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based on viewing a multivariable polyno-
mial (m.v.p.) P(xl.., Xn) in the ordered

e, e, ° e,
Summar m i i i
—EEeRL form, 2 a; X 1 X, 2 <o X, n (with m
A data-structure suitable for i=1 -
multivariable polynomial processing terme), where the a; are elements drawn
1c introduced. Using this data- from a real or finite field. We firet

structure arithmetic algorithms are
de=cribed for addition, subtraction
and multiplication of multivariable
polvnomiale; aleo algorithme are
de=cribed for forming the inner

define the data structure for a general

m.v.p. and then describe the modifications
required to use it for Cardinal Spline
interpolation applicatione, where each
variable X5 in the m.v.p. can occur in

product and tensor product of vectors, 6
whore componente are multivariable both the powers and plurser form, Fard”,
polynomiale. Application of these viz., terms of the form
algoritihms for multivariable cardinal 4 32
~pline approximation is described —32'5(X—3)+ y'z
in detail, _ i

where (X—3)+ :\/g ’ Jl? iig .

2:1 General multivariable polynomialsg

l. Introduction

4 polynomial with two or more varia-

The procescing of multivariable bles is represented as two linear sequen-

polynomiale (m.v.p.) is reguired for tial liets, one for the degree (D.LIST)
ceveral applications, e.g., computer and the other for the coefficients
graphice, topography, “ystem Theory (cpLisD).

etc. A few important papers on_this

~ubject have already appeared.‘5 In (1) DELIST

this poper our primary concern is to Bach element in the DXLIST conciets
empharize the need for the design of of degrees of each variable in a term.

a multivariable polynomial processor .

for applications to interpolation and (ii) cpniet

“ystem Theory. With this in mind we This con~iste of elements which

introduce certain special data stru- reprecent the coefficients of each term

ctures for the repreeentation of the in the polynomial; this ie cet in one to
M.Vv.p. and describe the baric arithme- ore correspondence with the elements in
tic algorithme using theece data the DRLIQT.

structures. '

Bxample:

Alro we will describe in detail, ] 4
now the projection operator tecanique F(x,y,2) = 542 x"y“z
for multivariable Cardinal Spline inter- ie revprecented by the ordered etructure
polation can be implemented ueing the T
data etructure sugsested. Other related ! 41211 DELIeT
applicatione — such ac~ the computation ‘*%452 : CPLICT
of g.c.d. of m.v.p., invercion of poly~ ——
nomial matricee, etc., encountered in 2+2 Interpolating polyrnominle:
“y~tem Theory - are alco indicated. In thic cace only the DILIST ie

defined in a different manner. The element
in LXLIST concirte of comronente corres-
ponding tc each variable; a component is

2. Teta “tructure

The dnta structure introduced here is
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subdivided into three parts:

1. Form Indicator Bit (FIB) to indicate
conventional or plus (or absolute)
form of polynomial.

2. Shift-value Sign Bit (28B) to indicate
the sign of the shift value in the
g variable in plus (or absolute) form.

3. Value bits - indicating the degree of
the variable for conventional form
and shift value for plus (or absolute)
form.

The bit configurations for 4 ordered
variables in a %2-bit word is given below
(with one byte (8 bits) for each wvaria-
ble).

(2] 2] 6 [afale[ala]e1]1]6]
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Sxample:
- 32-5(x+3)4 y722

HAERRERERRER

f -32:5

3. Arithmetic and other algorithms

The arithmetic algorithms to be
described below remain the same for both
the general m.v.p. and the interpolating
polynomials.,

] 3.1 Addition/Subtraction
| (RC,RD,r) <= (PC,PD,p) £ (QC,QD,q)

Let P and Q be two structures with
? and q terms respectively. Let R be
the resulting structure with r terms.

P=(PC,PD}, Q=(QC,QD) and R=(RC,RD)

where PC,QC,RC stand for the coefficient
lists and PD,QD,RD for the degree/shift-
value (of the plus) structures concerned.
Step 0: Set RC(i)=PC(i)

; RD(1)=PD(i), for i=1 to p;

1 fet r=p; go to Step 1.

§ Step 1: fet i=1; go to Step 2.

f Step 2: If 1i>q, go to Step 8; otherwise

; go to Step 3.

] Step 3: Set j=1; go to Step 4.

2 Step 4: If QD(i)=PD(j) go to Step 6;

] otherwise set j=j+l; go to Step 5
Step 5: If j> p go to Step 7; otherwise

4 go to Step 4.
Step 6: RC(j)=RC(j)+QC(i); Set i=i+1l;

go to Step 2.
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Step 7: Set r=r+l; RD(r)=QD(i); RC(r)=
QC(i); Set i=i+l; go to Step 2.

%tep 8: The RC list is checked and only
non-zero coefficient terms are
retained. The terms correspond-
ing to zero coefficients are
deleted from ED. Correspondingly
r is reset. Stop.

“ubtraction algorithm cteps are the came
as addition except Step 6 which becomes,
Step 6: RD(j)=RC(j)-QC(i); Set i=i+l;
go to Step 2.
3.2 Multiplication
(RC,RD,r) € (PC,PD,p)x(QC,QD,q)

Let P and Q be two structures with
p and g terms respectively. Let R be
the resulting structure with r terme.

P=(PC,PD), Q=(QC,QD) and R=(RC,RD).

Let S=(8C,°D) with s term=s be a structure
used to hold intermediate resulte.

Step 0: Set RC(1)=PC(i)-QC(1);

Set RD(1)=PD(i)+QD(1) for i=1 to
Ps

Set r=p; Set J=1; Set s=p; go to
Step 1.

ftep 1: Set i=0; Set j=j+l; If j> q go to
Step 5; otherwise go to Step 2.

Step 2: Set i=i+l; iIf 1> p go to Step 4;
otherwise go to “tep 3.

Step 3: Set SC(i)=PC(i)-QC(j);
Set eD(i)=PD(1)+2D(j); go to
Step 2.

“tep 4: (RC,RD,r )< ADD (RC,RD,r,SC,9D,s);
go to Step 1.

Step 5: ftop.

%-3 Inner Product

et (Py,Py,..., Py) and (Qq,Qy,..,Qy)

be two sets of N multivariable data stru-
ctures. Let Pi have 1 terms and Qi have

q; terms (i=1,2,..,N). Let R be their
inner product with r terms.
Piz(PCi,PDi), Qiz(QCi,QDi) and -

E=(RC,AD);

Let ®=(2C,%D) be a structure used for
intermediate storage purposes.

Begin:
(RC,RD,r)<—yg@(9c1,PD1,P1,Q01,QDl,ql)
for i=2 1o N do
begin (FC,SD,s)é—MQL(PCi,PDi,pi,QCi,
QD;,a4)5
(RC,RD,r) € ADD(RC,RD,r,5C,SD,=)




end
End.

3+4 Tensor Product

Let (Pl’PZ""PN) and (Ql’Qz""QM)

be two sets of multivariable data stru-
ctures. Let Pi have p; terms (4=1,2,..,

N) and Qj have ay terms (3j=1,2,...,M).
Let Rij be their tensor product with
rij terms.

(i=l’2,0- o N H j=l'2w-¢ ,M)
Begin
for i=1 to N do
for j=1 to M

15

(Rcij,RDij,rij)é—MUL(PCi,PDi,pi,QCj,
QDj,qj)
End
Remark: When the tensor product is

required recursively, as for
example in multivariable poly-
nomial interpolation, the stru-
cture for Rij can be modified

to be linear (similar to P and
Q).

4.

Multivariable Interpolation

4-1 Principle of Product operator an
Boolean Sum schemes :

Our main purpose here is to consider
the techniques that are economical using
polynomial processing. The well-known
method having this feature is the product
operator methodl?‘10 where one breaks up
the total interpolation process into n
parts, treating the variables X19Xpseres

the

functions belonging to the tensor product
space.

X separately and using as the basis

Let f(x,y) be a two dimensional
function to be fitted on the unit square
{0<x <1, O<y<1l} wusing the basis
function approach. Here we write
X (x,y) = M I f(x,y) (4:1-1)

We then find the approximation in
two stages; applying an operator Lx to

the x variable of f(x,y) and then opera-
tor My to the y variable. The operator

LX maps on to the space that is spanned
by the functions ﬂi(x) (i=1,2,...,m) and
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m
Lf(x,y) = igé e, (y)B;(x)  (4-1-2)

(More rigorously, one should say that L,

has a range § which is an extended linear
space of all polynomials of degree m in x;
here the elements of § are of the form

m
> Aixi » where A,'s are functions of
i=0

y only. Similarly for My’)

The operator M_ maps on to the space
that is spanned by ¥he functions vj(y)
(j=1,2,..,n) and we have an equation of
the form,

n
M £(x,y) =j§lﬁj(X) ¥;(v) (4.1-3)

Thus we get
m n
0 (x,y) =i£1 ;Zlaijﬁi‘x) ¥;(y) (4-1-4)

vhere the product operator maps on to the
linear space that is epanned by the pro-
duct functions of the form

{¢i(x)-Y3(y);i=l,-..m;j=l.--,n)} (4:1-5)
belonging to the tensor product space.

If we now consider interpolation points
xs(s=l,2,..,m) in {0,1] and the basis

functions ﬂi(x)(i=l,2,..,m) such that the
operator Lx ie defined by

m
Lf(x,y) = iziﬂi(x)-f(xi,y)
- 4 - (4:1-6)
={¢1(X)} '{f(xlyy)} H

here {ﬂi(x)j t indicates the transpose of
the column vector of basis functions

{ﬂi(x)} and the basis functions satisfy
the conditions (if
=0(1ifs)
—
pi(xs)=6i§\=1(i=s) . (4-1-7)

Considering the interpolation points
yt(t=l,2,..,n) in [0,1] and the ba=is

function yﬁ(y)(j=l,2,..,n) the operator
M_ can be written as

y n
Myf(x,y)=j§lyg(y)f(x,yj)

={y3(y)} t-{f(x,yj)f ;

again the basis functions satisfy the
conditions

(4-1-8)




The result of the product operation is
then

IL(x,y):MyLXf(x,y)

m
=M Zl¢i(X)'f(xi,y) (4-1-10)

Y5
m

n
=i§1 jélﬁi(x)vj(y)f(xi,yj)

Since (4-1:7), (4:1-9) and (4-1-10) give

the equation

Q(Xs,yt)=f(x\q!yt)’ e=1,2,..,m (4'1'11)
t=1,2,..,n

we <ee that applying the operators LX and
My ceparately to f(x,y) is equivalent to
choosing the coefficiente aij of the
function
n n
SLxy) = 5 Toa, p ()Y (y)
i=1 j=1 *J J
=0 as to ecatisfy the interpolation condi-
tione (4:1-11) on the rectangular grid of

pointe (Xe’yt>’ s=1,2,..,m
t=1,2,..,n .

(4-1.12)

Bguation (4-1-10) can be viewed as

[{ﬂi(x)} t@iy/j(y)}t] : U’f(xi,yj)

where @ defines the Kronecker product
such that

(4-1-13)

i B = {a, B

i @ alJ}
for{aij} = A §bijj = B (a-1:14)
and U (4) = [v ] transpose of the row

vector obtained by placing the row= of 4
in succession aes a long ceguence (from
left to right and top to bottom order) or

i=1,2,..,m

= ; 4-1.15
Vn(i-1)+j aij j=1,2,..,n (4-1-15)

Thue to obtain tensor product approxima-
tion we need the computation of a tencor
product of two row vectore whose elemente
are polynomials (basi= function~) and aleo
the computation of an inner product.

An extengion of the product method is
due to Gordon!{ In thie method, one compu-
tes

jlf(x,y):[LX+Ny—M L 1t (x,y)
y

DA
Z(LX@ my)f(x ) (4-1-16)

7

where @ i« known as the Boolean “um.

Gordon has shown that uncer the commuta-
tivity aecsumption, LKGJIHV is algebrai-

cally better than'MyLX, in the sense that

the error in the Boolezn-“um scheme ie
smaller than the ten=or rroduct scheme.
For specific choices of projectors LX and

My this has been shown to be the case andg

explicit error bounds are available?

The function ﬁi(x)(ac well as wj(y))

is aleo called a blerding function since
it blends the curves {f(xj,y)} (i=1,..,m)

into a ~urface
m
L f(x,y)= () f(x,,
LL(x,y) zlﬂl( (x;,y) (4-1.17)
={0. ()] t-{f(xi,y)}

(-defines the inner product of the two
vectors).

o o o hY . i
urfacee such as fo, Jyf and (LX < Fy)f

are referred to nme blended surfacee ana
the operators LX, My and L Q)My are call-

>

ed tranefinite projectors ze their imoges
end T match on more than o finite number
of vointse.

™M

. ) + .
We can now rewrite <1 {(x,y) in the
form

,Jflx,y)={¢§(Xﬁ§1Xi'Y§+§Y§(Vﬁ{f(x’yf}

+t y
S8 @Y (e xs v )
i1 € )
where  {¢if'= g ¥ iys=1iy ,(4-1-18)
In order to gain accuracy Gordon' suggeatr
a2 blending approximation

* X v LY
Jl.(X,y):[Mny+dyLX—hny1f<X,y) (4-1-19)

where L;f(x,y):{b;(x)}t~g(x§,y)} (4-1-20)
MU Gey)= (v ()] e Gy )] (a1 21

* . * . . . .
and {xi, i=1,2,..,m fare a finer divieion
of the coarse range of x than {x.,1=1,2,.,
i
. * . .
m} and the points {yj,JxL,2,..,n‘}are a

finer diviesion of the coarre range of y
than {yj,jzl,Z,..,n} « In all cacee ye
as~ume that cardinzlity conditione ho}d:

* g c=l,2,..,m
fiilng)=t, itit=1,2... 0

(4-1-22)

Thue to compute the blending approximation
we need the tensor producte of vectors
whose elements are baecic functione (Lagra-
nge polynomisls or cardinal epline<) and
formation of inner products.

and Ya(y;)=b

Further refinement of the mesh pointe
correstonding to the twe variaples would
lead to higher order blending 1C where




the Boolean Sum approximation ie built up

by appropriately combining th variousH

tensor product approximations! TLet {Xi ’

i=1,2,..,n;?be a division of the range of

x finer than {x;,i=1,2,..,m’}and zyg ,

J=1,2,..,n"Ibe a =till finer divigion of

the range of y than {y; »J=1,2,..,m"}.

Then we compute the Boolean Fuxlij(x,y) as
(6L w1’ O ou' s - 1) e (x,y) (4-1-23)

YXOVX Oyx o yx yx ’

where L;*f(x,y)zgﬂi*(x)}t-ﬁ(x;,y)} (4-1-24)

My 2Guy) =y 0} PGy} (401e25)
with appfopriate
4-2

Cardinality conditions.

Cardinal Spline basis functions

In this paper, we will confine our-
selves to approximations using Cardinal
Splines-%plines satisfying certain ortho-
gonality conditions, as they form exce-
llent basie functions. Although there
are several other equivalent forme of such
splines, we %ntend using the powers and
plusses form® as therce are most suitable
from the non-numerical data structure
voint of view; ofcouree the present data
structure permits the absolutes form also.
(Here we restrict ourcelves to the problem
of equispaced data pointe with a spacing
h; using the transformation y=(x-x%)/h, we
can always bring the discuesions to that
of positive-integer-valued mesh points.)

Let m and n be integers such that
m+l>n >»1; put g=2n-1. For any function
f(x) whose domain includes the integers
0y1,..,m there is a spline approximation
£2(x) based on the values x s Xpsee Xy
and of type n: ©

m .
alx) = Z f£(x;)" M (x) (4-2-1)
i=1
where g™ % jo the 31tB
m and n of the form,

cardinal spline for

. n-1 . m .
Bt (x)= T 0Tt 2 5 eBri(xen)d
A=0 V=0
(i=0,1,2,..,m) (4-2-2)
t if t5 0
where t+ = (4:2-3)
0 if t <0

The function p™%(x)=p™ ™ L(n_x)(i=0,1,..n)

——=0 if 1 £ X
iAT~=1 if i = 2

Example: m = 2; n=2; g=2n-1 = 3. .
P72 (x)=1-1-258+-25% -0 5(x-1)3+0-25 (x-2

8™ (A )=s (4-2-2)

+ Y2
B2 H(x)=1-5%-05x 2+ (x-1)3-0-5(x-2)
52’2(x\=-o-25x+o-25xf-o-5(x-1)f+o-2s(x-zg
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m,l(

The case m=n-1 of § i=0,1,..,m)(without
the (x-») terms) correspond to Legrangia-
ne. Here the =pline approximation ie

N(x) =

(%)L, (x) (4-2-5)

m
i=0

where

)

(x3=x) (xg=xp ) (7%, ) e (3% )

(4-2-6)

where ~~ indicates the omission of the
factor beneath it.

(x-x )(x—xl)..(f:;i)..(x—x

0 m

Li(x)z

L.(x) assumes a forn

i

. m
Li(x):bi,o+bi,lx+" bi,m x (4-2-7)
without involving ©plussse or abeolutes,

Example: m=2; n=3;
2 0
Lo(x):l—l'5X+O-5x2:ﬁ“’L(x)

Ll(x)=2x—x2=62’l(x)

L, (x)==0-5x+C-5x°=37 12 (x)

4.3 Dxample

The data pointe are given in Table 1.
For this example, we have taken the coarse
mesh points as x.=0,1,2 and y.=0,1,2 and
fine mesh pointe’are x. = 0,095, 1, 1-5,2

and yj=c, ¢c-5, 1, 1.5, 2 .

fix,y

3-000C
5-500
8000
10-500
13-00C

4-250
6-875
9-500
12-125
14-750

6-000
9-000
12-0C0
15-000
18-000

8-250
11-87%5
15-500
19-125
22-750

11-000
15-500
20-000
24-500
29-000

o]
[

NHEHEDO NHEFEOO

o« .

NNNNNHHHHHHHHHHOOOOOOOOOOP
OO0 VIVIVIVIVI Q0000 VIVIUuu 060600
SOV OO OVMOoOWnoO OVIOWUWO OVIOWO OUowumo

NMHHOO NMHHOO OO

Table 1




a. Lagrangian Basis Functione for x = C,
05, 1, 15, 2 (Fine mech)

bk(x)=1-4-l6x+5-83x2-3-33xg+0-66x4
1

JC;(X):SX—A-33X2+12X3—2-66x4

@%(X):—6x+19x2~16x3+4x4
£, (x)=2-66x-9-33x"+9-33% -2 - 66x*
fr(x)==0-5x+1-83x ~2x +0-66x"

b. Lagrangian Bacie Functione for y=0,0-5,
1,1-5,2 (Fine mes=h)

Vi (y)=1-4-16y+5-83y°-3-33y° +0- 66y
Yg(y)#ﬁw4-33y2+l2y3 4
V%(y)=-6y+l9y2—16y3
yn —2-66y-9-33y°+9-33y~2 665"
Yaly)==0-5y+1-83y°-2y 4

-2-66y

+Ay4

+C- &6y

¢. Cardinal spline basis functions for
the points x. 1Y =0,1,2 (Coarse mech)
(el J

By (x)=1-1-25%+-25(x) = 5(x-1)2+-25(x-2)7

B, (x)=1-5x--5(x)7+(x-1)2--5(x-2)7

P (x)==-25%+-25(x)7=-5(x=1)7+-25(x-2)

Yy (y)=1-1-255+-25(y) =+ 5(y-1) 2425 (y-2)>
Yo (y)=1-5y--5 (y)f+(y—1)f—-b(y-2)f
yg(y)=—-25y+-25(y)f—~5(y—1)2+'25(y-2)f
d. Computation of—Qf(X,y}

* * oK X
2 (x,y)=(M 1 +MyLX—MyLX)f(X,y)

VX
therefore Take« the form

Blxy)= 7 Z 0¥ 02 0x,5])

i=1l j=1
5 3
+ Z > @l(X)y/(y)f(x Y 5
=1 3—
3
-2 Z ID 1 (P (xy,y
i=1 J

=( fﬁt(xmﬁy‘ + PYx)® y/t(y)

1x3 1x5 1x5 1x3
-85 (x) @Y (yIVE(xY,5)) (4-2-8)
1x3  1x3 (15x%x1

Note: For the sake of conformability in
multiplication, we introduce appropriate
number of zeroo 2t pointe correeponding
to X. —O 5,15 {or y =0 5,1-5), «o that

*19 thlrd term in (f 2-2) can be written
’ I T
5 e P (or ae piey ).

1x5 1x73 1x7% 1¥5

5 a

'g yj(r\f(w.,v )=5y+3,6y+0 , Gvsll
j=1

for i=1,2,% .

2 (y)F( ) 425 6
- ) r X /::\?TT = ')5 T ZD ,HhV+D
Z jrTET ’
7-25y+8-25,9y+11, for i = 1,2,3,4,5.
E )
_Zlyq(y)f(xi yj)=5y+3,6y+6, 9y+11
j=1*

for i=1,2,3%.

*
2 2
Therefore SL (x,y)=%+2%+ x"+ x y+5y.

Aemark: Note that
0 (x,y)=M fo(x,y)zTencor vroduct
y approximution
3 3
:3+2-5x+-5(x)i—(x—l); +

Z

‘ 3
+5y+-5xy%-5(y);y_(x-l); v

ie not accurate enough.

5. Application to System Theory
In many apolicatione in “yetem

Theoryll’ it ie necesca to comrute the
g.c.d. of two nultlvarldble no]ynomlalv
and aleo the inverce of matricees whose
elements are m.v.p. The aslgorithmefor
g.c.d. are available in Knuthy¢ Collines
thece can be Iimplemented using the above
data etructure. The algorithm for inver-
«ion of matrices whoee elementes are {oly~
noriale in available in Krishnamurthy+?
This algorithm can also be mechanized
with the above data structure.

9 <

Cne particular difficulty thet will
be encountered in the above applicatione
ie the coefficient and degree zrowth of
polynomiala. It is possible to obviate
thie difficulty using the finite field
transform technigues in which the integral
coefficiente of the m.v.p. are mapped to
the elements of a finite field; the compu-
tations are then performed in this finite
field with the same data =tructure and
the result is mapped back to the =et of
integers. Unfortunately, due to lack of

space, we are not able to describe these
here in detail.




6. _Concluding Remarks

It is interesting to note that the
multivariable approximation methods can
be realized veing inner products and
tensor producte of vectors whose compone-
nte are the basis functione such as Cardi-
nal Splines. It i=s also eacily aseen that
the tensor product can be obtained by a
minor change in the algorithm used for
computing the inner-product; accordingly
2 tensor product can be computed in n-
inner product time~ (for n-conmponent
vectors) cequentially or in one-inner
product time ueing parallelism.

Kecently, there has been g trend_for
the design of inner product computersléd .
if the data structure described here is
incorporated for such machineg, the multi-
variable approximation can be computed
economically using the blending function
methods,

“fince m.v.p, processing is required
for several applications it =eems worth-
while realizing all these algorithms in
hardware,
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