ey

REQUIRED SCIENTIFIC FLOATING POINT ARITHMETIC

Lawrence A Liddiard

University Computer Center, University Of Minnesota

Minneapolis, Minnesota

Abstract - Previous papers in computer arithmetic
have shown that correct rounded floating point with
good arithmetic properties can be attained using
guard digits and careful algorithms on the floating
point fractions. This paper combines that body of
knowledge with proposed exponent forms that are
closed with respect to inversion and detection and
recovery of exponent under and over flow. In addi-
tion radix 2 is shown to be the only base radix
meeting minimal variation of precision, a condition
necessary for the safe use of floating point. An
effort is made to establish objective criteria in
answer to the question; 'What is the best division
of the computer word into exponent and fraction
parts?''. Combining the previous results allows a
required scientific floating point arithmetic to be
portrayed and compared with available arithmetics
on current computers.

Index Terms - Floating point exponents, optimal
base radix, arithmetic properties, exponent over-
flow and underflow, grade report on current float-
ing point arithmetics.

1. INTRODUCTION
Previous papers have pointed out various poor
arithmetic characteristics in the fractional arith-
metic used in floating point numbers on current
computers and have shown that many of these faults
can be corrected by the use of guard digits and
proper rounding. In this paper the anomalies in
poor excess q exponent choice, base radix, and the
minimum exponent range and fraction precision for
floating point numbers are shown to be correctable.
In addition, augmentation of the exponent by one
bit is shown to provide attractive properties for
exponent underflow and overflow detection. If
Knuth's Fundamental Principle '""Numerical subrou-
tines should deliver results which satisfy simple
useful mathematical laws whenever possible' [10p204)
with corollary (10p196) "“Floating point routines
should be designed to preserve as many of the ordi-
nary mathematical laws', is followed; then a blue-
print can be made for good floating point hardware.
If future computer designers follow that blueprint,
then that will earn them A's on their report card
from numerical analysts. In section Il through V we
will show that certain forms of floating point num-
bers have attractive or necessary qualities, and
the combination of these forms with required prop-
erties previously stated by numerical analysts leads
to a Required Scientific Floating Point format as

CH1412-6/78/0000-0056$00.75 (c) 1978 IFEE

T o

56

presented in section VI. Section VI compares cer-
tain current computers with respect to exponent
range and precision as to the Required Scientific
Floating Point Arithmetic.

NOTATION

We will use Knuth's notation (10) for floating
point numbers. The floating point number is di-
vided into exponent e, and fraction f with p digits
using base b and excess q exponent so that:

(e,f) = fFxp°79

Where e is an integer having a specified range and
f is a signed fraction such that If} < 1, which
mears that the radix point is to the left of the
positional representation of f. P digits means that

bPxf is an integer. Finally, (e,f) is said to be
normalized if the most significant digit of the
representation of f is non-zero, so that either
/b < IfI< 1 or, if f =0, then e-q has its small-
est possible value.

11. REQUIRED EXPONENT BIAS

By Knuth's fundamental principle it follows that
if a floating point number (ej”fj)’ fj # 0 exists

in (e,f) then its inverse should also exist in
(e,f) with f # 0. This rule is violated in all cur-
rent computers that we know to exist. For example,
the CDC 6000 and CYBER 170 series with a decimal
expcnent range of approximately 10_292 to 10322

have a 10°° range (IO292 to 10522) and the BUR-

ROUGHS 5700 and 6700 series with exponent range of
approximately 10_“6 to 1d69 23 46

to 10°9) in which the inverse is set to 0. The two
previous examples are extreme cases since both of
these computer series have the radix point to the
right of the fraction making f an "integer', and
thus have a missing inverse range of approximately
the square of the precision. Current ”fractiona_l_']'28
computers such as the DEC 10, HONEYWELL 6000 (2

to 2]27) and IBM 370 (16_6“ to 1663) where the ex-
ponent ranges have an even number of states, put
the extra state into the negative part of the expo-
nent range. Thus for these computers there exists a
small exponent range in which the inverse has an
exponent overflow fault. We will show that this ex-
tra state should be in the positive part of the ex-
ponent range if simple mathematical laws are to
hold.

have a 10°° range (10

tet (17b) 5" < 1" < pap”
then the inverse 1 S5 L ¥ 1
(1/b) 6" lfju*b” b"
If equality is]*b—n+1) i (l/b)*b-n+1

P — >

handled separately lij*bn

Therefore, if the odd state is put into the positive

exponent ;ange the inverse of fj*bn will exist as

+ Thus if the range of the exponent is

0 < e < 2% then the bias should be 257'-1 which
will insure that the inverse of a number in (e,f),
f# 0 will also exist in (e,f) with f # 0. Consid-
ering the equality condition for the inverse of

(176)%6™ = (1/b)5p" "2

number with exponent n = —ZK-'
verse that does not exist
is handled properly in the
proposed in section Il1l. The requirement for an even
number of states in the exponent range suggests that
a two's complement number should be used for the ex-
ponent part. Without the proposed exponent form the
replacement of a division by the use of the product
of the reciprocal Causes unexpected results when ej-
ther the inverse is set to zero, or to infinity
giving a zero or exponent overflow fault for the
product form when the quotient form would have given
a result in (e,f).

f *b-n+]
i

» only the smallest normalized

+1 will have an in-
in (e,f). That one number
augmented exponent field

i11. EXPONENT UNDERFLOW AND OVERFLOW

Continuing the application of the fundamental
principle it follows that if numbers (e1,fl) and

(ez,Fz) exist then the product (e],f])*(ez,fz) and
the quotient (e],F])/(ez,fz) with fz # 0 should also

exist in (e,f). This is not true for current com-
puters since the product or quotient may not fit
into ‘the bits allowed for the exponent. Curfent com-
puter hardware usually has an immediate interrupt to
allow interpretation of an exponent overflow or un-
derflow condition with the resulting fraction cor-
rect and the exponent correct modulo the number of
bits in the exponent. Some current computers set ex-
ponent underflow results to zero and exponent over-
flows to "infinity''. As computers become more asyn-
chronous and pipelined there has been a tendency to
disallow immediate programmer control of exponent
faults since complex hardware is required to capture
and allow restarting of that machine state that’
caused the exponent fault. Knuth (10p]89) shows that
ignoring exponent underfiow and setting the result
to zero causes inconsistant results in certain cases
such as (UXV)*W being set zero when U*V underfiows
to zero but that (UxW)=*y may be non-zero for certain
U,V and W's. A simple solution that allows all prod-
ucts and quotients to exist in {e,f) is the addition
of what we will call the Exponent Underflow and
Overflow (EUO) bit to the exponent field. This can
also be done by considering the upper two most bits
of the exponent field to be testable fault bits as
is done in the CRAY-1 (7).

57

This has five advantages: In pipelined or asyn-
chronous computers the out of range results can be
examined after the arithmetic operation without
having a complex hardware solution to the restora-
tion of that machine state that caused the fault.
The current practice of having separate interrupts
for exponent underflow and overflow because of the
modulo exponent result is simplified by having a
single range fault since the true exponent and
fraction are retained. The concept of the EUO bit
in combination with the top most exponent bit al-
lows simple hardware detection and condition bit
setting for exponent faults. This extended form al-
lows products and quotients with non-zero divisors
to exist in (e,f) for all non-exponent faulted
pairs of numbers. And finally, the addition of un-
normalized states representing “'underflow', ''dj-
vide-by zero', "infinity" and "undefined" as dif-
ferent powers of two in the fraction of the small-
est valued exponent range allows a very complete
floating point arithmetic format to be defined.

Example of 3 bit exponent augmented with EUO bit

Exponent Value Binary
TT
-7 0000
-6 0001 Exponent Underflow Range
-5 0010 bit3 = bit2 = p
) 0011
=3 0100
-2 0101
-1 0110
0 0111
1 1000
2 1001
3 1010
4 1011
5 1100
6 1101 Exponent Overflow Range
7 1110 bit3 = bit2 = 1
8 1111

If the exponent bits are augmented by an EUO bit,
then the square of any non-exponent faulted number
in (e,f) exists in that extended (e,f) range since:

(/6) 52" = (1767) 5620 < (15 15M)2 < fap20

even when R* rounding
example above,

is used. Using the exponent
the maximum squared value s

f(l—2p)*24)2 < 1*28 and the minimum squared value

is ((1/2)x27Y% = (172)%277 both of which are in
the extended (e,f). Since the inverse exists except
for the minimum value in (e,f){ie,(1/72)%2%%(-7) in
the example given abovel, then (el’Fl)/(eZ’fZ) =

(e],f])*(1/(e2,fo)) exists and the special case of

max (e, f)/min(e,fexists in (e, f) although 1/min(e,f)
does not exist in the restricted (e,f) exponent
range. As a practical example, G. E. Forsythe [(8)
showed that if the square of a floating point num-
ber would not cause an exponent fault, then the
normal algorithm for solving the quadratic equation
would still be useable for equations whose coeffij-
cients had large absolute valued exponents.

If computers do not use the EUQ bit concept, then
a reasonable solution is to have one more bit in
the exponent range. Thus for the practical applica-
tions where the square of a number is required in

intermediate calculations, this extra exponent bit
will allow the computation of a solution without

incurring an exponent overflow or underflow fault.
For example, if a floating point unit s to mini-

100 for final

oil‘oo,

mally handle exponent ranges up to IOi

results, the actual exponent range must be 1

0f this range,loizo0 is required for the typical

squares of numbers and complex divisions and abso-
lute values used in the intermediate calculations
of most numerical algorithms, with numbers greater

than 10200 or less than 10-200
range faults.

Finally, the EUO bit is not a complete panacea
since it will not completely handle the classical
algorithms for complex division and complex absolute
value for all values in {e,f). The classical compu-
tation of (a+bi)/(x+yi) and abs(z) had an interme-

being considered as

diate sum of x2 + y2 and previous floating point

implementations could only handle numbers with val-
ues less than the square root of the maximum expo-
nent range. For example: if the exponent range al-

+100

lowed 10— full range values, then X,y were re-

. - 50 -50
stricted to be less than 10°" or greater than 10 s

if the sum x2 + y2 was not to have an exponent
overflow or underflow. With an EUO bit, full range
values are allowed for x and y; but there is a
square root of 2 radius at the upper end of the ex-
ponent range in which the summation of the squares
may overflow out of (e,f). Even this small range
may be properly handled if an "infinity" value state
is implemented in the floating point arithmetic and
a condition test allowed on that state. Else if the
fast registers or stack hardware have 1 or 2 more
exponent bits then in the exponent format of main
store, the preceding classical algorithms can be
handled.

IV. CHOICE OF BASE FOR FRACTION

On the choice of base for the fraction, both (6)
and [2) have suggested that the quaternay base rep-
resentation might be best; since in the first paper
average relative representation error (ARRE) and in
the second RMS Relative Error Criterion, f2(k,p)

are shown to be better for base 4 than base 2. In
both papers, however, using maximum relative repre-
sentation error (MRRE).or worst case relative error,
f. (k,p) to compare base 2 and base 4; it was shown
both bases had identical worst case relative error.
As D. Knuth points out {10p204) "'the enjoyment of
the tools one works with is of course an essential
ingredient of successful work''. In the case of the
floating point fraction it is minimal variation of
precision that makes an essential contribution to
the safe use of -floating point tools. Otherwise,
let us illustrate by three examples that the use of
a higher than base 2 fraction requires "expertise'
in order to achieve the accuracy that should be in-
herent in the tool. :

EXAMPLE 1 (5p117) o
"opi/2 = 1.57 ...o= 16" % (0.098 ...)

contains three leading zero bits in the fraction.

e e et ot 7 ey

The single-precision fraction on the 1 BM 360‘and
SIGMA 7 computers contain 24 bits, of which only 21
can be significant in the case. On the other hand,

pi/k = 0.707 ... = 16° % (0.707 ...)

has no leading zero bits in its representation,
hence can be carried to a full 24 bits of precision.
However, the computation of pi/h as 0.5%(pi/l)re-
sults in only 22 bits of accuracy(the 22nd bit of
pi/k is a zero bit agreeing with the first of three
'garbage''bits shifted in during the computation).
With careful planning, computations can often be re-
arranged to avoid poor normalization of intermediate
results, thus preserving significance in the final
result. In our trivial example above, we could have
retained full significance in our computation of
pi/k by starting from 2/pi, which has no leading
zero bits in its representation, and using division
instead of multiplication. In general, we may pre-
serve as much as one decimal place of significance
by computing x*pi/2 as x/{2/pi). This saving is non-
trivial in any case, and especially so if the arith-
metic involved has only seven significant figures

to start."

EXAMPLE 2 (5p181)

" There is one other advantage to this approach
for base-16 arithmetic. For certain intervals, e /2

is of the form ﬂ6n(1+e), while sinh(x) has the rep-
resentation 16"(1—0). Thus, on these intervals, the

quantity ex/2 has poor normalization (three leading
zero bits), while the final result has no leading
zero bits, but instead three low-order ""garbage''
bits as a consequence of the poor normalization of
the intermediate computation. With the proper choice
of v, exp(x + In v) will have good normalization
whenever sinh(x) does. '

EXAMPLE 3 (19)

To calculate the complex absolute value robustly
by avoiding unnecessary ‘exponent underflow or over-

flow the formula 1ZI = v#(1 + (w/V)Z)J‘r is used. But
to do it accurately for base 16 requires Izl =

2vE(1/4 + (W/ZV)Z)% to be used so that the square
root term does hot have leading zero bits which re-
sult in loss of precision for Z. Note in addition
this paper showed that the most accurate computation

5
of abs(Z) was to use 121 = (W* + VZ)% which is the
classical algorithm that can be used with the ex-
tended exponent range of section !I1.

Thus to .do good work using floating point arith-
metic with a base greater than 2, the user must con-
stantly be aware of '"tricks" in the representation
of constants and formulae. But even these ''tricks'
will not avoid the ghost of poor normalization that
is always ready to strike some intermediate compu-
tation and reduce the accuracy of the final results.
This is the principle argument against the use of
fraction bases greater than 2.

A secondary argument is discovered in the analysis
of programs written in higher level Tanguages. In
the analysis of FORTRAN programs (11) it was dis-
covered that certain forms such as A*2 and A/2 com-
prise a high percentage of the tctal multiplicative

count
Only in

operators (although the analysis forgot to
the occurances of 2%A, 2.%A; 2.0%A, etc.).
base 2 floating point arithmetic are these opera-
tions done quickly with an add to exponent and with-
out the loss of precision that can occur with bases
greater than 2.)

Conclusion: A base 2 fraction is the best possi-
ble under the principle of minimum variation of
precision, a requirement for safe use.

V. MINIMUM NUMBER OF BITS FOR EXPONENT AND FRACTION

The division of a floating point word into expo-
nent and fraction parts has been a historical one
based on components available for fast reliable
memories, on analyses of computational problems and
on the computer designer's whim. The band width of
current memory technology and the published papers
on floating point arithmetic are such that the over-
riding consideration in a current computer should
only be the accuaracy of the fraction part and the
freedom from exponent faults.

Minimum Precision Advocates

Von Neumann (16] advocated 10 to 14 decimals, fi-
nally settling on 12 by designing a 40 bit computer
with fractional precision. However, 't would seem
therefore not at all clear whether the modest advan-
tages of a floating binary point offset the loss of
memory capacity and increased complexity of the ar-
ithmetic and control circuits." Gregory [9] report-
ed that in April 1961, a week long international
conference on matrix computations held at Gatlin-
burg, Tenn. concluded "There was unanimous agreement
among the participants at that conference that com-
puter manufacturers should be urged to increase the
word length on all future scientific computers to
at least 48 bits'. His final statement is that “An
electronic computer should have at least as good an
arithmetic unit as a desk calculator". Three years
later in April 196k, 1BM announced the 360 series
with 32 bit precision, down 4 bits from their pre-
vious 36 bit standard. Cody [4) stated that there
should be 30 to 40 significant bits in single pre-
cision and 80 to 100 bits in double precision.

Minimum Exponent Range Advocates

Numerous problems encounter exponent range limi=
tations. For example: (15} " |t is expected that a
recomputation of the function on the UNIVAC 1108

which has a floating point of 105390 i1l ailow

computation of values Fé_) and Gé_ in all regions

of practical interest without problems of character-
ristic underflow or overflow, " which had occured on

the UNIVAC 1107 (range 10138) and the 1BM 1620 (
+
range IO~99). Cody. (4] stated " We therefore agree

with Kuki that 1075 is not adquate whereas 10300
appears to be'.

The fact that IO]Zb is greater than the estimated
number of nucteons in the universe (12} is used by
some scientific users as a basis for the exponent
range to be required on computers. |f computers
were only used to count nucleons, this might be a
valid argument; but many algorithms used for root
solving and evaluation of interesting functions (15)

59

require exponent ranges of 101000.

1 N .
10 ?S has any significance with respect to computer
exponent ranges, it is as a minimum lower bound.

!f the number

Exponent Ranges larger for Greater Precisions

Several computer manufacturers have larger expo-
nent ranges for double precision than for single.
For example: The BURROUGHS 6700 and the UNIVAC 1108
computers have this feature. Knuth (10} has a sin-
gle byte exponent for single precision and a double
byte exponent for double precision in the MIX com-
puter.

In order to present a useful criterion of required
exponent range versus fraction precision, an ac-
ceptable ratio was sought in a matirx problem that
would require a larger exponent range as precision
increased, thus matching the intuitive analysis
used in the MIX computer. The elements of the Hil-
bert matrix can be considered as random uniform num-
bers in [0,1] which produce a very ill-conditioned
matrix of practical value. When the ratio of the ex-
ponent range required to handle the determinant of
the Inverse Hilbert matrix are plotted versus the
precision required to hold the maximum element of
that matrix, a straight line is produced which
seems to separate those computers with a ''good'! ex-
ponent range from those with a ''too small" exponent
range. If in addition it is accepted that a comput-
er should have the minimum 10 decimals precision

and two digit exponent (10i99) of a good desk cal-
culator then these three lines can be plotted, A-1,
against current computers, A-2, in Appendix A. Com-
puters that have a ratio of exponent range to pre-
cision above and to the right of this line meet a
minimum floating point standard, while those below
and to the left do not. It is our contention that
this graph, A~1, gives criteria on exponent range
and precision that must be met by computers purport-
ing to be Scientific Processors.

Note that we condone the use of smaller exponent
and precision formats for special applications,
such as: coordinates for grid plotting and graphic
use; but not for blind use scientific computation.
Thus such short formats must never be allowed to
become the standard for scientific work such as has
occured with the single precision hexadeciaml for-
mat of 32 bits.

V1. REQUIRED SCIENTIFIC FLOATING POINT FORMAT

Combining the results of sectjons |1 through Vv
with previous papers on the form and rounding of
the fractional part, we can arrive at a required
scientific floating point format.

5ign and Magnitude or DOne's Complement Sign of Fraction, SF, and Fraction
J’ Exponent Underflow and Overflow bit, EUO
S| E

N K-1
CTwo's Complement exponent with excess bias Q=2 -1

Biased
Base 2 Fraction with P bits

-

U Exponent
0 Both Chop with guard digit and R* Rounding Arithmetics

dJ
Radix Point

P»33 bits

K>10 bits

above a letter grade rating sheet for the various
current floating point format follows:

In addition to the minimum 45 bit format portrayed

RATING SHEET FOR SINGLE PREC!ISION FORMATS

ATTRIBUTE

FRACTION
1) Form
Sign and Magnitude

One's Complement

Two's Complement

2) Radix Point
Fractional

Integer

3) Base Radix
Two

Greater Than Two

L) Arithmetic
R* Rounding
R Rounding
Other Rounding

Chop with Guard
Chop without Guard

5) Precision, P

Lh-49 bits, 13-14D

38-43 bits, 11-12D

34-37 bits, 10D
<34 bits, 9D

EXPONENT

1) Form

Two's Complement

One's Complement or
Sign and Magnitude

2) Exponent Bits,K

K>13
K=12 - 13
K=11
K< 1l

ARITHMETIC FAULTS
1) Form

CRITERION OR PAPER RATING
Independent Exponent and A
Fraction fields

Exponent field bits depend B
on Sign of Fraction

Exponent field bits depend C

on SF and there exist numbers
U,V for which U-V#=~(v-U)
[10p209ex11)

Allows symmetric Exponent
Range, see section |1
Asymmetric Exponent Range
implies certain inverses do
not exist in (e,f)

See section {V

Minimum precision variation,
a requirement for safe use
Blind use gives large varia-
tions in precision, thus un-
safe usage

(14)

(14}

If normal arithmetic rules

If normal arithmetic rules do
not hold

(1)

There exist numbers U,V,W for
which U<V but UsW>V*W, if
base > 2 (10p209ex10)

See section V

Von Neumann minimum precision
Minimum Calculator precision
Less than good calculator

See section ||
Bias q=2k-1-1

Bias q=2k—1, some inverses do
not exist

Non-contiguous exponent range
makes add to exponent diffi-
cult and a range of inverses
does not exist ~

See section V. Only for frac~
tion precisions of ‘34 to 50

bits. Section Itl if no EUO
Allows 1Oi]233(3 decimal exp)
Allows 1C:ﬁ08 or 10i§16

+154

Allows 10~ ~"(2 decimal exp.)
Less than 2 decimal exponent

See section ||}

One bit EUD field with all exception states

One bit EUO field with only divide-by-zero fault
All arithmetic faults have good interrupt recover
Underflow set 0, overflow and zero divisor cause
faults or recoverable states

No indication of any arithmetic fault (10p189)

O W w >

O >

O W >

Mmoo @ >

VII1. SOME COMPUTER RATINGS

Some computer ratings with respect to exponent
range and fraction precision for current computers,
if used as scientific processors.

Acceptable Computers for Single and Double Precision

BURROUGHS SCIENTIFIC PROCESSOR (BSP)
CDC 3000, 6000, 7000 and CYBER 170 series
CRAY-1

Acceptable Computers for Double Precision Only

BURROUGHS 5700, 6700 and 7700 series
MIX
UNIVAC 1108 and 1110 series

Non-Acceptable Computers

AMDAHL Vx series

BURROUGHS 1700

CDC STAR

DEC 10 and 20 series

GE 600 series

HONEYWELL 6000 and 66 series
IBM 360, 370, 303x, and 709x series
MU 5

SIGMA 7

Ti ASC

UNIVAC 1107

VII1. CONCLUSIONS

What are the consequences of not requiring good
scientific floating point arithmetic on the comput-
ers used in solving numerical problems?

First: There will continue to be ordinary pro-
blems that should be amenable to computer solution
that will fail because of limited exponent range.
The complex rescaling required for these problems,
will either require unnecessary programming time or
the problem will be abandoned by the casual comput-
er user.

Second: The short fraction in a number of current
computers will continue to produce answers that can
not be trusted; but the casual computer user will
not be aware of that possibility. As an industry
that must have standards, the erroneous results pro-
duced by these too small floating point fractions,
if not corrected by the computing industry, will
cause an external agency to apply "Truth in Comput-
ing'" laws to clean up the past industry mistakes.

Third: 1If the required scientific floating point
arithmetic is not in the hardware, it will not be
used. Two examples: Knuth (11) when delving into
users programs showed that only a few times '‘we ob-
served double precision being used, although the
numerical analysis professors in our department
strongly recommend against the short precision op-
erators of the 360; it serves as another indication
that our department seems to have little impact on
the users of our computer.” The original PASCAL
compiler code generation for the CDC 6000 (18) al-
Towed the choice of a correct rounding option for
additive and multiplicative operations that was ap-
proximately 2.5 times slower than that generated by
the machine rounding instructions. Needless to say
the latest PASCAL code generation [1) in order to
be as fast as competing languages has quietly elim~

inated that option. Unlike (3} this paper is an at-

tempt to influence present and/or future machine
design, either by direct appeal or by economic
means when computers are selected on the basis of
the Required Scientific Floating Point Arithmetic
criteria presented in this and previous papers.

FUTURE RESEARCH QUESTIONS

1} Is there a preferred double
point format?

2) Is the type of accumulator on the GOLEM B and
HONEYWELL 6000 computers part of a required arith-
metic unit for quality single and double precision
results?

3) Can it be shown that one higher precision ac-
cumulation of current precision combined with full
upper and lower parts for multiplicative operations
might obivate the need for significant digit arith-
metic?

ACKNOWLEDGEMENTS
People: M. Stein for starting me down the bit fid-
dling path in computing. K. Frankowski
aging me to write this paper.
Computers: The CDC 6000 for being the first large
scale computer with microprocessor instructions
and large exponent range and floating point pre-
cision(chop and round arithmetic need improving).
The CRAY-1 and its designer for the EUO concept.
Talks: G. Amdahl for the Spring 1977 U of Minnesota
talk in which he stated that all future computers
would converge to the IBM 360 instruction set. |
had pointed out then that the IBM floating point
format was very discouraging for scientific work.
Papers: W. Cody for the interesting examples of the
contortions needed to keep from losing precision
in a hexadecimal computer. W,

precision floating

for encour-

Kahan for those that

APPENDIX

A2

FLOATING POINT CHMARACTERISTICS FOR CURRENT COMPUTERS, RANKED BY INCREASING

suggest perfection is attainable. D. Knuth for the
hope of a uniform theory in programming.

APPENDIY A-i
Plots of various computers versds the line graph of i0 decimatl, 2 digit exponent
ana Log, . of the ratio of the determinant of the lnverse Hilbert Hatriz tn its
Y maxiaum element

4 *
75 MiX-p CRAY-IS BURROUGHS 67000
511.9 341.3 2520.6
70
65
z 60
z + BURROUGHS SCIENTIFIC PROCESSOR
g % - €OC 30005
z
° 3
I a
I 50 5
] H
= 45 2 . - - -~
a COC 60005
M z
3 o H-LVBER 1708
£ 4o R - T
w <
g e
s 35 - = + Unvad Togp
S 30 - -
=
b3 18M 3705
25 = TH ASC-S +¢oC 30000
AMDAHL - .
N 90 L €0C 50600 yeme?
~- 20 BUPROUGHS 1790 - - | EXPONENT RANSE = 10397 . CYBEWOﬁv ¢
2
m\“cf‘
vo | M -s e \\ o o B
i
F003. o
aunwuc:gs 7003 _ gty RO°
o UNIVAC 11075 YT aBurrums 17000
DEC 103 7 18K 3700 < BRIV 7
HONEYWELL 60005 TI ASC-D 18M 370E
5 o - ST e Te T *
UNIVAC 11070 RHONEYMELL 60000
DEC 10D DEC 200
T 10 20 30 “0 50 60 70 80 90 too 1o 120

FRACTION PRECISION 1¥ B\TS” .

61

HINTHUM PRECISION IN B1TS " g
2 b
- % -
S a b
o - w
S s & z ~
z 2 = = w
“ = w w w o
= - 9 [o z
: —_— = = z é
= x & = 2 S
©w E = -
"] [t w (i wi o o - z
u = g e v i i & 3
o - > w o =z o w =z
v o x o - =1 o o
-~ = =z =z o o k=3
-4 © o o o o [[t > wt
w z < o - -— x z x w
w 2 25 7 3 i 3 ..
5 = x~ 2 2 3 y g o 5
a T wo— o - o o < -—
x (=] v O oW w =z o o. Lo =
Q) = § o o« = > > o <C
8 § $3¢ & = 3 3 2 S
MiX 31 64 F s 4 g9 -32 k1 63 15.8
1BM 370, TI ASC 32 16 F s 6 2 64 63 127 212
BURROUGHS 1700 B2 F s 24 24 -256 255 511 9q.3
UNIVAC 1107, DEC 10 36 2 F 5 27 27 -128 127 255 9.4
HONEYWELL 6000
COC 3000, BSP Y 2 F s 36 36 -1023 1023 2006 56.8
BURROUGHS 6700 47 8 1 s 13 3y -51 76 127 9.8
MIX 61 64 F D 8 43 2048 2047 4095 s511.9
(OC 6000, CYBER 170 60 2 | s 48 48 -975 1070 2045 b7.6
CRAY-1 6h 2 F s W8 48 <8192 8191 16383 341.3
UNIVAC 1107, DEC 10 72 2 F 0 52 52 -t01 127 228 4.0
18K 370, TI Asc Bh 16 F D 1S3 -6k 63 127 g4
BURROUGHS 1700 7 2 F D 60 60 -25 255 53 8.5
UNTVAC 1108 722 F D 60 60 -1024 1023 2047 3h.1
HONEYWELL 6000, DEC 1072 2 F D 63 63 -~128 127 255 4.
BURROUGHS 6700 95 8 M D 26 76 -32755 32780 65535 2520.6
€bC 3000 9 2 F D B4 8% 1023 1023 2046 24.4
COC 6000, CYBER 170 120 2 M b 96 96 -327 1070 1987 20.8
18K 370 128 16 F E 28 109 <64 63 127 4.5
PRECISION TYPE S - SINGLE D - DOUBLE E - EXTENDED
RADIX POINT F - FRACTIONAL | - INTEGER M - MIDDLE OF TWO PARTS
APPENDIX A-3
DETERMINANT DETERMINANT LARGEST BINARY BITS RATIO
N HILBERT INVERSE ELEMENT TO REPRESENT EXPONENT RANGE
MATRI X WILBERT _ OF INVERSE _ LARGEST ELEMENT T0 PRECISION
b 1oxio? 1.ox10? i oxt0® !
2 8.3x1072 1.2x10' V.2xlo! 4
3 46xio”t 2.2x10° 1.9x102 8
"R MY 5. 9x10° 6.5x10° 13
5 37072 a0’ axiod 18 ug
¢ 510’ gu0'7 408 23 6.0
7 w80 g 02t 1.3x108 27 6.3
8 2.7x1073% 390032 4 3000 32 7.3
9 e o') e 37 7.8
220073 45052 3502 42 8.8
" 3.0x107%5 3.3x108" 12x10tt 47 9.3
12 2.6x10778 3.8x1077 3.7x10'° 52 10.4
13 w0’ 200 e 57 10.8
W hex0T198 g 000107 g8 62 12.0
15 Lo g a0123 420 67 12.4
6 x0Tt gt 3.5x102! 72 13.5
17 v2xi07 '8 g gagt60 23 77 14,0
18 sk 18 o018 L o2 82 V4.9

[

2}

(3

)

()

1))

n
8]

193

Q10)

(1)

(12}

(13)

(14

(15)

(16)

w7l

(8]

¢5)]

(20

REFERENCES

U. Ammann, ''0On Code Generation in a PASCAL
Compiler", Software-Pract. and Expr. Vol 7,
pp391-423 (1977)

R. P. Brent, '"On the Precision Attainable with
Various Floating-Point Number Systems' IEEE
Trans. Comput. Vol. C-22, pp601-607, July 1973
W. J. Cody, ""The Influence of Machine Design
on Numerical Algorithms', Proc. SJCC, Vol. 30
pp305-309

W. J. Cody, '"Desirable Hardware Characteris-
tics for Scientific Computations, A Prelimin-
ary Report'', SIGNUM Newsletter Vol. 6, No. 1,
January 1971 ppl16-31

W. J. Cody, "Software for the Elementary Func-
tions'" in Mathematical Software, Academic
Press, New York, NY, 1971, pp171-186

W. J. Cody Jr., 'Static and Dynamic Numerical
Characteristics of Floating Point Arithmetic!
IEEE Trans. Comput. Vol. C-22 pp598-601, July
1973

CRAY-1 Computer System Reference Manual, CRAY
RESEARCH INC., 1976

G. E. Forsythe, "'Solving a Quadratic Equation
on a Computer' in The Mathematical Sciences,
A Collection of Essays, National Research
Council (COSRIMS) The M.I.T. Press, 1969

R. T. Gregory, '"On the Design of the Arith-
metic Unit of a Fixed-Word-Length Computer
from the Stand Point of Computational Accur-
acy'' IEEE Trans. on Electronic Comput. Vol.15
pp255-257, April 1966

D. E. Knuth, The Art of Computer Programming,
Volumne I, Addison-Wesley, Reading, Mass.
1969, pp180-229

D. E. Knuth, "An Emperical Study of FORTRAN
Programs't, Software-Pract. and Expr. Vol. 1,
No. 2 ppl05-134 (1971)

D. E. Knuth, "Mathematics and Computer Sci-
ence: Coping with Finiteness', SCIENCE, Vol.
194, No. 4271, 17 Dec. 1976, pp1235-1242

W. Kahan, "Implementation of Algorithms, Part
I'"', Technical Report 20, University of Cali-
fornia, 1973, NTIS AD-769-124

H. Kuki and W. J. Cody, "A Statistical Study
of the Accuracy of Floating Point Number Sys-
tems', Commun. Assn. Comput. Mach. Vol. 16,
pp223-230, April 1973

E. J. Martin Jr. and P. C. Patton, ''Evaluation
of Certain Definite Integrals Frequently En-
countered in Radiation and Diffraction Prob-
lems Involving Circular Geometry', The Comput.
J. Vol. 8, No. 3, pp256-263

John von Neumann, Collected Works, Volumne V,
Design of Computers, Pergamon Press, Oxford,

1963

A. Padegs, ''Structured Aspects of the System/
360 Model 85 - 11l Extension to Floating Point
Architecture'', IBM Sys. J. Vol. 7, No. 1, 1968
pp22-29

N. Wirth, "On 'PASCAL' Code Generation and the
CDC 6000 Computer’, STAN CS-72-257, Computer
Science Dept., Stanford University, 1972

J. Wisniewski, ''Some Experiments with Comput-
ing the Complex Absolute Value'', SIGNUM News-
letter Vol 13, No 1, March 1978, plt

Many Different Computer Reference Manuals

