kn. A simulation of the

appropriate uniform distribution was performed for
this case by generating pseudo random pairs (u,v)
in Kng and applying Algorithm BC to round

%-into §3 (p,q) € Kn(SO * n random pairs (u,v) for
each value of-n), ylelding the following table.

Table 2: Algorithm BC, Minor Cycies (simulation)

n log n o S, S, ~Saey d,
256 8 194378 15.1857% 2.51210
512 3 429779 th.78824 1.602146 2.53035
1021 10 941904 18.39A50u 1.00837 2.554406
2048 11 20459072 19,97951 1.5K294 2.55320
1096 12 341601258 21.56311 1.5%359 2.5525%9
R192 13 94872387 23.15038 JonsTh 2.55562
16334 ° 14 20264078 24.73e42 1.5460, 2.55744
32763 19 13124341 Zp.32100 [ S HE R 2.557K5
6H5536 16 911439904 27.490524 1.58423 2.50 788

Here d = §n - 1.5842 - log n, which implies that

the number of minor. cycles in Algorithm’' BC may be
approximated by

§n % 1.5842 log n + 2.56,

which agrees very well with the theoretical value
for roundings applied uniformly only to members of

K .
n
Table 3: Algorithm BC, Major Cycles (simulation)
n log n = T . ':Fn-l €
256 # 86118 £.75140 - 2.07772
u12 9 137908 7.3401% 0.58475 2.08226
1924 10 406576 7.939% 0.59940 2.09776
2048 11 A72606 0.52154 0.9%158 2.09523
1996 12 1864690 9.10123 0.5a128 2.09441
8192 13 3969293 9.59095 0.54562 2.09582
th 341 11 R41e799  10,27111 H.5838% 2.09517
12742 18 17792465  10.95578 0,585 34 2:09063
68536 16 3T49TRS1 11.34343 0,58365 2.69607

Here e = Tn - 0.5842 log n, hence the number of

major cycles is approximately

Tn * 0.5842 log n + 2.10.

VI. Conclusions

We may now summarize the results of the pre-
vious sections, to§ether with those of Knuth and
Brent as follows®:7,

TabieLﬁg

Classical
Algorithm ged LS ged - 35 ged
Minor Cycle 1 division 1 normalization 2 shifts
+ 2 or 3 sub- + 1 subtraction
tractions .
Maximum Number 1.4404 log n | 1.4404 log n 2,4404 log n
of Minor Cycles
Average Number 0.58416 log n| 0.87581 log n 1.58416 log n
of Minor Cycles + 0.06 - 1,40 - 2.00
{with O(l) term)

Algorithm SS is hence a candidate for the
fastest hardware realization of mediant rounding in
the form of Algorithm BC, subject as demonstrated in
Section III to utilization of appropriate parallelism
in the hardware.

Also a microcoded implementation might be in-
teresting, at least as an experimental vehicle for
further studies on the use of fixed- or floating-
slash arithmetic in practical computations. For this

purpese we have coded Algorithm BC in microcede for
the MATHILD& processor for the fixed-slash repre-
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sentation with N = 31 (the wordsize of the pro- [6]
cessor is 64 bits)". The major loop consists of 11
instructions, 4 of which form the minor loop (L2).

The prenormalization is realized by shifting in a
barrel-shifter (i.e. no loop) outside the minor [71
loop. In the minor loop only 2 instructions are
executed in the case where no add/subtract has to
take place (i.e. corresponding to a zero bit in
the quotient). A little computation on the fre--
quency of execution, and the 3MHz instruction fre-
quency of the processor, yields an average ex-
ecution time of approx. 95 uS, which is certainly
not very fast for a rounding algorithm. (9]

{8]

However almost half of the time is spent in
the major loop, outside the minor loop, mostly do-
ing quite trivial data manipulation. Also par-
allelism was not fully exploited, as only the two
31 bit additions were done in parallel in the
microcoded version.

Returning tc a hardwired realization, a minor
cycle time of say 50 nS can easily be achieved
(standard TTL logic, e.g. the 74 series). Adding
an overhead of say 15 nS for the remaining part of
the major loop, the average execution time for
the Algorithm BC amounts to approx. 2.7 uS, again
with N = 31. 1If we furthermore construct one
32 x 32 bit multiplier out of four 16 x 16 bit
multipliers (available on one chip and with a
multiply time of 180 nS), the three multiplications
and the additions necessary for the addition of
two fixed-slash numbers can be realized within
0.8 uS, i.e. the total add time will average
3.5 uS. And this is all in TTL logic, which is not
the fastest logic available today, and not utiliz-
ing all possible parallelism. An improvement by
a factor of 5, or possibly even 10, does not seem
impossible, by using other technologies and more in-
tegration of components.

We may then conclude that, although Algorithm
BC for mediant rounding is a quite complicated al-
gorithm, it can be realized at a speed which makes
fixed-slash (and possibly also floating-slash)
arithmetic viable.
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